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THE DUAL STEINER FORMULA FOR CONVEX COMPACTA

Ljuban Dedié

Abstract. The classical Steiner formula deals with the volume of K + rD,, where K is
a convex compact set in R™, r > 0, and D,, the Euclidean disc in R™. We compute the volume
of (K + rDp)*, where K* means the dual of K. We also represent some Steiner functionals by
integrals and prove some inequalities.

1. Introduction and notations

To specify notations we give here some elementary properties of convex com-
pacta in R™. For details see [1].

Let K(R") be the set of all convex compacta in R". If K € K(R") we
introduce the function hg : R® — R defined by

h = R"
k() glea;{c(wly), TE

where (z|y) = x1y1 +- - -+ Znyn is the standard scalar product in R™. The function
hx has the following properties:

1) hi(tz) = thig(z),t > 0, z € R".

2) hg(x +y) < hx(z) + hx(y), z,y € R".

3) If 0 € K then hg > 0.

4) If 0 € K° = int(K) then: hg =0 iff z = 0.

If 0 € K°, we define the dual K* of K by K* = {z € R";hg(z) < 1};
then K* € K(R"), 0 € K*, (K*)* = K and K = {z € R";hg-(z) < 1}. If
Kl,... ;Km S K(Rn) and )\1,... ,)\m € R+ then K = )\1K1 + .- +)\me is
called the Minkowski sum of Ki,..., K, with coefficients A1,..., A, and for K
we have hg = )‘lhK1 + -4 /\mth-

K(R") is a complete metric space with Hausdorff metric d defined by
d(Ki, K») = max |hk, (z) — hi, (z)|
TES,
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where S, = {z € R ||z|| = 1}, ||z||” = (z|z). Let D, = {z € R™;||z|| < 1} be the
Euclidean disc in R™. The classical Steiner formula says that
n
V(K +rD,) =Y (")WM(K)W, r>0, K € K(R")
m=0 m
where V(K) is the volume of K, i.e. the Lebesgue measure of K.

The functions K — W,,,(K), m = 0,...,n, defined by the Steiner formula,
are called the Steiner functionals. They are continuous, invariant under isometries,
monotonic, additive and they have many other nice properties. For the proof of
these assertions see [1].

2. Some auxiliaries

2.1. Definition. Let H(n) be the set of all continuous functions ¢ : R" —
[0, 00) such that

1) o(tz) = tp(z), t >0,z € R".

2) ¢ is differentiable a.e. and ¢'(z) # 0 a.e.

For ¢ € H(n) we introduce the sets

Sp={zeR%p(x) =1}, D, ={xeR"px)<}.
By differentiating 1) with respect to ¢t and x we obtain
a) ¢'(z)x = p(x), a.e, x € R™;
b) ¢'(tz) = ¢'(z), a.e., t >0,z € R".
Here we need some integral formulae involving ¢ € H(n). We collect all such
formulae in the following theorem. For the proof of the theorem see [2].

2.2. THEOREM. Let o, € H(n). Then

dt dh(z)
1 f(z)dz = / / F(tz)n—t
) e Te @l
where h is the Hausdorff (n — 1)-measure in R™ and f € L1 (R");

/f g (@ ||dx—/ /ftwt"ldtdh()
3 /5 i = e

Y [ @l = Lns,)

e \_1 W@,
Lfdh / (w) @ @) )
where f € L1(Sy,h);

6) o f(z)dz = /m f(Mx> P(@)" 4

(z)
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where f € Li(Dy).

2.3. Note. Let K € K(R") and 0 € K°. Then by Rademacher’s theorem
(see [3, Theorem 3.1.6, p. 234]) we have hx € H(n), hx+ € H(n) and K = Dy,
and K* = Dy, and we can apply the theorem above to K and K*.

3. The dual Steiner formula

3.1. THEOREM. Let K € K(R") and 0 € K°. Then
1 dh(z)

1) V(K*) == :
) V(E") =~ o hx(@)”

2 V(K +r0) = [ %,Qo;

1Pk ()] ( )II

4 Wi(K +rDa)7) = - /S W) 22l iy, r 2 0

Proof: 1) We apply theorem 2.2. 6) to ¥ = hg, o(z) = ||z|| and f = 1. Hence

ywirn) =1 [

n

and now by theorem 2.2. 1) we have

VE) / / ey 2 A1) = %/s h?((f))"‘

2) Because of

hxyrp, (x) = hi(x) + 7||=||
the formula follows from 1).
3) We apply theorem 2.2. 5) to ¥ = hx and f = 1. Hence

h(Sy) = nWh(Dy) = nWa (K*) = /S ”hhf'{é ))” dh(z).

4) Follows from 3) as above.

3.2. COROLLARY. Let K € K(R") and 0 € K°. Then

. a(n)
where a(n) = ), B =minges, hx(z).

<

(K) <= /hK " dh(z
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B Wil +7D,)°) < o 07 17 + 2l 7 2 0,

where § = minges, hi(2), |k || = maxees, hx(x), v = maxees, |hx(2)|-
Proof: 1) follows from theorem 3.1 2).
2) Because of hg(z)hi-(y) > (z|y) we have
1< hg(z)hg:(z), Tz €S,
and the inequality follows from theorem 3.1. 1).
3) || () + rz|* = ||Wy (2)|]> + 72 + 2rhi (z). Apply now theorem 3.1 4).
3.3. COROLLARY (Dual Steiner formula). Let K € K(R") and 0 € K°. Then
1(n+m-1 dh(x)
V((K +rDy,)*) = = —lmrm/i
(% +r0)) =3 1 ( Jeevmem [ R

n m
m=0

and the series converges for 0 < r < minges, hr(z).

Proof. We apply theorem 3.1. 2) by expanding the integrand in a power series
by using the formula

— (n+m—1
1-t"=3Y ( )tm, It <1.
m=0 m
Hence, we have
1 e~ -1 1
hi(

(hx(z) +m)» = m z)ntm’ z€S.,

and the formula follows.

3.4. COROLLARY. Let K € K(R") and 0 € K°. Then

2 1/n+m-—1
Dn+rK)) =35 = —1ymem [ pman, <r < 1/||hxl.
V) = 320" e [ ngan, o< </l
Proof. Put 1/r in place of 7 in 3.1 2). Then
1 dh(z)
VD, +rK)) =~ | 4 > 0.
R R e= v L

The formula now follows as above.

3.5. THEOREM. Let K € K(R"), 0 € K° and

z2(K) = /Kmda:.
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Then we have

o 1 z dh(zx) )
DK 4D = o [t 2 0

o =00 1 (n+m o z dh(x)
2) 2((K +rDy) )—Em:on—H< m )(—1) r 5. (@)t

and the series converges for 0 < r < minges, hr(z).

Proof. Let us apply theorem 2.2. 6) to ¥ = hk, ¢(x) = ||z|| and f(z) = =.
Then we have

z2(K*) = zdx = xdx = de&:
~Jk a ~ Jp, hx(z)+!

* D’ll)
! t"x 1 x dh(z)
- T gtdn(z) = :
| /S i e e s o

Now 1) and 2) follow by the same argument as in 3.1, 3.2 and 3.3.

3.6. Using Steiner’s vector formula (see [1]):

2(K +rDy) = i (:l) gm (K)r™, r>0
m=0

to introduce Steiner vectors ¢, (K), m =0,... ,n, one can apply the theory above
to study the Steiner vectors of K.

The formulae in theorem 3.5 we call dual Steiner vector formulae. Steiner
functionals can be used to evaluate some complicated integrals in R™. Let us give
an example.

3.7. PROPOSITION. Let K € K(R"™). Then

n—1
-1 0
e, 1)) do = 5OV () + 3o (" )W) [ s a
R" por 0
where d(z, K) = minyek ||z —yl|, f(d(-, K)) € Li(R").
Proof . Let us use the distribution function of d( -, K) i.e.
V{z e R";d(z,K) <r}) =V(K +rD,)

Hence, we have

F(d(z, K))de = FO)V(K) + / " HO V(K +D,)

R»

= fO)V(K) + /Ooof(t)nWl (K +tDy)dt

and the formula follows.
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3.8. COROLLARY (Wills formula, 1973).

/ exp(—rd(z, K))dz =Y (;) : (;1) W (K), K€ KR,
m=0

Proof. Put f(t) = exp(—nt?) in 3.7.
3.9. COROLLARY.
n—1
n—1 potstl
K)~ = K)y— 0, K e K(R").
/K+TDnd(:c, ) do Zn( ) )Ws+1( ). a>0, K € KR

s=0

Proof . Put f(t) = t*x[o,-(t) in 3.7.

The technique above can be applied to prove many inequalities. Let us give
some examples.

3.10. THEOREM. Let K1,K2 € K(R™),0€ K7,0€ K3, and A\ € [0,1]. Then
V(KL + (1= NK2)*) < V(KD (I

Proof. By theorem 2.2. 1) we have

nlV(K]) = /n exp(—hk, (z)) dz
and also
V(K + (1= VK2)) = [ exp(-Ai, (@) = (1= Nty ) da.

If A =0 or A =1 the inequality is trivial. Hence, we can assume that 0 < A < 1.
Let us apply Holder’s inequality for

1 1

1
= — = — — = ]_— :]_
P=Y 1TTon A+1-A

+

SN

Then we have

V(K + (1 = M) Ka)*)

: (/n exp(—hx, (a:))dx>/\. (/n exp(_th(.’E))dx)l)‘

= (IV(K))* - (iV (K3)' ™ = nlV (KM (K3)' .

3.11 COROLLARY.
1) V(K1 + K»)*) < 27"V(K})Y?V(K3)'/?, 0 € K7, 0 € K35.
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2) V((K + rDy)*)? < MV(K*), 0eK°, r>0.

T 4n.pn
Proof. 1) Put A =1/2 in 3.10.
2) follows from 1).

3.12. THEOREM. Let K1,K> € K(R"™), 0€ K7, 0 € K5. Then
Wi((K1 + K»2)*) < Wi(KT) + Wi (K3).

Proof. By theorem 2.2. 2) applied to f(t) = e, ¢ = hi, we have

niWa(K7) = [ exp(~hiey @)y, (@) da.

n

Hence, we have

nWi (K + K)*) = / exp(—hk, (z) = hi, (2))||P, (€) + B, (@) do

n

< [ expl=a, (@) = o (@) I, )] o
+ [ el () = by (2) i, ()] da

S/ exp(—hKl(ﬂf))||h}<1($)||d$+/ exp(—hu, (2))||h, (z)|| dz
R” R”
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