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THE LINEAR OPTIMAL CONTROL PROBLEM
WITH VARIABLE ENDPOINTS

Vladimir Jankovié

Abstract. A maximum principle, a uniqueness theorem and an existence theorem for
the linear optimal control problem with variable endpoints and with general class of admissible
controls are proved.

1. Introduction

Let us begin with framework of the optimal control problem which we are
going to study in this paper. The control set U is an arbitrary convex compact
set in R". Control is a function which maps some closed interval of the real line
into the control set. We shall deal with the class D of so-called admissible controls.
This is the class of controls which satisfies the following conditions:

1. each admissible control is measurable,

2. each piecewise constant control is admissible,

3. if the control u(-) : [to,t1] — U is admissible, then the control u'(-) :
[to + h,t1 + h] = U defined by u'(t) = u(t — h) is admissible too,

4. if the control u(:) : [to,t1] = U is admissible, then its restriction on an
arbitrary closed subinterval of [tg,?1] is admissible too,

5. if the restrictions of the control u(-) : [to,t1] — U on [to, 7] and [r,t1]are
admissible, then u(-) is admissible too,

6. if controls u'(-),u"(-) : [to,t1] — U are admissible, and if 0 < A < 1, then
the control u(-) : [to,t1] — U defined by u(t) = (1 — Mu'(t) + Au'(¢) is admissible
too.

The phase space X is the n-dimensional Euclidean space R™. Let A €
L(R™ R™) and B € L(R",R™). An absolutely continuous function z(-)[to,t1] = X
is a trajectory which corresponds to the admissible control u(-) : [to,t1] — U if
%(t) = Ax(t) + Bu(t) a. e. on [tg,t1]- Let us suppose that in the phase space X
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two convex, closed, disjoint sets Xy and X; are given. We shall call them initial
and terminal set. The trajectory z(-) : [to, 1] — X accomplishes the passage from
Xo to Xy if z(tg) € Xo and z(t1) € X;. The difference t; — o is then called the
passage time.

The aim of this paper is to study the problem of minimization of the passage
time. The admissible control 4(-) and the corresponding trajectory Z(-) are optimal,
if trajectory &(-) accomplishes the passage from Xy to X; in the shortest time.

In [2, 5, 3] and [1] some special cases on the mentioned optimal control
problem were investigated. Gambkrelidze [2] studied the problem with fixed end-
points, namely the case when the control set U is a rectangular parallelepiped and
the class of admissible controls D is the class of piecewise continuous controlos. A
similar problem was considered in the monograph [5] (chapter 3), were the control
set U was allowed to be an arbitrary convex polyhedral. In [3] the problem with
fixed endpoints was studied too, with the control set U being an arbitrary convex
compact set, and with measurable admissible controls. The problem with variable
endpoints was studied for the first time by Boltyanskii [1]. In [1], domain of con-
trol was an arbitrary convex compact set and admissible controls were piecewise
continuous controls.

In Section 2 of the present paper a maximum principle for our problem for-
mulated above is proved. Tha first maximum principle, for any optimal control
problem whatever, was proved by Gamkrelidze [2]. Maximum principles for ver-
sions of the linear optimal control problem in [5] and [3] were derived from the
maximum principle for the general optimal control problem, proved in Chapter 2
of [5]. For the linear optimal control problem with variable endpoints, a maximum
principle could not be derived from the corresponding theorem for the general prob-
lem, because the sets X and X; need not have a smooth boundary. Boltyanskii[1]
proved a maximum principle for the linear optimal control problem with variable
endpoints under the additional assumption that the terminal set X; is strongly
stable. Here we proe a maximum principle without this additional assumption.

In Section 3 two theorems are proved, the first of them being a generalization
of Theorem 9 of [5] about the finite number of switchings. In the second theorem
sufficient conditions for the uniqueness of optimal control are given.

In section 4 an existence theorem for the optimal control problem is proved
by refining the reasoning in the proofs of the existence theorems of Gambkrelidze
[2] and of the monograpf [5] (Chapter 3). The crucial role in this proof is played
by the proposition about the representation of a closed convex set in Euclidean
space. This proposition and its a application in the proofs of existence theorems
are presented in [4].

At the beginning of Sections 2, 3 and 4 three lemmas are proved, which are
used in the theorems which follows. Although these lemmas are known, their proofs
are repeated here for the sake of completeness.

The question of sufficient conditions for optimality will not be considered in
this paper. The theory developed by Boltyanskii[1] concerning sufficient conditions



The linear optimal control problem with variable endpoints 135

is fully applicable to the problems studied here.

2. Necessary condition for optimality

LEMMA 2.1. Ifu(-) : [to, t1] — U is an admissible control, z(-) : [to,t1] = X is
the corresponding trajectory and p(-) : [to,t1] — X™* is o solution of the differential
equation p = —pA, then

/ " p(t)Bu(t)dt = plt1)a(t1) — plte)z(to).

to
Proof. The equlities

p(0)s(0) =p(0)2() + p(1)5(0)
= — p(t) Az (1) + p(t) A2(t) + p(1)Bu(t)
=p(t)Bu(t
hold a. e. on [tg,t1]. Hence we have

t1

11
/ p(t)Bu(t)dt = p(t)z(t) | = p(ts)z(tr) — plto)z(to).

to to

THEOREM 2.1 (Mazimum principle) If 4(-) : [to,t1] = U and &(-) : [to, 1] —
X are optimal control and corresponding optimal trajectory, there exists a function
p(-) : [to,1] = X*, which is the nontrivial solution of the differential equation
p = —pA, such that the following conditions are fulfilled:

1. mazimum condition:

ma[.}cﬁ(t)Bu = p(t)Ba(t) for a. a. t € [ty,t];
ue
2. condition of transversality at the left endpoint:
p(to)z = p(to)z(to);
mnéi}gzp( 0)z = p(to)2(to);
3. condition of transversality at the right endpoint:

max ptr)e = p(t)E(t).

Proof. The sphere of accessibility Sp,T > 0, is the set of phase points xg
from which the passage to the terminal set X; can be accomplished in time T'.
Let us prove that it is convex. Let x,z; € St and z¢ €]z(,x;[. There exist
two admissible controls «'(-),u"(+) : [0,T] — U and the corresponding trajectories
z'(?), "(-) : [0,T] = X, such that z'(0) — z{ = zg,2"(0) = z{ and 2'(T"),z"(T) €
X;. There exists a real number A, 0 < A < 1, such that zog = (1 — X)zy + Azg. Let
us define the functions u(-) : [te,t1] = U and z(-) : [0,t] = X by

uw(t) = (1 =N (t) + M (t), z(t) = (1= N)z'(t) + Az" (¢).
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Here, u(-) is an admissible control and z(-) is the corresponding trajectory. Since

z(0) = (1 = N)z'(0) + Az"(0) = (1 — N)zgy + A\zg = 3o
2(T) = (1= N)z'(T) + A" (T) € X3,

the trajectory z(-) accomplishes the passage from the point zy to the terminal set
X, and therefore 2o € St.

Let T' = #1 — o, &0 = #(fo) and &1 = #(#1). Then & € Xo N S;j. The convex
sets Xo and S can be separated by a hyperplane. Let us suppose the contrary.
Then relint XoN relint S; # @. We can suppose that 2o € relint XoN relint S;..
There exist two planes Y and Z in X such that Y C aff X, Z C aff S;, YN Z =
{Z0} and dim Y 4 dim Z = dim X. There exists a simplex A¢g C ZN relint S;,
with vertices x1,x2,...,Tm+1(m = dim Z), such that Zo € relint Ag. For each
i=1,2,...,m+ 1, there exists an admissible control u;(-) : [0,7] — U with the
corresponding trajectory z;(-) : [O,T] — X which accomplishes the passage from
the point z; to the terminal set X;. For sufficiently small 7 > 0, points z;(7),i =
1,2,...,m + 1, are vertices of the simplex A, which has a nonempty intersection
with the initial set Xo. Because of convexity, the sphere of accessibility S;__,
together with its vertices, contains the whole simplex A;. Therefore XoNS;_ # 2,
which contradicts the fact that 7" is the shortest passage time.

There exists a pp € X*, po # 0, such that
Xo C{z € X | poxr < poZo}, S; C{x € X |poxr > poZo}-
Let p(-) : [fo, 1] = X* be the solution of the differential equation p = —pA, which
satisfies the condition p(to) = Po.
Obviously, the condition of transversality at the left endpoint is fulfilled.

Let 2; € X; and let x(-) : [fo,11] = X be the trajectory corresponding to
the control 4(-), which ends at the point z;. Let us denote by zg its initial point.
According to Lemma, 2.1, we have

p(E)er — plia)ze = pE)E1 — Plho)do = /t (1) Ba(t)dt.

Since zg € Sy, it follows that p(to)zo > P(fo)Bo. Therefore p(t1)z1 > p(t1)E1. It
follows that the condition of transversality at the right endpoint is satisfied.

Let us suppose that the maximum condition is not satisfied.
There exists a u € U such that mE > 0, where

E = {t € [to, t1] | p(t)Bu > p(t)Ba(t)}.

Let us suppose the contrary. Let {uy, | K € N} be an everywhere dense set of points
in U. Then mE}, = 0, where

Ey = {t € [fo, 1] | p(t)Buy, > p(t)Ba(t)}



The linear optimal control problem with variable endpoints 137

Since

sup p(t)Buy, < p(t)Bi(t),
KEN

fort € [f(),fl]\ ng E},, then

max p(t) Bu = p(t) Bi(t),

for almost all ¢ € [to,#;]. Contradiction!

There exists an interval I C [fo,fl] such that

/ (5(t)Bu — p(t) Ba(t))dt > 0.
I

Let us suppose the contrary. Let

/E (p(t)Bu — p(t)Ba(t))dt =& > 0.

There exists a § > 0, such that
| [ 6Bu- s Bac)at]| <.
A

for each A C [fo,#1], mA < §. Since the set E is measurable, a sequence of
disjoint intervals I, C [fo,?1], k € N, exists, such that E C kUNIk, mA < §, where
€

A= U I;\E. Then
kEN

S | (B)Bu—p(t)Bi(t))dt =
k=171k

_ /E (5(8) Bu — p(t) Ba(t))dt + / (5(t)Bu — p(t) Ba(t))dt > 0.

A

Contradiction!
Let u(-) : [to,t1] = U be an admissible control defined by

(t) . a(t), te [fo,fl]\f
= Uu, tel

and let () : [fo,71] = X be the corresponding trajectory which terminates at the
point Z;. According to Lemma 2.1 we have

i1
/}E P(t)Ba(t)dt =p(ds) — p(do)o,

~

/E " p()Bu(t)dt =p(ir) — p(io)z(ho).
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It follows that
P(ho)io — plia)z(ho) = / "(5(t) Bu(t) — (1) Bi(t))dt

- / (5(t) Bu — p(t) Ba(t))dt > 0.
I

On the other hand, we have p(o)3o — p(fo)#(fo) < 0, because z(fy) € S;. Contra-
diction!

As we see, it turns out that if we suppose that the maximum condition does
not hold, we come to a contadiction, and hence, the maximum condition must hold.

3. The uniqueness of optimal control

LEMMA 3.1. Let p(-) : [to,t1] = X™* be a nontrivial solution of the differential
equation p = —pA and let Y be a subspace of the phase space X. If p(t)Y = {0}
for infinitely many t € [to,t1], then the subspace Y belongs to a proper subspace of
X, which is invariant under the operator A.

Proof . The set of points from the interval [tg, 1], for which p(¢)Y = {0} has
at least one accumulatiom point. Let 7 be such a point. Let y € Y. Due to the
continuity of the function p(t)y, the equality p(7)y = 0 is valid. The derivative of
the function p(t)y is given by % p(t)y = —p(t)Ay. Since between every two zeroes of
a differentiable function lies at least one zero of its derivative, the function p(t) Ay
vanishes on an infinite subset of the interval [to, 1], for which 7 is an accumulation
point. Continuity implies the equality p(7)Ay = 0. If we proceed with such a
reasoning, we can prove that p(1)A¥y = 0 for every k € N. Since p(-) is a nontrivial
solution of a homogeneous linear differential equation, then p(7) # 0. It follows
that all vectors A¥y, k = 0,1,2,... ,y € Y, belong to the hypersubspace H{z €
X | p(t £ = 0}. These vectors generate the minimal subspace Z of the phase space
X, which is invariant under the operator A and contains Y. As Z C H, we have
that Z is a proper subspace of X.H

We shall say that the control set U is in the general position if there exists
a nonempty countable family S of subspaces of the space R", which satisfies the
following two conditions:

1. each hyperplane of support of the set U, which has more than one common
point with U, is parallel to some subspace from S,

2.if Z is a subspace from S, then BZ is not contained in any proper subspace
of X which is invariant under the operator A.

THEOREM 3.1. Let the control set U be in the general position. If p(-) :
[to,t1] = X* is a nontrivial solution of the differential equation p = —pA, then the
control u(-) : [to,t1] = U is uniquely determined by the mazimum condition

maxp(t) Bu = p(t) Bu(t)
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in all but countably many points of the interval [to,t1] The control u(-) is continuous
at every point at which it is uniquely determined.

Proof. Let Z € S. According to the preseding lemma, the equality p(t)BZ =
{0} is fulfilled for finitely many ¢ € [to,t1]. So, the set of points ¢ € [to, t1], for which
there exists a Z € S such that p(t)BZ = {0}, is countable. Let 7 € [tg, 1] be a
point such that p(r)BZ # {0}, for each Z € S. The function u — p(7)Bu reaches
its maximum on the set U at the unique point (7). Let € > 0. The function

p(1)B(u — u(r))
[l — w(7)]l

is continous and negative on the compact set U\BJu(r),e[. Therefore a p > 0
exists, such that

u —

p(T)B(u — u(r)) < —pllu —u(r)],
for every u € U\BJu(7), €[. There exists a § > 0, such that

llp() — p7)Il < w/1B]|
when |t — 7 |< 4. Let |t — 7 |< §. For u € U\BJu(r), €[ we have

p(t)Bu = (p(t) — p(7))B(u — u(7)) + p(7)B(u — u(7)) + p(t) Bu(7)
< pllv — w()| = pllu = u(7)|| + p(t) Bu(r)
= p(t) Bu(7).

Since wu(t) is the point at which the function u — p(t)u reaches its maximum on
the set U, then u(t) € Blu(r),e[.l.

Remark. If the family § is finite, then we can conclude that the set of points
at which the control u(-) is not uniquely determined is finite too.

THEOREM 3.2.. Let the control set U be in the general position. Then each
two optimal controls defined on the same interval coincide.

Proof. Let a(-) : [to,t1] = U and &(-) : [fo,71] = X* be the optimal control
and the corresponding optimal trajectory. Let p(-) : [fo, 1] — X* be the nontrivial
solution of the differential equation p = —pA, such that conditions 1,2 and 3 of
Theorem 2.1 are fulfilled. Let a(-) : [fo,71] = U and 2(-) : [fo,#1] = X be another
optimal control and the corresponding optimal trajectory. Since

~ ~ ~ ~ ~ ~ ~

Blto)2(fo) > p(to)x(fo) (t1)E (1) < pE1)z(Er),

IA

~ ~ ~

t1
/{ PO Ba(t)dt = p(ir)a(h) — plio)i (Fo).
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then X X
131 t1
/ s Baydt =< [ p(t)Bu(t)dt
i to
Besides, p(t)Ba(t) > p(t)Bu(t) a.e. on [fo,t1]. It follows that

maxp(t) Bu — p(t) Bu(t) = p(t) Bu(?)

a.e. on [tg,1]. According to the previous theorem, we conclude that u(t)a(t) a.e.
on [to,t;].M.

4. Existence of optimal control

LEMMA 4.1 Every closed convex set C in FEuclidien space X can be represented
as an intersection of a coutable family of closed half- spaces.

Proof. Let {zp |€ N} be an everywhere dense set of points in aff C\C.
According to a well-known theorem, for each k¥ € N, there exists a closed half-
space Py, such that C C Py and z ¢ Pj. Let us prove that C' = (aggC) N kﬂNPk.

€

Obviously, C C (affC) N kQNPk' Let us suppose that z ¢ C. If z ¢ aff C, it is clear

that z ¢ (aff C) N ngPk. Let = € (aff C)\C. Let us denote by C the convex hull

of the set C U {z}. Let a € relint C and let b be the intersection of the segment
]a,z[ and relbd C. The set (relint C')\C is nonempty, since it contains the segment
]b,z[. An integer k € N exists, such that zj € ( relint C')\C. We have that z ¢ Pj.
Otherwise we would have z;, € C' C P, It follows that = ¢ (aff C) N kQNPk. Thus

we have proved the equality C' = ( aff C')N kﬂNPk. It remains only to note that aff
€

C can be represented as the intersection of a finite family closed half-spaces. H.

THEOREM 4.1. Let the class D of admissible controls be maximal, i.e. let D
be the class of all measurable controls, and let one of sets Xo and X, be compact. If
there exists at least one admissible control with the corresponding trajectory which
accomplishes the passage from the set Xg to the set X1 then the optimal control
exist.

Proof. We can suppose that the initial set Xy is compact.

Let 7' be the infimum over all passage times from the set Xy to the set Xj.
There exists a sequence of admissible controls u(-)[0, Tx] — U with corresponding
trajectories z(+) : [0,7%] — X accomplishing the passage from Xg to X1, such that
T, — T. Corresponding trajectories are given by

TR (t) = B(t) [mk(O) —I—/O ®(7) ' Buy(r)dr|,

where ®(-) : R — L(R",R) is the solution of the differetial equation ® = A - &
satisfying the initial condition ®(0) = I.
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Sequences z(0) and zx(Ty) are bounded. We can suppose that they are
convergent. Let z,(0) — % and zx(Tx) — #1, k — oo. Obviously &y € Xy and
1 € X;. Since

ap(T) — &1 =[x (T) — 2 (Th)] + [zx(T1) — 21]
. T
=[®(T) — ®(T})] [mk(O) + / @(T_lBuk(T)dT
0

Ty
~0(T,) [ @) Bu(r)dr + [ma(Ti — 4]
T
we have z(T') — #,, k — oo. This implies 7' > 0.

If we consider the sequence of controls (ug(-)) as a sequence of points in
the space Lj [O,T], then it is a bounded sequence. It has a weakly convergent
subsequence. We may assume without loss of generality that the sequence (ug(+))
is weakly convergent. Let ug(-) — 4(-), ¥ — 0o. As 4(-) is a point in the space
L3[0,T7, it is measurable function which maps [0,77] into R".

Let us prove that 4(t) € U for almost all ¢ € [0,7]. As, according to the
previous lemma, U is an intersection of a countable family of half-spaces, it suffices
to prove that for each closed half-space P D U we have @(t) € P a. e. on [0, 7).
The half-space P can be represented in the form P = {u € R" | au < a}, where
a€X* and a € R. Let Ey = {t € [0,T] | ad(t) > A}, for A € R. Since

T T
/ K, (t)aug (H)dt — / K, (Hai(t)dt, k— oo, and
0 0

T
/ Kg, (t)aug (t)dt - aug(t)dt < amEy, k € N,
0 E

we have .
7
/ K, (Hai(t)dt < amBy
0
On the other hand,

/OT K, (taa(t)dt = / wil(t)dt > AmE.

E
Hence mEy = 0 for every A > «. Since the relation 4(t) € P is not valid only on
the set QNEO‘“ /s> we conclude that it is valid a.e. on [0, T].
S

The change of the values of the function 4(-) on a set of measure zero does
not affect the weak convergence of the sequence (ix(-)) to u(-). Therefore, we may
assume that u(t) € U, for each ¢ € [0,7], so that 4(-) i an admissible control.

Let #(-) : [0,7] — X be the trajectroy corresponding to the admissible control
a(-), satisfying the initial condition Z(0) = Zo. It can be represented in the form

t
&(t) = B(t) [.f:0+ /0 & ()" Ba(r)dr|.
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Since

/ ® (17 Buy (1)dr —>/ YL Ba(r)ér, k— oo

0

we have x4 (T') — #(T'), as k — oo. On the other hand, zj(T") — #, as k — co. It
follows that £(7) = Z;.1.
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