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SEMIPRIME IDEALS OF SKEW POLYNOMIAL RINGS

M. G. Voskoglou

Abstract. We study relations among the semiprime ideals of a ring R and those of a
skew polynomial ring S, over R, in connection with results obtained in [11] for prime ideals of R
and S,,.

Notice that results on the prime ideal sructure of a skew polynomial ring
Rz, f,d] have been obtained only under additional assumptions; Goldie and Mich-
ler [1] assume that R is right Noetherian and d = 0, Jordan [4] assumes that R is
right Noetherian and f is the identity map of R, while Irving [2 and 3] assumes
that R is a commutative ring. In [11] we have studied what happens when f is a
non trivial automorphism of R and d is a non zero f-derivation of R and we have
extended these results for skew polynomial rings in finitely many variables over R.

1. Preliminaries

All the rings considered in this paper are with identities. Let R be a ring, let
H = {f1,..., fn} be a finite set of automorphisms of R and let D = {di,... ,d,}
be a finite set of mappings from R to R, such that d; is a f;-derivation of R, for
all i = 1,...,n (ie. di(a +b) = di(a) + d;(b) and d;(ab) = ad;(b) + d;(a) fi(b),
for all a,b in R). Then an ideal I of R is called an H-ideal if f;(I) = I for each
i. Also I is called a D-ideal if d;(I) C I, for each i. An ideal I of R which is
both an H-ideal and a D-ideal is called for brevity an (H, D)-ideal of R. In the
special case where H = {f} and D = {d}, I is called an (f, d)-ideal of R. We recall
that an ideal P of R is called a semiprime ideal if, given any ideal A of R such
that A¥ C P for some non negative integer k, one has A C P. A ring is called
semiprime if 0 is a semiprime ideal. From the previous definition it becomes clear
that R is a semiprime ring if and only if R has no non zero nilpotent ideals. Now
an (H, D)-ideal of R is called an (H, D)-semiprime ideal if, given any (H, D)-ideal
A of R such that A* C I for some non negative integer k, one has A C I; and R is
called an (H, D)-semiprime ring if 0 is an (H, D)-semiprime ideal of R. The notions
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of an H-semiprime and a D-semiprime ideal of R can be also defined in the obvious
way. Assume next that d;od; =djod;, fiofj = fjo fiand d;o f; = f; od; for
all 4,7 =1,...,n and consider the set S,, all polynomials in n variables z1, ..., T,
over R. Define in S,, addition in the usual way and multiplication by the relations
z;r = fi(r)z; +di(r) and z;2; = xzjz;, for all r in R and all ¢, = 1,... ,n. Then
S; is an Ore extension over S;_1 (cf. [7]) for all ¢ = 1,... ,n, where Sp = R (cf.
Theorem 2.4 of [9]). We call the ring S, a skew polynomial ring in n variables
over R and we denote it by S, = R[z1, f1,d1]--.[Zn, fn,dr]. Notice that under
these conditions one can extend f; to an automorphism and d; to an f;-derivation
of S, by putting f;(z;) = z; and d;(z;) = 0 for all 4,j = 1,... ,n (cf. Theorems
2.2 and 2.3 of [9]). In the special case where f; is the identity for all f; in H we
get the skew polynomial ring S = R[z1,d;]...[zn,d,], while if d; = 0 for all d;
in D we get the skew polynomial ring S!, = R[z1, f1]. .. [®n, fn]. When R is right
Noetherian the usual proof of the Hilbert’s Basis Theorem adapts easily to show,
together with induction on n, that S, is a right Noetherian ring too (this is not
true if we take H to be any set of monomorphisms of R, (cf. [6]).

2. Main results

2.1. THEOREM. Let P be an H-semiprime ideal of S,; then PNR is a (H, D)-
semiprime ideal of R.

Proof. Since P is a H-ideal of S,,, PN R is an H-ideal of R. On the other
hand, for all r in P N R and each i, d;(r) = x;r — fi(r)x;, is in P N R, therefore
PN Ris an (H,D)-ideal of R. Now, let A be any (H, D)-ideal of R, such that
AF C PN R for some non negative integer k. Then AS, is an ideal of S,,, because
z;A C fi(A)z; + d;(A) C Ax; + A C AS, for each i. It is also clear that AS,
is an H-ideal of S,. But (AS,)? = A(S,AS,) C A2S, and therefore an easy
induction shows that (4S,)* C A*S,. Thus (4S,)* C (PN R)S, C P. Then, by
our hypothesis, AS,, C P and therefore A C AS, N R C PN R, and this finishes
the proof.

We record two obvious corollaries.

2.2. COROLLARY. Let P be a semiprime ideal of S}, then PN R is a D-
semiprime ideal of R.

2.3. CoROLLARY. Let P be an H-semiprime ideal of S}, then PN R is an
H -semiprime ideal of R.

2.4. THEOREM. Let R be a right Noetherian ring and let P be a semiprime
ideal of S}, none of whose minimal primes contains x;, for each i. Then PN R is
an H-semiprime ideal of R.

Proof . It is enough to show that that P is an H-ideal of S}, and then to apply
Corollary 2.3.
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For this, since S}, is right Noetherian, there exist finitely many prime ideals
of S}, say Pi,..., P, such that P;... P, C P and P,...,P, O P. Thus P, N
PN...0NP, D P But, (PPNPN...N P C PP,...P, C P, therefore
PNPN..NP,CPandso PANPN...NP, =P.

Choose P' to be any of the above mentioned prime ideals of S/, and let g be
in P. Then g is also in P’ and therefore f;(g9)x; = x;9, is in P, for each 7. Thus
fi(9)S,z; = fi(9)x;S;, C P'. But z; is not in P’', therefore f;(g) is in P’ and so
fi(g) is in P. Thus f;(P) C P.

Now we have the ascending chain of ideals P C f7'(P) C f7*(P) C ...,
which by the Noetherian property becomes stable after a finite number of steps,
say m. Then f;™(P) = f;™ '(P), therefore f;(P) = P and this finishes the
proof.

Jordan [5] has shown that if I is a d-prime ideal of R, then IS} is a prime
ideal of S}. The following theorem shows that the same result holds if we replace
the term “prime” with the term “semiprime” in the more general situation of the
skew polynomial ring Sj.

2.5. THEOREM. Let I be a (f1,d1)-semiprime ideal of R, then ISy is an fi-
semiprime ideal of S;.

Proof . Tt is easy to check that 1.S; is an fi-ideal of Sy (cf. the proof of Theorem
2.1 for the ideal AS,). Next let A be an fi-ideal of S; such that A*¥ C IS; for
some non negative integer k. Denote by T(A) the set of all leading coefficients of
the elements of A, which are polynomials in z; with coefficients in R. We are going
to show that T'(A) is an (fi,d;)-ideal of R. For this let g and h be any elements
of A with degrees m and [ and leading coeficients a and b respectively. Without
loss of the generality we may assume that m > [. Then a £ b is either zero or the
leading coefficient of g+ ha?"~" which is in A, therefore a+ b is in T'(A). Moreover,
for any r in R, ra is either zero or the leading coefficient of rg. On the other
hand gf;™(r) = azf; ™(r) + terms of lower degree = arz]* + terms of lower
degree, therefore ar is either zero or the leading coefficient of gf; ™(r). Thus ar
is in T(A) and therefore T(A) is an ideal of R. Furthermore f;(a) and f, *(a) are
the leading coefficients of f;(g) and f;'(g) respectively. Finally, if g = o aiTt,
with a,, = a, then

z19 — fi(g)z1 = Z[wmi — filas)z ]zt = Z d(a;)x},
i=0 i=0

therefore d(a) is either zero or the leading coefficient ;9 — f1(g)z1 which is in A.
Thus T(A) is in fact an (f1, d;)-ideal of R. Also, since az(* f{ ™ (b)z} = abz"™ +
terms of lower degree, ab is either zero or the leading coefficient of g f; ™ (h). Thus
ab is in T'(A?%) and therefore [T'(A4)]? C T(A?). Then an easy induction shows that
[T(A)]F C T(AF), for any non negative integer k. Thus [T (A4)]* C T(IS;) = I and
therefore, by our hypothesis,

T(A) CI. (1)
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Now we may as well assume that A D ISy, otherwise we can use A + IS; instead
of A. This, together with the relation (1), shows that if g = " a;2! is in A,
then a2z is in A and therefore g — ap 2" = Z?;Bl a;z1¢ is in A. Thus a;,—1
is in T(A) C I. Repeating this argument we finally get that a; is in I for each
i =0,1,...,m and therefore A C IS}, as required.

We are going now to show that an analogous result holds for the skew poly-
nomial ring S,,. For this we need the following lemma.

2.6. LEMMA. Let A be an H-ideal of Sy, and let T(A) be the set of all leading
coefficients of the elements of A written as polynomials in x, with coefficients in
Sn—1. Put T;(A) = T[Ti11(A)] in S, for each i =0,1,...,n— 1, where S = R and
T.(A) = A. Then To(A) is an (H, D)-ideal of R and [To(A)])* C To(A*) for any
non negative integer k.

Proof. Since Tp_1(A) = T[Th-1(4)] = T(A), Th-1(A) is an (fn,d,)-ideal
of Sp—1 (cf. the proof of the previous theorem). Similarly T),—2(A4) = T[Tp—1(A)]
is an (fn—1,dn—1)-ideal of S,_2. Now let r = r(z1,... ,2,—2) be any element of
Tpn—2(A); then there exists s in T,,_1(A) with leading coefficient r with respect to
Tp—1. Then f,(s), £, 1(s) and d,(s) are all in T, (A), while f,(zp_1) = T,—1 and
dy(Tn—1) = 0; therefore f,,(r), f,'(r) and d,(r) are all in T,,_»(A). Thus T,,_2(A)
is also an (f,, d,)-ideal of S, 2. Repeating this procedure we shall eventually find
that To(A) is a (H, D)-ideal of R, as required. In the proof of Theorem 2.5 we
have seen that [T'(A)]¥ C T'(A*), therefore [T,,_1(A)]* C T),—1(A*). Next, applying
induction on m, we assume that [T},_,(A4)]¥ C T,,_m(AF). Then

Trm-1(A)) = [T[Tn-m(A)]]" € [Trem(A)F] C T[Tnem(A*)] = T (A5).

Thus, if we put m = n, we get that To(A)* C To(A*) and this finishes the proof.

We are ready now to prove

2.7. THEOREM. Let I be an (H,D)-semiprime ideal of R; then IS, is an
H -semiprime ideal of S,,.

Proof. Proceeding as in the proof of Theorem 2.1 for the ideal AS,, one
can show that IS, is an H-ideal of S,. Next let A be an H-ideal of S,, such
that A¥ C IS,. Then, by Lemma 2.6, Ty(A) is an (H,D)-ideal of R and
[To(A)]* C To(A¥) C To(IS,) = I; therefore To(A) C I. Without loss of gen-
erality we may assume that A D IS,, otherwise we may use A + IS, instead
of A. Let g = Y1 a;z, be a polynomial of A with coefficients in S,_1; then
am, 18 in Tp_1(A). We write apm, = > iogbiz?,_ . Then by, is in T,—2(A4) and

—-1 .
Amy TP = b2, + >0 b1zt We proceed the same way until we
find some r in Tp(A), such that h = ra™ 272, ... 2" is term of a,,z'. Then r is

in I, therefore h is in IS, C A. Thus g — h is in A. Repeating the same argument
for g — h and keeping going in the same way we eventually find that a,,,zI"* is in
IS, C A Thus g = g — am, 2 = 22'2071 a;ri is in A. If we apply the same
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argument for g and we keep going in the same way we finally find that g is in 1.5,
which was to be proved.

The following are straightforward corollaries of Theorems 2.1 and 2.7.

2.8. CoROLLARY. The skew polynomial ring S,, is H-semiprime if and only if
R is an (H, D)-semiprime ring.

2.9. CorOLLARY. If I is a D-semiprime ideal of R, then IS}, is a semiprime
ideal of S}, therefore S} is a semiprime ring if and only if R is a D-semiprime
Ting.

2.10. CorovrLARY. If I is an H-semiprime ideal of R, then IS] is an H-
semiprime ideal of S},, therefore S}, is an H-semiprime ring if, and only if R is an
H-semiprime ring.

3. Remarks

(1) An (H, D)-ideal I of R is called an (H, D)-prime ideal if, given any two
(H,D)-ideals A and B of R such that AB C I, one has either A C I or B C I.
The notions of an H-prime and of a D-prime ideal of R can be also defined in the
obvious way.

The statements of all results obtained in the previous section remain true if
we replace the term “semiprime”, whenever it appears, with the term “prime” (cf.

[11]).

(2) The statement of Theorem 2.4 shoud be restated as follows: “Let P be a
prime ideal of S}, such that z; is not in P, for each i. Then PN R is an H-prime
ideal of R”.

That is, the ring R need not be right Noetherian in this case. But the hy-
pothesis that z; is not in P for each i is not superflous (cf. [1, Example 3]).

(3) If R is a right Noetherian ring and I is an H-prime ideal of R, then I.S],
is a prime ideal of S], (cf. [11, Theorem 2.9]). Attempts to prove that the above
mentioned result remains true for the ring R which is not right Noetherian, i.e. that
we can replace the term “prime” with the term “semiprime” and thus to produce
a result stronger than Corollary 2.10, have proved unsuccessful.
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