ON THE CLASSIFICATION OF TOTALLY UMBILICAL CR-SUBMANIFOLDS OF A KAEHLER MANIFOLD

M. A. Bashir

Abstract. We show that three-dimensional totally umbilical proper CR-submanifolds of a Kaehler manifold are extrinsic spheres. Thus we extend a classification theorem of these submanifolds for dimension less than five.

1. Introduction. The notion of CR-submanifold of a Kaehler manifold was introduced by Bejancu [1]. Let \overline{M} be an m-dimensional Kaehler manifold with almost complex structure J. A (2p+q)-dimensional submanifold M of \overline{M} is called a CR-submanifold if there exists a pair of orthogonal complementary distributions D and D^{\perp} such that JD = D and $JD^{\perp} \subset \nu$, where ν is the normal bundle of M and dim D = 2p, dim $D^{\perp} = q$. Thus the normal bundle ν splits as $\nu = JD^{\perp} \oplus \mu$, where μ is an invariant sub-bundle of ν under J. A CR-submanifold is said to be proper if neither $D = \{0\}$ nor $D^{\perp} = \{0\}$.

Bejancu considered totally umbilical CR-submanifolds of a Kaehler manifold. he proved that if $\dim D^{\perp} > 1$, then these submanifolds ar totally geodesic [2]. Blair and Chen [3] and later Deshmukh and Husain have also studied these submanifolds. In fact Deshmukh and Husain have proved a classification theorem for totally umbilical CR-submanifolds provided that $\dim M \geq 5$. Their theorem is the following [4].

THEOREM 1. Let M, $(\dim M \geq 5)$ be a complete simply connected totally umbilical CR-submanifold of a Kaehler manifold \overline{M} . Then M is one of the following:

- (i) locally the Riemannian product of a holomorphic and a totally real submanifold of \overline{M} ;
- (ii) totally real submanifold;
- (iii) isometric to an ordinary sphere;
- (iv) homothetic to a Sasakian manifold.

116 Bashir

In this paper we consider the case where dim M=3. For this case we obtain the following theorem:

Theorem 2. Let M be a 3-dimensional totally umbilical proper CR-submanifold of a Kaehler manifold \overline{M} . Then M is an extrinsic sphere.

Note that, since M in the above theorem is proper and 3-dimensional, then $\dim D^{\perp}=1$. However if $\dim M=4$ and M is proper, then $\dim D^{\perp}=2$, and in this case one may use the result in [2] to conclude that M is totally geodesic. Using this and a result in [3] we conclude that if $\dim M=4$, then M is locally a Riemannian product of a holomorphic submanifold and a totally real submanifold of \overline{M} . If $\dim M=3$, then Theorem 2 and a result in [5] imply that M is either (iii) or (iv) of Theorem 1. Note that for $\dim M=2$ or 1, M is either a holomorphic submanifold or a totally real submanifold. Thus a complete classification of totally umbilical CR-submanifolds of a Kaehler manifold is obtained.

2. Preliminaries. We shall denote by $\overline{\nabla}$, ∇ , ∇^{\perp} the Riemannian connection on \overline{M} , M and the normal bundle respectively. They are related as follows:

$$(2.1) \overline{\nabla}_X Y = \nabla_X Y + h(X, Y)$$

$$(2.2) \overline{\nabla}_X N = -A_N X + \nabla_X^{\perp} N, N \in \nu.$$

where h(X,Y) and A_NX are the second fundamental forms which are related by

$$(2.3) g(h(X,Y),N) = g(A_N X,Y)$$

where X and Y are vector fields on M.

Now let \overline{R} , R and R^{\perp} be the curvature tensors associated with $\overline{\nabla}$, ∇ and ∇^{\perp} respectively. The curvature tensor \overline{R} satisfies

$$(2.4) \overline{R}(JX, JY)Z = \overline{R}(X, Y)Z, \overline{R}(X, Y)JZ = J\overline{R}(X, Y)Z.$$

If X, Y, Z, W are vector fields on M, then Gauss and Codazzi equations are respectively given by

(2.5)
$$R(X,Y;Z,W) = \overline{R}(X,Y;Z,W) + g(h(X,W),h(Y,Z)) - g(h(X,Z),h(Y,W))$$

$$\overline{R}(X,Y;Z,N) = g((\overline{\nabla}_X h)(Y,Z) - (\overline{\nabla}_Y h)(X,Z)N),$$

where

$$\begin{split} \overline{R}(X,Y;Z,N) &= g(\overline{R}(X,Y)Z,N) \\ (\overline{\nabla}_X h)(Y,Z) &= \nabla_X^{\perp} h(Y,Z) - h(\nabla_X Y,Z) - h(\nabla_X Z,Y). \end{split}$$

A CR-submanifold is said to be totally umbilical if h(X,Y) = g(X,Y)H, where H = (trace h)/n is the mean curvature vector.

A totally umbilical submanifold of a Riemannian manifold which has nonzero parallel mean curvature vector (i.e. $\nabla_X^{\perp} H = 0$) is called an extrinsic sphere. If M is totally umbilical CR-submanifold, the equations (2.1), (2.2) and (2.6) become

$$(2.7) \overline{\nabla}_X Y = \nabla_X Y + g(X, Y) H$$

(2.8)
$$\overline{\nabla}_X N = -g(H, N)X + \nabla_X^{\perp} N$$

$$\overline{R}(X,Y;Z,N) = g(Y,Z)g(\nabla_X^{\perp}H,N) - g(X,Z)g(\nabla_Y^{\perp}H,N).$$

Bianchi's first and second identities are given respectively by

(2.10)
$$R(X,Y,Z) + R(Y,Z,X) + R(Z,X,Y) = 0$$

(2.11)
$$(\nabla_X R)(Y, Z) + (\nabla_Y R)(Z, X) + (\nabla_Z R)(X, Y) = 0.$$

3. Three-dimensional totally umbilical CR-submanifold of Kaehler manifold. We consider a 3-dimensional totally umbilical proper CR-submanifold M of a Kaehler manifold \overline{M} . Then we prove the following lemmas

Lemma 1.
$$H \in JD^{\perp}$$
, and for $z \in D^{\perp}$, $\nabla_{x}^{\perp}H = 0$.

Proof. Since M is proper and 3-dimensional, dim D=2 and dim $D^{\perp}=1$. For X,Y in D the equation $J\overline{\nabla}_XY=\overline{\nabla}_XJY$ and (2.7) give

$$J\nabla_X Y + g(X,Y)JH = \nabla_X JY + g(X,JY)H.$$

Taking inner product with $N \in \mu$, we get

$$g(X,Y)g(JH,N) = g(X,JY)g(H,N)$$

With Y = JX in the above equation, we have

$$||X||g(H,N) = 0$$
, i.e. $H \in JD^{\perp}$.

To prove the second part of the Lemma, let $N \in \mu$. Then it follows from (2.9) that $\overline{R}(Z,X;JX,JN)=0$ for $X \in D$. Using (2.4) in this equation we get $\overline{R}(Z,X;X,N)=0$. Using (2.9) in this last equation we have $g(\nabla^{\perp}_{Z}H,N)=0$, from which it follows that $\nabla^{\perp}_{Z}H \in JD^{\perp}$. We need to show that $\nabla^{\perp}_{Z}H \in \mu$. From (2.9) and (2.4) we get $\overline{R}(Z,X;X,Z)=\overline{R}(Z,X;JX,JZ)=0$. Using linearity of \overline{R} , we then get $\overline{R}(Z,X;JX,Z)=0$. From this it follows that $\overline{R}(Z,X,X,JZ)=0$. Now using (2.9) the last equation gives $g(\nabla^{\perp}_{Z}H,JZ)=0$, i.e. $\nabla^{\perp}_{Z}H \in \mu$. Thus $\nabla^{\perp}_{Z}H \in JD \cap \mu = \{0\}$. This finishes the proof of Lemma 1.

Lemma 2. Let $\{X, JX, Z\}$ be an orthonormal frame field on M where $X \in D$ and $Z \in D^{\perp}$. Then we have the following equations

$$\begin{split} \nabla_X X &= aJX, & \nabla_{JX} X &= -bJX + \alpha Z, & \nabla_Z X &= cJX, \\ \nabla_X JX &= -aX - \alpha Z, & \nabla_{JX} JX &= bX, & \nabla_Z JX &= -cX, \\ \nabla_X Z &= \alpha JX, & \nabla_{JX} Z &= -\alpha X, & \nabla_Z Z &= 0, \end{split}$$

where a, b, c are smooth functions on M and $\alpha = ||H||$.

118 Bashir

Proof. We know from Lemma 1 that $H \in JD^{\perp}$. Since dim $JD^{\perp}=1$, one can write $H=\alpha JZ$ for some smooth function α on M. Since M is totally umbilical we get

$$(3.1) h(X,X) = h(JX,JX) = h(Z,Z) = \alpha JZ$$

(3.2)
$$A_{JZ}X = \alpha X, \quad A_{JZ}JX = \alpha JX, \quad A_{JZ}Z = \alpha Z,$$
$$h(X, JX) = h(X, Z) = h(Z, JX) = 0.$$

Using the equation (2.7) and (2.8) in the equation $\overline{\nabla}_Z JZ = J\overline{\nabla}_Z Z$ and taking inner product with $W \in D$, we get $g(\nabla_Z, W) = 0$, i.e. $\nabla_Z Z \in D^{\perp}$. Since g(Z, Z) = 1 we also have $\nabla_Z Z \in D$. Therefore we have

$$(3.3) \nabla_Z Z = 0.$$

Using (3.3) we have

$$(3.4) g(\nabla_Z X, Z) = 0, g(\nabla_Z JX, Z) = 0.$$

Also using the equation $(\overline{\nabla}_X J)(Z) = 0$ and (3.2) we get

(3.5)
$$g(\nabla_X Z, X) = 0, \qquad g(\nabla_X Z, JX) = \alpha.$$

Now using the equation $(\overline{\nabla}_{JX}J)(Z)=0$ we have

(3.6)
$$g(\nabla_{JX}Z, X) = -\alpha, \qquad g(\nabla_{JX}Z, JX) = 0.$$

Similarly the equations $(\overline{\nabla}_X J)(X)=0, (\overline{\nabla}_{JX} J)(X)=0$ with the help of (3.1) give

(3.7)
$$g(\nabla_X X, Z) = 0, \qquad g(\nabla_{JX} JX, Z) = 0.$$

The lemma follows from the equations, (3.3), (3.4), (3.5), (3.6) and (3.7).

Lemma 3. Let $\{X, JX, Z\}$ be the orthonormal frame field on M. Then we have the following expressions for the curvature tensor of M

$$\begin{split} R(X,Z,Z) &= \alpha^2 X, \quad R(JX,Z,Z) = \alpha^2 JX \\ R(JX,Z,X) &= (JX(c) + \alpha a - ca + Z(b))JX \\ R(X,JX,Z) &= -X(\alpha)X - JX(\alpha)JX \\ R(Z,X,JX) &= (X(c) - Z(a) + \alpha b - cb)X \\ R(Z,X,X) &= -(X(c) + \alpha b - Z(a) - cb)JX + \alpha^2 Z \\ R(Z,JX,JX) &= (JX(c) + Z(b) + \alpha a - ca)X + \alpha^2 Z \end{split}$$

Proof. Using Lemma 2 and the definition of the curvature tensor R, $R(X,Y,Z) = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z$, we get Lemma 3.

Proof of Theorem 2. Using the expressions for the curvature tensor given by Lemma (3) in Bianchi first identity (2.10) we get

$$[X(c)-Z(a)+\alpha b-cb-X(\alpha)]X+[JX(c)+\alpha a-ca+Z(b)-JX(\alpha)]JX=0$$
 from which it follows that

$$(3.8) X(c) - Z(a) + \alpha b - cb - X(\alpha) = 0$$

$$(3.9) JX(c) + \alpha a - ca + Z(b) - JX(\alpha) = 0$$

Applying Bianchi's second identity (2.11) to Z we have

$$(3.10) \qquad (\nabla_X R)(JX, Z)Z + (\nabla_{JX} R)(Z, X)Z + (\nabla_Z R)(X, JX)Z = 0$$

where

$$\begin{split} (\nabla_X R)(JX,Z)Z &= \nabla_X R(JX,Z)Z - R(\nabla_X JX,Z)Z \\ &- R(JX,\nabla_X Z)Z - R(JX,Z)\nabla_X Z. \end{split}$$

Using Lemma 3 and Lemma 2 we obtain

(3.11)
$$(\nabla_X R)(JX, Z)Z = 2\alpha X(\alpha)JX + \alpha[JX(c) + Z(b) + \alpha a - ca]X$$

$$= 2\alpha X(\alpha)JX + \alpha JX(\alpha)X,$$

where we have used (3.9) to get the last equality. Similarly we get

$$(3.12) \qquad (\nabla_{JX}R)(Z,X)Z = -2\alpha JX(\alpha)X$$

$$(3.13) \qquad (\nabla_Z R)(X, JX)Z = (cJX(\alpha) - ZX(\alpha))X - (cX(\alpha) + ZJX(\alpha))JX.$$

Now using (3.11), (3.12) and (3.13) in (3.10) we found that the X-components and the JX components give respectively

$$(3.14) (c - \alpha)JX(\alpha) - ZX(\alpha) = 0$$

$$(3.15) (2\alpha - c)X(\alpha) - ZJX(\alpha) = 0.$$

Using the equation $\overline{\nabla}_V JZ = J\overline{\nabla}_V Z$, where V = X, JX or Z with the help of (3.2) and Lemma 2 we get $\nabla_V^{\perp} JZ = 0$. Since $\nabla_Z^{\perp} H = 0$, from Lemma 1, and $H = \alpha JZ$ we have

$$(3.16) Z(\alpha) = 0.$$

Therefore, the equation $[Z, JX](\alpha) = [\nabla_Z JX - \nabla_{JX} Z](\alpha)$ implies that $ZJX(\alpha) = (\nabla_Z JX - \nabla_{JX} Z)(\alpha)$. Using Lemma 2 in this equation we get

(3.17)
$$ZJX(\alpha) = (\alpha - c)X(\alpha).$$

Using (3.17) in (3.15) we have

$$\alpha X(\alpha) = 0.$$

Now if we repeat the above arguments for the orthonormal frame field $\{W, JW, Z\}$, where W = -JX, we get the result in (3.18) for W with the same α as M is totally umbilical i.e. we get $\alpha W(\alpha) = 0$, or

$$\alpha JX(\alpha) = 0.$$

Equations (3.16), (3.18) and (3.19) imply that α^2 is constant. i.e. α is constant. Using this and $\nabla_V^{\perp}JZ=0$ for $V=X,\,JX$ or Z we get $\nabla_V^{\perp}H=0$ i.e. M is an extrinsic sphere.

Now we have the following theorem.

120 Bashir

Theorem 3 [2]. Let M be a totally umbilical 4-dimensional proper CR-submanifold of a Kaehler manifold \overline{M} . Then M is totally geodesic.

COROLLARY. Let M be as in Theorem 2 or Theorem 3. If dim M=4, then M is locally the Riemannian product of a holomorphic submanifold and a totally real submanifold of \overline{M} . If dim M=3 then M is either (iii) or (iv) of Theorem 1.

Proof. The first part of the corollary follows from Theorem 3 and a result of [3]. The second part follows from Theorem 2 and a result of [5].

Thus Theorem 1 is extended for dim M < 5.

REFERENCES

- [1] A. Bejancu, CR-submanifolds of a Kaehler manifold, Proc. Amer. Math. Soc. 69 (1978), 135-142.
- [2] A. Bejancu, Umbilical CR-submanifolds of a Kaehler manifold, Rend. Mat. (6) (13) 15 (1980), 431-446.
- [3] D.E. Blair and B.Y. Chen, On CR-submanifold of Hermitian manifolds, Israel J. Math. 34 (1980), 353-363.
- [4] Sharief Deshmukh and S. I. Husain, Totally umbilical CR-submanifolds of a Kaehler manifold, Kodai Math. J. 9 (1986), 425-429.
- [5] S. Yamajuchi, H. Nemoto and N. Kawabata, Extrinsic spheres in a Kaehler manifold, Michigan Math. J. 31 (1984), 15-19.

Department of Mathematics, College of Science King Saud University, P.O.Box 2455 Riyadh 11451, Saudi Arabia (Received 10 09 1991)