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ON THE LOGARITHMIC DERIVATIVE
OF SOME BAZILEVIC FUNCTIONS

S. Abdul Halim, R. R. London and D. K. Thomas

Abstract. For a > 0,0 < 8 < 1, let Bo(e, 3) be the class of normalised analytic functions
f defined in the open unit disc D such that

Ree™ (f'(2)(f(2)/2)* " = B) >0

for z € D and for some ¥ = ¢(f) € R. Upper and lower bounds for the logarithmic derivative
zf'/f for f € Bo(a, B) are obtained.

Introduction

For a > 0, denote by By(a) the class of normalised analytic functions f
defined in the unit disc D = {z:|2| < 1} satisfying the condition

Re e f'(2) (f(z)/z)a_1 >0

for z € D and for some ¢ = (f) € R.

It is clear that By(a) C B(a), the class of Bazilevic functions [1], [5]. Thus
each f € By(a) is univalent in D.

In [3], sharp upper and lower bounds for |zf'(z)/f(z)| were obtained for
f € Bo(a) (see also [2]). In this paper, we consider the same problem for the wider
class By(a, 3) defined as follows:

Definition. For a > 0 and 0 < 8 < 1, denote by By(a, () the class of
normalised analytic functions f defined in D and satisfying the condition

Re e (1'(2)(f(2)/2)* " =) >0 1)

for z € D and for some v = (f) € R.
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Statement of results

TueoreM 1. Let f € Bo(e, 8). Then for z =re € D,

@) [(1_5) (it:) +g] / [a(1_5)/01ta—1 GJ_F—Z) dt+ﬂ]- (2)

f(2)
Equality is attained in Bo(a, 3) for the function fi given by

1/a

1
fi(z) == (a(l — ﬂ)/o ot (i—Z) dt + ,3) , when z=r.

TueoreM 2. Let f € Bo(e, 8) and B # 0. Then for z =re? € D,

f:<()) z [(ﬁl(l_ —6:2)>1/2“]_1'

In the opposite direction we have

THEOREM 3. Suppose a > 0,0< <1, u>1and 0 < p <1. Then there
exists f € Bo(a, B) and r satisfying p < r < 1 such that

2f'(2) [ﬂ(l —r?)
f(2) 1—pre

1/2
] , forl|z|=r.

Remark. We note that when 1 = 0, the upper bound (2) is sharp in this
subclass. Theorem 3 shows that the expected lower bound |(zf'(2))/(f(2))| >
(rf'y(=r))/(fi(=r)) is false for the wider class Bo(e, 3), B # 0. The methods of
this paper appear to indicate that the case 8 # 0 is significantly more difficult than

the case g = 0.
Proof of Theorems

In order to prove Theorems 1 and 2, we modify the method of Gray and
Ruscheweyh [2], and require the following lemmas:

Lemma 1. Let F(z) =1—2% / (o fy €271 = BE)/(1 — €) d€), where a > 0
and 0 < B < 1. Then F(z) has non-negative Taylor coefficients about z = 0 and in
particular for |z| <,

|F(2)| < F(r) <lmF(t)=1 and |F'(z)| < F'(r).

t—1

Proof . Tt is easily seen that

o

a (7 a1 (A=5 a(l-p5)
Z—a/05 171_5 d§—1+;7k+a 2~



On the logarithmic derivative of some Bazilevic functions 73

[es) 00 o0 1-—

Now let H(z) = F(2)—1 = _ ¢;2*. Then (E ckz’“> (1-}— > o(1-6) z’“) =-1.
£=0 £=0 =1 k+a

Equating coefficients of ¥ we have ¢o = —1 and for k¥ > 1
e +dy =l = B)/(k+a) 3)

Se)
h = = — " Ch_j > 2).
where d; = 0 and dj, ];1 o ck—j (k> 2)

Now let k£ > 2. Replace k by k — 1 in (3), multiply by (k — 1+ a)/(k + @)
and substract from (3) to obtain

al-8) k-1+a
c"+( 1+a k+ o
where es = 0 and for k > 3,

) cr—1 +exr =0,

1 k—1+4+a
= 1-— » -
PR Mo |7z - GoTronEa)
Thus for £ > 2
k-1
Bk -1+ a) k—1+4+a 1
S o S AP 1— . —
Ck k+a Ck1+,-z:;a( P)en=s U-1+a)(k+a) j+a

Also ¢; > 0 from (3) and
E-—1+a 1 k—j

G-ita)(hta) jta GoltaktaGra)

for 1 < j < k—1. Hence ¢, > 0 for k > 1 by induction. Thus F(z) has positive
coefficients and the lemma follows.

LEmMA 2. Let V be a compact and complete subspace of the space A of analytic
functions f defined in D with f(0) = 1 and let A be the space of all continuous
linear functionals on A. Suppose M1, A2 € A with 0 & A\o(V) & d, where & denotes
direct sum and d is constant. Let V** be the dual space of V. Then for f € V**,
there exists fo € V such that

M) +d M) +d

X(f)+d  X(fo)+d

Proof. Let f € V** and put
AEF) = (M (f) +d) X2 (F) = (A2(f) + )M (F). (4)

Then A € A and A(f) = d(X2(f)—A1(f)). Now by the duality principle [4, Theorem
1.1], A(V**) = A(V) and so there exists fo € V such that A(fo) = d(X2(f) = M1(f)).
Hence using (4) with F replaced by fo gives

(A (f) +d) (A2 (fo) + d) = (A2(f) + d) (A (fo) + d)-
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By hypothesis 0 € A2 (V) & d and 0 ¢ A2 (V**) @ d by duality. Thus

M(f)+d  M(fo) +d
X(f)+d  A(fo)+d

Proof of Theorem 1. From (1) we have
2f'(z) _ ((1—/3) (2) +8)

&) " oy (- Ah(E) + Flen1de ®)
where Re e®¥h(z) > 0 for z € D and h(0) = 1. Thus
2f'(z) _ (1—B)h(z) +8 ©)

f&) afi(1-B)ht)tetdt+ 5

It follows from Lemma 2 and Theorem 1.6 in [4] that any value assumed by the
right-hand side of (6) for some z € D, is also assumed for this z when h(z) is a
function of the form (1 + x2)/(1 + yz) where |z|, |y| = 1. So we may write

14+ z2

he) = T,

where |z| =1 (7)

when obtaining upper or lower bounds for |z f'(z)/f ()|
Using (5) and (7), we have

2f'(z) _ 1+ (1= pB)zz/(1 - Bz) _ 1-F(z)
) —G(z)( T+ 2F(2) )whereG(z)—(l—ﬂz)( T )

Since |F(z)| < 1 and (1 + az)/(1 + br) maps the closed unit disc onto the circle
centre (1 —ab)/(1 — |b]?), radius |a — b /(1 — |b|?) provided |b| < 1, we deduce that

z2f'(2) 1
T < (nl+ 10D, ®
where I; = G(z)(% :gl - F(z )) and I, = G(2) (1 - %) Now
n=(-r) (28 - B2EE) - - re) 6 - ).

Also

B=(-r6) (2 0- 7o) + 76|

= (1-F(2))(G(x) = 1) + 1= [F(2)]*.
From the definition of F(z ) and G(z) we have
=a(l - F(2))(G(z) — 1)
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and so from (8)

zf'(2) 2|2F"(2)|
i@ | S aa-Fep T
Using Lemma 1 we deduce that
z2f!(2) 2rF'(r)
@ | = ai-Fop)

and the result follows on substituting for F(r).

In order to prove Theorem 2, we require the following;:
LEMMA 3. For0< <1 and z =re? € D,

11— 2| <[1—ﬂr2]1/2
1Bzl —(A=p)r = [BA-7)]

Proof. Fix 3 in (0,1) and put

(1) = 12
AT (=B
Then 5 5 Brsin 0
z r sin
%|1—,Bz|—|1—,8z|1m1_ﬂz = 1—ga
and so, after a simple calculation,
0 _ (1—=P)rsin b 1—pr?
syl = St (=P ). ©)

Let A = A(r) denote any value of z for which
[1—Bz| =r~*(1 - Br?). (10)
Such values exist for all sufficiently large r in (0, 1), since (9) is true if, and only if,
2rBcos § =26 +1—r 2. (11)

We now show that

5 11/2
1-0r )] (12)

B=r
and this, together with (11) will establish the lemma.
It is easy to verify that ¢(r) < ¢(—r). Now ¢(—r) < ¢(A(r)) is equivalent
(on squaring and subtracting 1 from each side) to the inequality
46r(1 + fr) < 1
(1+28r—r)2 — 1—1r2

o(r) < p(=r) < p(Ar) = [
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f0<p<1, x(2+z)/(p+ x)? assumes its maximum value at p/(1 — p) when
2 > —p. Thus with z = 20r and p =1 —r, we have
ABr(l+pr) _a+a) _ (A=r)/r)(2+@Q—7)/r) 1

1+28r—r)2 ~ (p+x)? — (1—r+(1—r)/r)2 C1—r2

Finally, using (10) and (11) we obtain

[1- 87128 +1—r"2) 472"/

) = S e =

=[&;fﬁj”7

Proof of Theorem 2. As in the proof of Theorem 1, we write h(z) = (1 +
zz)/(1 — z) where |z| = 1. Thus we have from (5)

2f'(z) (142’2 Lo l+a'tz
o= (55) [ (o[ e 5a).
where 2’ = (1 — 8)z — 8 and so

1 142tz 1— 1 1— 1—
1) =a/ L Zdtza/ tal( i +t> — 2. (13)
0 0

z2f'(2) 1+2'2z 1—tz 1+2'2 11—tz
Hence
1 1
1-— 1-—
1) §a/ ta_IMdtjta/ g e
z2f'(2) 0 |1+ 22| 0 1—tz

1 1
1—z| 1+r
<a [ t*1 | dt+a/ t* dt
- /0 1 -B8z—(1-pP)zz| o 14tr
1 1
1-2| 2t
ga/ ot | dt+a/ dt.
0 |1 —Bz| - (1-pB)r o 1+t

Lemma 3 now gives

f(2) [1—m2r” L L _{1—5@}”2
21'(2) <a 7ﬂ(1—r2) /Ot dt+o¢/0 t dt = 7ﬂ(1—r2) + 1,

which completes the proof of Theorem 2.

Proof of Theorem 3. We use the function A(r) defined in Lemma 3 and in
particular the fact that as 7 — 1, p(A(r)) = oo and A(r) = re?? — 1, which follows
from (12) and (11) respectively. These properities allow us to choose § in (0,1),
and 7 in (p,1) such that for A = \(r)

(04+26%=2—=1/pu)p(A) > 1 (14)

and

;/\‘dt<1—6. (15)

s
1
a/t"‘
0

1—tA
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Also choose zg so that |zg| = 1 and so that 2o\ has the same argument as
BA =1 and let 5 = (1 — B)z — B. We also note, using Lemma 3 that for |z| = r,
and 7' = (1 —,3).’17 _/67 |:E| = 15
1-=2
1+2'2

(16)

Scp(Z)Sso(/\)=‘ LA ‘

1+ Z"o)\

Now let f be given by (5), where h is any function satisfying Ree®¥h(z) > 0. Then
for some z' as above (13) gives

f(2)
>J1—Jo— Js, 17
| = 1—J2—J3 (17)
where
b 1
1—-¢ 1-2 1—-¢t 1-2
= i dt|, Jo= /ta—l ——|dt,
1 a/o 14+2'21 -tz 2 aé 1+2'21-1z

1
1—
and J3:a/ to‘—z
0

dt.
1—tz

For J; we obtain

1 1 1
1 9t
Jgga/t“idtga/ ga/ telgp =1.
o | 1+tr o 1+1 :

Also, using (16)

| < ago()\)/ t*tdt = (1 = 8%)p(N).

1
Jy < acp()\)/ Tl
5 5

1—t‘

We now choose h specifically so that for z = A the right-hand side of (5) is given
by taking (1+zot)/(1 —1t) (|t| < 1) in place of h. For this h we define f by putting

h(z) = f'(2) (f(z:)/z:)a_1 — 3 so that we have (5). Then
1-X ‘

§
a—1 t(l_)‘)
1—
1+ 20 ‘/Ot ( 1—tA di
1—2X J 1—2)
Pl AR i ¥ T o — 2l at|.
—‘1+x6)\‘<5 /00‘ l—t)\‘ )

Thus from (15) and (16) we deduce that

Jl za‘

1-A

‘ = (0 + 6 —1)p(\).

The estimates for Jy, Jo, J3 together with (17) and (14) give

f)
AF'(N)

‘ > (NG +26% —2) — 1> ulp(\).
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