ON THE LOGARITHMIC DERIVATIVE OF SOME BAZILEVIC FUNCTIONS

S. Abdul Halim, R. R. London and D. K. Thomas

Abstract. For $\alpha > 0$, $0 \le \beta < 1$, let $B_0(\alpha, \beta)$ be the class of normalised analytic functions f defined in the open unit disc D such that

Re
$$e^{i\psi}(f'(z)(f(z)/z)^{\alpha-1}-\beta)>0$$

for $z \in D$ and for some $\psi = \psi(f) \in \mathbf{R}$. Upper and lower bounds for the logarithmic derivative zf'/f for $f \in B_0(\alpha, \beta)$ are obtained.

Introduction

For $\alpha > 0$, denote by $B_0(\alpha)$ the class of normalised analytic functions f defined in the unit disc $D = \{z : |z| < 1\}$ satisfying the condition

Re
$$e^{i\psi} f'(z) (f(z)/z)^{\alpha-1} > 0$$

for $z \in D$ and for some $\psi = \psi(f) \in \mathbf{R}$.

It is clear that $B_0(\alpha) \subset B(\alpha)$, the class of Bazilevic functions [1], [5]. Thus each $f \in B_0(\alpha)$ is univalent in D.

In [3], sharp upper and lower bounds for |zf'(z)/f(z)| were obtained for $f \in B_0(\alpha)$ (see also [2]). In this paper, we consider the same problem for the wider class $B_0(\alpha, \beta)$ defined as follows:

Definition. For $\alpha > 0$ and $0 \le \beta < 1$, denote by $B_0(\alpha, \beta)$ the class of normalised analytic functions f defined in D and satisfying the condition

Re
$$e^{i\psi} \left(f'(z) \left(f(z)/z \right)^{\alpha - 1} - \beta \right) > 0$$
 (1)

for $z \in D$ and for some $\psi = \psi(f) \in \mathbf{R}$.

Statement of results

Theorem 1. Let $f \in B_0(\alpha, \beta)$. Then for $z = re^{i\theta} \in D$

$$\left| \frac{zf'(z)}{f(z)} \right| \le \left[(1-\beta) \left(\frac{1+r}{1-r} \right) + \beta \right] / \left[\alpha (1-\beta) \int_0^1 t^{\alpha-1} \left(\frac{1+tr}{1-tr} \right) dt + \beta \right]. \tag{2}$$

Equality is attained in $B_0(\alpha, \beta)$ for the function f_1 given by

$$f_1(z) = z \left(\alpha (1-\beta) \int_0^1 t^{\alpha-1} \left(\frac{1+tz}{1-tz} \right) dt + \beta \right)^{1/\alpha}, \quad when \ z = r.$$

Theorem 2. Let $f \in B_0(\alpha, \beta)$ and $\beta \neq 0$. Then for $z = re^{i\theta} \in D$,

$$\left|\frac{zf'(z)}{f(z)}\right| \ge \left[\left(\frac{1-\beta r^2}{\beta(1-r^2)}\right)^{1/2} + 1\right]^{-1}.$$

In the opposite direction we have

THEOREM 3. Suppose $\alpha > 0$, $0 < \beta < 1$, $\mu > 1$ and $0 < \rho < 1$. Then there exists $f \in B_0(\alpha, \beta)$ and r satisfying $\rho < r < 1$ such that

$$\left|\frac{zf'(z)}{f(z)}\right| < \mu \left[\frac{\beta(1-r^2)}{1-\beta r^2}\right]^{1/2}, \quad for \ |z|=r.$$

Remark. We note that when $\psi=0$, the upper bound (2) is sharp in this subclass. Theorem 3 shows that the expected lower bound $\left|\left(zf'(z)\right)/\left(f(z)\right)\right| \geq \left(rf'_1(-r)\right)/\left(f_1(-r)\right)$ is false for the wider class $B_0(\alpha,\beta)$, $\beta\neq 0$. The methods of this paper appear to indicate that the case $\beta\neq 0$ is significantly more difficult than the case $\beta=0$.

Proof of Theorems

In order to prove Theorems 1 and 2, we modify the method of Gray and Ruscheweyh [2], and require the following lemmas:

LEMMA 1. Let $F(z) = 1 - z^{\alpha} / \left(\alpha \int_0^z \xi^{\alpha-1} (1 - \beta \xi) / (1 - \xi) d\xi\right)$, where $\alpha > 0$ and $0 \le \beta < 1$. Then F(z) has non-negative Taylor coefficients about z = 0 and in particular for $|z| \le r$,

$$|F(z)| \leq F(r) < \lim_{t \rightarrow 1} F(t) = 1 \quad \textit{and} \quad |F'(z)| \leq F'(r).$$

Proof. It is easily seen that

$$\frac{\alpha}{z^{\alpha}} \int_0^z \xi^{\alpha - 1} \frac{(1 - \beta \xi)}{1 - \xi} d\xi = 1 + \sum_{k = 1}^{\infty} \frac{\alpha (1 - \beta)}{k + \alpha} z^k.$$

Now let $H(z) = F(z) - 1 = \sum_{k=0}^{\infty} c_k z^k$. Then $\left(\sum_{k=0}^{\infty} c_k z^k\right) \left(1 + \sum_{k=1}^{\infty} \frac{\alpha(1-\beta)}{k+\alpha} z^k\right) = -1$. Equating coefficients of z^k we have $c_0 = -1$ and for $k \ge 1$

$$c_k + d_k = \alpha (1 - \beta) / (k + \alpha) \tag{3}$$

where $d_1 = 0$ and $d_k = \sum_{j=1}^{k-1} \frac{\alpha(1-\beta)}{j+\alpha} c_{k-j} \ (k \ge 2)$.

Now let $k \geq 2$. Replace k by k-1 in (3), multiply by $(k-1+\alpha)/(k+\alpha)$ and substract from (3) to obtain

$$c_k + \left(\frac{\alpha(1-\beta)}{1+\alpha} - \frac{k-1+\alpha}{k+\alpha}\right)c_{k-1} + e_k = 0,$$

where $e_2 = 0$ and for $k \geq 3$,

$$e_k = \sum_{j=2}^{k-1} \alpha (1-\beta) c_{k-j} \left[\frac{1}{j+\alpha} - \frac{k-1+\alpha}{(j-1+\alpha)(k+\alpha)} \right].$$

Thus for $k \geq 2$

$$c_{k} = \frac{\beta(k-1+\alpha)}{k+\alpha}c_{k-1} + \sum_{j=1}^{k-1}\alpha(1-\beta)c_{k-j} \left[\frac{k-1+\alpha}{(j-1+\alpha)(k+\alpha)} - \frac{1}{j+\alpha} \right].$$

Also $c_1 > 0$ from (3) and

$$\frac{k-1+\alpha}{(j-1+\alpha)(k+\alpha)} - \frac{1}{j+\alpha} = \frac{k-j}{(j-1+\alpha)(k+\alpha)(j+\alpha)} > 0$$

for $1 \le j \le k-1$. Hence $c_k > 0$ for $k \ge 1$ by induction. Thus F(z) has positive coefficients and the lemma follows.

Lemma 2. Let V be a compact and complete subspace of the space A of analytic functions f defined in D with f(0)=1 and let Λ be the space of all continuous linear functionals on A. Suppose $\lambda_1, \ \lambda_2 \in \Lambda$ with $0 \not\in \lambda_2(V) \oplus d$, where \oplus denotes direct sum and d is constant. Let V^{**} be the dual space of V. Then for $f \in V^{**}$, there exists $f_0 \in V$ such that

$$\frac{\lambda_1(f)+d}{\lambda_2(f)+d} = \frac{\lambda_1(f_0)+d}{\lambda_2(f_0)+d}.$$

Proof. Let $f \in V^{**}$ and put

$$\lambda(F) = (\lambda_1(f) + d)\lambda_2(F) - (\lambda_2(f) + d)\lambda_1(F). \tag{4}$$

Then $\lambda \in \Lambda$ and $\lambda(f) = d(\lambda_2(f) - \lambda_1(f))$. Now by the duality principle [4, Theorem 1.1], $\lambda(V^{**}) = \lambda(V)$ and so there exists $f_0 \in V$ such that $\lambda(f_0) = d(\lambda_2(f) - \lambda_1(f))$. Hence using (4) with F replaced by f_0 gives

$$(\lambda_1(f)+d)(\lambda_2(f_0)+d)=(\lambda_2(f)+d)(\lambda_1(f_0)+d).$$

By hypothesis $0 \notin \lambda_2(V) \oplus d$ and $0 \notin \lambda_2(V^{**}) \oplus d$ by duality. Thus

$$\frac{\lambda_1(f)+d}{\lambda_2(f)+d} = \frac{\lambda_1(f_0)+d}{\lambda_2(f_0)+d}.$$

Proof of Theorem 1. From (1) we have

$$\frac{zf'(z)}{f(z)} = \frac{z^{\alpha}((1-\beta)h(z)+\beta)}{\alpha \int_0^z \left[(1-\beta)h(\xi) + \beta \right] \xi^{\alpha-1} d\xi},\tag{5}$$

where Re $e^{i\psi}h(z) > 0$ for $z \in D$ and h(0) = 1. Thus

$$\frac{zf'(z)}{f(z)} - \frac{(1-\beta)h(z) + \beta}{\alpha \int_0^1 (1-\beta)h(tz)t^{\alpha-1} dt + \beta}.$$
 (6)

It follows from Lemma 2 and Theorem 1.6 in [4] that any value assumed by the right-hand side of (6) for some $z \in D$, is also assumed for this z when h(z) is a function of the form (1+xz)/(1+yz) where |x|, |y| = 1. So we may write

$$h(z) = \frac{1+xz}{1-z}$$
, where $|x| = 1$ (7)

when obtaining upper or lower bounds for |zf'(z)/f(z)|.

Using (5) and (7), we have

$$\frac{zf'(z)}{f(z)} = G(z) \left(\frac{1 + (1-\beta)xz/(1-\beta z)}{1 + xF(z)} \right) \text{ where } G(z) = (1-\beta z) \left(\frac{1 - F(z)}{1 - z} \right).$$

Since |F(z)| < 1 and (1 + ax)/(1 + bx) maps the closed unit disc onto the circle centre $(1 - a\overline{b})/(1 - |b|^2)$, radius $|a - b|/(1 - |b|^2)$ provided |b| < 1, we deduce that

$$\left| \frac{zf'(z)}{f(z)} \right| \le \frac{1}{1 - |F(z)|^2} \left(|I_1| + |I_2| \right),$$
 (8)

where
$$I_1 = G(z) \left(\frac{(1-\beta)z}{1-\beta z} - F(z) \right)$$
 and $I_2 = G(z) \left(1 - \frac{(1-\beta)z\overline{F(z)}}{1-\beta z} \right)$. Now

$$I_1 = (1 - F(z)) \left(\frac{(1 - \beta)z}{1 - z} - \frac{(1 - \beta z)(F(z))}{1 - z} \right) = (1 - F(z)) (G(z) - 1).$$

Also

$$I_2 = \left(1 - F(z)\right) \left[\left(\frac{1 - \beta z}{1 - z}\right) \left(1 - \overline{F(z)}\right) + \overline{F(z)} \right]$$
$$= \left(1 - \overline{F(z)}\right) \left(G(z) - 1\right) + 1 - |F(z)|^2.$$

From the definition of F(z) and G(z) we have

$$zF'(z) = \alpha (1 - F(z)) (G(z) - 1)$$

and so from (8)

$$\left|\frac{zf'(z)}{f(z)}\right| \leq \frac{2|zF'(z)|}{\alpha\left(1-|F(z)|^2\right)} + 1.$$

Using Lemma 1 we deduce that

$$\left| \frac{zf'(z)}{f(z)} \right| \le \frac{2rF'(r)}{\alpha(1 - F(r)^2)} + 1$$

and the result follows on substituting for F(r).

In order to prove Theorem 2, we require the following:

Lemma 3. For $0 < \beta < 1$ and $z = re^{i\theta} \in D$,

$$\frac{|1-z|}{|1-\beta z| - (1-\beta)r} \le \left[\frac{1-\beta r^2}{\beta (1-r^2)}\right]^{1/2}.$$

Proof. Fix β in (0,1) and put

$$\varphi(z) = \frac{|1-z|}{|1-\beta z| - (1-\beta)r}.$$

Then

$$\frac{\partial}{\partial \theta} |1 - \beta z| = |1 - \beta z| \operatorname{Im} \frac{\beta z}{1 - \beta z} = \frac{\beta r \sin \theta}{|1 - \beta z|},$$

and so, after a simple calculation,

$$\frac{\partial}{\partial \theta} |\varphi(z)| = \frac{(1-\beta)r \sin \theta}{|1-z|} \left(\frac{1-\beta r^2}{|1-\beta z|} - r \right). \tag{9}$$

Let $\lambda = \lambda(r)$ denote any value of z for which

$$|1 - \beta z| = r^{-1}(1 - \beta r^2). \tag{10}$$

Such values exist for all sufficiently large r in (0,1), since (9) is true if, and only if,

$$2r\beta\cos\theta = 2\beta + 1 - r^{-2}. (11)$$

We now show that

$$\varphi(r) \le \varphi(-r) \le \varphi(\lambda(r)) = \left[\frac{1 - \beta r^2}{\beta(1 - r^2)} \right]^{1/2} \tag{12}$$

and this, together with (11) will establish the lemma.

It is easy to verify that $\varphi(r) \leq \varphi(-r)$. Now $\varphi(-r) \leq \varphi(\lambda(r))$ is equivalent (on squaring and subtracting 1 from each side) to the inequality

$$\frac{4\beta r(1+\beta r)}{(1+2\beta r-r)^2} \le \frac{1}{1-r^2}.$$

If $0 , <math>x(2+x)/(p+x)^2$ assumes its maximum value at p/(1-p) when x > -p. Thus with $x = 2\beta r$ and p = 1 - r, we have

$$\frac{4\beta r(1+\beta r)}{(1+2\beta r-r)^2} \le \frac{x(2+x)}{(p+x)^2} \le \frac{\left((1-r)/r\right)\left(2+(1-r)/r\right)}{\left(1-r+(1-r)/r\right)^2} = \frac{1}{1-r^2}.$$

Finally, using (10) and (11) we obtain

$$\varphi(\lambda(r)) = \frac{\left[1 - \beta^{-1}(2\beta + 1 - r^{-2}) + r^2\right]^{1/2}}{r^{-1} - \beta r - (1 - \beta)r} = \left[\frac{1 - \beta r^2}{\beta(1 - r^2)}\right]^{1/2}.$$

Proof of Theorem 2. As in the proof of Theorem 1, we write h(z) = (1 + xz)/(1-z) where |x| = 1. Thus we have from (5)

$$\frac{zf'(z)}{f(z)} = \left(\frac{1+x'z}{1-z}\right) / \left(\alpha \int_0^1 t^{\alpha-1} \frac{1+x'tz}{1-tz} dt\right),$$

where $x' = (1 - \beta)x - \beta$ and so

$$\frac{f(z)}{zf'(z)} = \alpha \int_0^1 t^{\alpha - 1} \frac{1 + x'tz}{1 + x'z} \frac{1 - z}{1 - tz} dt = \alpha \int_0^1 t^{\alpha - 1} \left(\frac{1 - t}{1 + x'z} + t \right) \frac{1 - z}{1 - tz} dt. \tag{13}$$

Hence

$$\left| \frac{f(z)}{zf'(z)} \right| \le \alpha \int_0^1 t^{\alpha - 1} \frac{|1 - z|}{|1 + x'z|} dt + \alpha \int_0^1 t^{\alpha} \left| \frac{1 - z}{1 - tz} \right| dt$$

$$\le \alpha \int_0^1 t^{\alpha - 1} \frac{|1 - z|}{|1 - \beta z - (1 - \beta)xz|} dt + \alpha \int_0^1 t^{\alpha} \frac{1 + r}{1 + tr} dt$$

$$\le \alpha \int_0^1 t^{\alpha - 1} \frac{|1 - z|}{|1 - \beta z| - (1 - \beta)r} dt + \alpha \int_0^1 \frac{2t^{\alpha}}{1 + t} dt.$$

Lemma 3 now gives

$$\left| \frac{f(z)}{zf'(z)} \right| \leq \alpha \left[\frac{1 - \beta r^2}{\beta (1 - r^2)} \right]^{1/2} \int_0^1 t^{\alpha - 1} dt + \alpha \int_0^1 t^{\alpha - 1} dt = \left[\frac{1 - \beta r^2}{\beta (1 - r^2)} \right]^{1/2} + 1,$$

which completes the proof of Theorem 2.

Proof of Theorem 3. We use the function $\lambda(r)$ defined in Lemma 3 and in particular the fact that as $r \to 1$, $\varphi(\lambda(r)) \to \infty$ and $\lambda(r) = re^{i\theta} \to 1$, which follows from (12) and (11) respectively. These properities allow us to choose δ in (0,1), and r in $(\rho, 1)$ such that for $\lambda = \lambda(r)$

$$(\delta + 2\delta^{\alpha} - 2 - 1/\mu)\varphi(\lambda) > 1 \tag{14}$$

and

$$\alpha \int_0^{\delta} t^{\alpha} \left| \frac{1 - \lambda}{1 - t\lambda} \right| dt < 1 - \delta. \tag{15}$$

Also choose x_0 so that $|x_0| = 1$ and so that $x_0\lambda$ has the same argument as $\beta\lambda - 1$ and let $x_0' = (1 - \beta)x - \beta$. We also note, using Lemma 3 that for |z| = r, and $x' = (1 - \beta)x - \beta$, |x| = 1,

$$\left| \frac{1-z}{1+x'z} \right| \le \varphi(z) \le \varphi(\lambda) = \left| \frac{1-\lambda}{1+x'_0\lambda} \right|. \tag{16}$$

Now let f be given by (5), where h is any function satisfying Re $e^{i\psi}h(z) > 0$. Then for some x' as above (13) gives

$$\left| \frac{f(z)}{zf'(z)} \right| \ge J_1 - J_2 - J_3,$$
 (17)

where

$$J_{1} = \alpha \left| \int_{0}^{\delta} t^{\alpha - 1} \frac{1 - t}{1 + x'z} \frac{1 - z}{1 - tz} dt \right|, \quad J_{2} = \alpha \int_{\delta}^{1} t^{\alpha - 1} \left| \frac{1 - t}{1 + x'z} \frac{1 - z}{1 - tz} \right| dt,$$
and
$$J_{3} = \alpha \int_{0}^{1} t^{\alpha} \left| \frac{1 - z}{1 - tz} \right| dt.$$

For J_3 we obtain

$$J_3 \le \alpha \int_0^1 t^{\alpha} \frac{1+r}{1+tr} \, dt \le \alpha \int_0^1 \frac{2t^{\alpha}}{1+t} \le \alpha \int_0^1 t^{\alpha-1} \, dt = 1.$$

Also, using (16)

$$J_2 \le \alpha \varphi(\lambda) \int_{\delta}^{1} t^{\alpha - 1} \left| \frac{1 - t}{1 - tz} \right| dt \le \alpha \varphi(\lambda) \int_{\delta}^{1} t^{\alpha - 1} dt = (1 - \delta^{\alpha}) \varphi(\lambda).$$

We now choose h specifically so that for $z = \lambda$ the right-hand side of (5) is given by taking $(1+x_0t)/(1-t)$ (|t|<1) in place of h. For this h we define f by putting $h(z)=f'(z)\big(f(z)/z\big)^{\alpha-1}-\beta$ so that we have (5). Then

$$J_{1} = \alpha \left| \frac{1 - \lambda}{1 + x'_{0} \lambda} \right| \left| \int_{0}^{\delta} t^{\alpha - 1} \left(1 - \frac{t(1 - \lambda)}{1 - t \lambda} \right) dt \right|$$
$$\geq \left| \frac{1 - \lambda}{1 + x'_{0} \lambda} \right| \left(\delta^{\alpha} - \int_{0}^{\delta} \alpha t^{\alpha} \left| \frac{1 - \lambda}{1 - t \lambda} \right| dt \right).$$

Thus from (15) and (16) we deduce that

$$J_1 \ge (\delta^{\alpha} + \delta - 1) \left| \frac{1 - \lambda}{1 + x'_0 \lambda} \right| = (\delta^{\alpha} + \delta - 1) \varphi(\lambda).$$

The estimates for J_1 , J_2 , J_3 together with (17) and (14) give

$$\left| \frac{f(\lambda)}{\lambda f'(\lambda)} \right| \ge \varphi(\lambda)(\delta + 2\delta^{\alpha} - 2) - 1 > \mu^{-1}\varphi(\lambda).$$

REFERENCES

- [1] I. E. Bazilevic, Über einen Fall der Integrierbarkeit in der Quadratur der Gleichung von Löwner-Kufarev, Math. Sb. 37 (1955), 471-476.
- [2] F. Gray and S. Ruscheweyh, Functions whose derivate take values in a half-plane, Proc. Amer. Math. Soc. 104 (1988), 215–218.
- [3] R. R. London and D. K. Thomas, On the derivative of Bazilevic functions, Proc. Amer. Math. Soc. 104 (1988), 235-238.
- [4] S. Ruscheweyh, Convolutions in Geometric Function Theory, Sem. Math. Sup., Univ. Montréal 83 (1982).
- [5] D. K. Thomas, On Bazilevic functions, Trans. Amer. Math. Soc. 132 (1968), 353-361.

Department of Mathematics and Computer Science University College of Swansea Swansea SA2 8PP Wales, Great Britain (Received 10 02 1989)