SUR L'INDICE DE SCHUR DANS LES GROUPES DONT LES CARACTÈRES SONT À VALEURS RATIONNELLES

Ion Armeanu

Résumé. Dans cette note nous prouvons que si G est un groupe résoluble qui a des caractères à valeurs rationnelles et tous les caractères sont réalisable dans \mathbf{R} , alors les caractères de G sont réalisables dans $\mathbf{Q}(2^{1/2})$ et nous donnons des conditions suffisantes afin qu'un caractère irréductible Γ d'un groupe dont les caractères sont à valeurs rationnelles ait l'indice de Schur $m_{\mathbf{Q}}(\Gamma)=1$. Ces resultats sont liés avec la conjecture du Gow [2] qui affirme que si G est un groupe résoluble qui a des caractères à valeurs rationnelles et tous les caractères de G sont réalisables dans \mathbf{R} , alors les caractères de G sont réalisables dans \mathbf{Q} .

Abstract. We prove that if G is a solvable group with rational characters and $\mathbf R$ is a splitting field for G, then $\mathbf Q(2^{1/2})$ is also a splitting field for G and we obtain some sufficient conditions which guarantee that an irréductible character Γ of a group with rational characters has Schur indices $m_{\mathbf Q}(\Gamma)=1$. These results are related to the Gow conjecture [2] wich asserts that for a solvable group whose characters are rational valued and $\mathbf R$ is a splitting field for G, then $\mathbf Q$ is also a splitting field for G.

Les groupes utilisés sont finis et les définitions et les symboles sont ceux de Isaacs [4] et de Curtis et Reiner [1].

Soit G un groupe. Alors nous notons par Irr(G) les caractères ${\bf C}$ - irréductibles du G. Soit $\Gamma, \Psi \in Irr(G)$. Alors

$$(\Gamma,\Psi) = (1/|G|) \sum_{g \in G} \Gamma(g) \overline{\Psi(g)}$$

et $m_K(\Gamma)$ est l'indice de Schur de Γ sur le corps K (voir [4, p.160]). On dit que Γ est réalisable dans un corps K si la \mathbf{C} - représentation associée est isomorphe à une K - représentation. Si $H \leq G$ alors $\Gamma_{|H}$ est la restriction de Γ à H et si γ est un caractère de H, alors γ^G est le caractère induit de γ à G.

Théorème 1. Soit G un groupe qui a les caractères à valeurs rationnelles. Soit $\Gamma \in Irr(G)$ qui est réalisable dans le corps \mathbf{R} . Alors, il existe $a \in G$, élément

30 Ion Armeanu

d'ordre impair et il existe un 2-groupe de Sylow H dans $C^*(a) = \{x \in G : xax^{-1} = a \text{ ou } xax^{-1} = a^{-1}\}$ tel que si $H_0 \leq H$ est un 2-groupe de Sylow dans C(a), il existe un caractère $\lambda \times \mu \in \operatorname{Irr}(A \times H_0)$ où $A = \langle a \rangle$, $\lambda \in \operatorname{Irr}(A)$, $\mu \in \operatorname{Irr}(H_0)$ tel que:

- (i) $(\Gamma_{A\times H_0}, \lambda \times \mu)$ est impair;
- (ii) le caractère induit $(\lambda \times \mu)^{AH}$ est réalisable dans le corps \mathbf{R} ;
- (iii) μ est réalisable dans Q.

 $D\acute{e}monstration$. D'après le théorème 1.1. de Gow [3], il existe $A = \langle a \rangle$, $a \in G$ un élément d'ordre impair, H un 2-subgroupe de Sylow dans $C^*(a)$ et $\theta \in Irr(AH)$ à valeurs réelles tel que (Γ, θ^G) est impair et $\ker \theta \not\supseteq A$.

Soit H_0 un 2-groupe de Sylow dans le centralisateur dû à C(a), de manière que $H_0 \leq H$. Un calcul simple prouve qu'il existe $\mu \in \operatorname{Irr}(H_0)$ et $\lambda \in \operatorname{Irr}(A)$ tels que $\theta = (\lambda \times \mu)^{\operatorname{AH}}$. Compte tenu du théorème de réciprocité de Frobenius (voir $[\mathbf{4}, p.62]$), $(\Gamma_{\operatorname{AH}}, \theta) = (\Gamma_{\operatorname{AH}_0}, \lambda \times \mu)$ est impair. Parce que (Γ, θ^G) est impair, $m_{\mathbf{R}}(\Gamma) = 1$ et $\mathbf{Q}(\theta) \subset \mathbf{R}$ (où $\mathbf{Q}(\theta)$ est le corps engendré sur \mathbf{Q} par les valeurs de θ) d'après le théorème de Brauer-Speiser (voir $[\mathbf{4}, p.171]$) on obtient que $m_{\mathbf{R}}(\theta) = 1$. D'après le théorème de Clifford (voir $[\mathbf{4}, p.79]$)

$$(\lambda \times \mu)^{\mathrm{AH}}_{|\mathrm{AH}_0} = \sum_{t \in T} \lambda^t \mu^t,$$

où T est une transversale du H_0 dans H. Soit G_2 le 2-groupe de Sylow dans le groupe de Galois $\operatorname{Gal}(\mathbf{Q}(\lambda \times \mu); \mathbf{Q})$. Parce que $[\operatorname{AH} : \operatorname{AH}_0] = 2^n$, $\mathbf{Q}(\theta) \subset \mathbf{R}$ et $\ker \theta \not\supseteq A$ on a que

$$(\lambda \times \mu)^{\mathrm{AH}}_{|\mathrm{AH}_0} = \sum_{\sigma \in G_2} (\lambda \times \mu)^{\sigma}$$

et on obtient que [AH : AH₀] = [$\mathbf{Q}(\lambda)$; \mathbf{Q}], et alors $\mathbf{Q}(\lambda) = \mathbf{Q}(\lambda \times \mu)$ et $\mathbf{Q}(\mu) \subseteq \mathbf{Q}(\lambda)$. Du moment que μ est un caractère irréductible d'un 2-groupe, on obtient que $\mathbf{Q}(\mu) \cap \mathbf{Q}(\lambda) = \mathbf{Q}$, donc μ est à valeurs rationnelles.

Parce que $\Gamma_{\rm AH_0}$ est réalisable dans ${\bf R}$ et $(\lambda \times \mu, \Gamma_{\rm AH_0})$ est impair , on obtient que $m_{\bf R}(\lambda \times \mu)=1$. Parce que $m_{\bf R}(\lambda)=1$ et $[{\bf R}(\lambda);{\bf R}]$ est impair, d'apres [4, p.172, 10. 10.] on obtient que $m_{\bf R}(\lambda \times \mu)=m_{\bf R}(\lambda)m_{\bf R}(\mu)$, donc $m_{\bf R}(\mu)=1$. Mais μ est un caractère rationnel d'un 2-groupe et donc est réalisable dans le corps ${\bf Q}$.

Théorème 2. Soit $\lambda \times \mu$ le caractère obtenu par le théorème 1 et H un 2-groupe de Sylow dans $N_G(A)$ tel que $H_0 \leq H$. Supposons que μ soit invariant dans H ($\mu(txt^{-1}) = \mu(x)$ pour $t \in H$ et $x \in H_0$). Soit encore $\tau \in Irr(A)$ le caractère fidèle, de manière que $\tau^n = \lambda$. Alors:

- (i) $(\tau \times \mu)^{AH}$ est irréductible à valeurs dans un corps K extension de degré impair du corps \mathbf{Q} .
- (ii) $(\lambda \times \mu)^{\rm AH}$ est à valeurs dans K et si $(\tau \times \mu)^{\rm AH}$ est réalisable dans K, alors $(\lambda \times \mu)^{\rm AH}$ est réalisable dans K aussi.

 $D\'{e}monstration$ (i) Parce que le stabilisateur du $\tau \times \mu$ est AH_0 , on obtient que $(\tau \times \mu)^{AH}$ est irréductible. Puisque μ est invariant dans H on a que

$$(\tau \times \mu)^{\mathrm{AH}}(ax) = \sum_{t \in T} \tau(tat^{-1})\mu(x),$$

où T est une transversale de H_0 dans H et $x \in H_0$. Soit σ un automorphisme d'ordre puissance de 2 dans $\operatorname{Gal}(\mathbf{Q}(\omega); \mathbf{Q})$ (où ω est une racine primitive d'ordre o(a) de l' unité). Le caractère μ étant à valeurs rationnelles on obtient que

$$((\tau \times \mu)^{AH})^{\sigma} = (\tau \times \mu)^{AH}.$$

donc $K = \mathbf{Q}((\tau \times \mu)^{\mathrm{AH}})$ est un corps extension de degré impair de \mathbf{Q} .

(ii) Soient $T_{\tau}, T_{\mu}, T_{\lambda}$ les représentations correspondant aux caractères τ, μ, λ . Soit $z_1 = 1, z_2, \ldots, z_n$ une transversale de H_0 en H. Alors le composant (i,j) de la matrice de la représentation $(T_{\tau} \times T_{\mu})^{\rm AH}$ (axt) est

$$(T_{\tau} \times T_{\mu})^{0}(z_{i}axtz_{i}^{-1}) = T_{\tau}^{0}(z_{i}az_{i}^{-1})T_{\mu}^{0}(z_{i}xz_{i}^{-1}z_{i}tz_{i}^{-1}),$$

où $x \in H_0$ et t appartient à la transversale de H_0 en H. Donc si $z_i t z_i^{-1} \notin H_0$, alors

$$(T_{\tau} \times T_{\mu})^0(z_i axt z_i^{-1}) = 0$$

et si $z_i t z_j^{-1} \in H_0$ alors

$$(T_{\tau} \times T_{\mu})^{0}(z_{i}axtz_{j}^{-1}) = T_{\tau}(z_{i}az_{i}^{-1})T_{\mu}(z_{i}xtz_{j}^{-1}).$$

De la même manière, le composant (i,j) de la matrice de la représentation $(T_{\lambda} \times T_{\mu})^{\mathrm{AH}}(axt)$ est nul pour $z_itz_j^{-1} \not\in H_0$ et est $T_{\lambda}(z_iaz_i^{-1})T_{\mu}(z_ixtz_j^{-1})$ à la condition que $z_itz_j^{-1} \in H_0$. Mais $T_{\lambda}(z_iaz_i^{-1}) = \lambda^{z_i}(a)$ et $T_{\tau}(z_iaz_i^{-1}) = \tau^{z_i}(a)$. Donc pour les composants on obtient que

$$((T_{\lambda} \times T_{\mu})^{\text{AH}}(axt))_{(i,j)} = ((T_{\tau} \times T_{\mu})^{\text{AH}}(a^{k}xt))_{(i,j)}.$$

Il en résulte que si $(\tau \times \mu)^{AH}$ est réalisable dans K, alors $(\lambda \times \mu)^{AH}$ est réalisable dans le corps K aussi.

Théorème 3. Si $(\lambda \times \mu)^{\rm AH}$ est réalisable dans le corps K, alors Γ est réalisable dans ${\bf Q}$.

Démonstration Parce que $(\Gamma, (\lambda \times \mu)^G)$ est impair, et l'indice de Schur

$$m_K((\lambda \times \mu)^{AH}) = 1$$

compte tenu du lemme 10.4, p. 162 de [4], on obtient que $m_{\mathbf{Q}}(\Gamma)=1$.

Théorème 4. S'il existe $\theta \in Irr(H)$ à valeurs rationnelles tel que $\theta_{|H_0} = \mu$, alors γ est réalisable dans \mathbf{Q} .

32 Ion Armeanu

 $D\acute{e}monstration$ Parce que μ est réalisable dans ${\bf Q}$ et θ sera réalisable dans ${\bf Q}$. En calculant, on obtient que

$$((\tau \times \mu)^{AH}, \theta^{AH}) = 1.$$

Donc $(\tau \times \mu)^{AH}$ est réalisable dans K et en vertu du théorème 2 $(\lambda \times \mu)^{AH}$ est réalisable aussi dans K. Conformément au théorème 3, on obtient que Γ est réalisable dans \mathbf{Q} .

COROLLAIRE 1. Si μ est linéaire et s'îl existe θ tel que $\theta_{|H_0} = \mu$, alors Γ est réalisable dans \mathbf{Q} .

Lemme. $(\lambda \times \mu)^{AH}$ est à valeurs dans K si et seulement si μ est H-invariant.

Démonstration En vertu du théorème de Clifford

$$(\lambda \times \mu)^{\mathrm{AH}}{}_{|\mathrm{AH}_0} = \sum_{t \in T} \lambda^t \times \mu^t,$$

où T est une transversale de H_0 dans H. Parce que pour tout $\sigma \in \operatorname{Gal}(\mathbf{Q}(\omega_{o(a)}), \mathbf{Q})$, d'ordre puissance de 2,

$$((\lambda \times \mu)^{AH})^{\sigma} = (\lambda \times \mu)^{AH},$$

on obtient qu'il existe un élément $t \in T$ si bien que

$$(\lambda \times \mu)^{\sigma} = \lambda^t \times \mu^t$$

Parce que $\operatorname{Gal}(\mathbf{Q}(\omega_{o(a)}), \mathbf{Q}) \simeq H/H_0$ et μ est à valeurs rationnelles on obtient que pour tout $t \in T$, il existe $\sigma \in \operatorname{Gal}(\mathbf{Q}(\omega_{o(a)}), \mathbf{Q})$ un automorphisme d'ordre puissance de 2 tel que

$$(\lambda \times \mu)^t = \lambda^t \times \mu^t = (\lambda \times \mu)^\sigma = \lambda^\sigma \times \mu = \lambda^t \times \mu.$$

donc $\mu = \mu^t$.

Théorème 5. Soit p un nombre premier impair, p/|G|, tel que p-1 n'est pas divisible par 4. Supposons que $o(a)=p^k$. Alors

- (i) μ est invariant dans H et il existe $\theta \in Irr(H)$ de telle sorte que $\theta_{|H_0} = \mu$.
- (ii) $\mathbf{Q}(\theta) = \mathbf{Q}(2^{1/2})$ et Γ est réalisable dans $\mathbf{Q}(2^{1/2})$.

 $D\'{e}monstration$ D'après le lemme il résulte que μ est invariant dans H. Parce que H/H_0 est cyclique, il existe $\theta \in Irr(H)$ tel que $\theta_{|H_0} = \mu$. Alors, l'invariant de Frobenius-Schur (voir [4, p.50]) $\nu_2((\lambda \times \mu)^{\rm AH}) = 1$ et un calcul direct nous donne que

$$\nu_2((\lambda \times \mu)^{AH}) = (1/|H_0|) \sum_{h \in H_0} \mu((ht)^2)$$

où 1, t est une transversale de H_0 dans H. Donc

$$\nu_2(\theta) = (1/|H_0|) \sum_{h \in H} \theta(h^2) = (1/|H|) (\sum_{h \in H_0} (\mu(h^2) + \mu((ht)^2)) = 1$$

c'est-à-dire θ est réalisable dans \mathbf{R} . Mais $\mu^H = \theta + \alpha \cdot \theta$ où $\alpha \in \operatorname{Irr}(H/H_0)$. Si $\mathbf{Q}(\theta) \neq \mathbf{Q}$, soit $\sigma \in \operatorname{Gal}(\mathbf{Q}(\theta), \mathbf{Q})$ de telle sorte que $\theta^{\sigma} \neq \theta$. Alors $\theta^{\sigma} = \alpha \theta$ et il résulte que $|\operatorname{Gal}(\mathbf{Q}(\theta), \mathbf{Q})| = 2$. Parce que $\mathbf{Q}(\theta) \subseteq \mathbf{Q}(\omega_{2^n})$ et θ est réel on obtient que $\mathbf{Q}(\theta)$ est une extension quadratique réelle de \mathbf{Q} , donc $\mathbf{Q}(\theta) = \mathbf{Q}(2^{1/2})$.

COROLLAIRE 2. Soit G un groupe d'ordre $|G|=2^r3^s$ avec des caractères à valeurs rationnelles et soit $\Gamma \in \operatorname{Irr}(G)$. Alors Γ est réalisable dans $\mathbf{Q}(2^{1/2})$.

COROLLAIRE 3. Si G est un groupe résoluble qui a des caractères à valeurs rationnelles et tous les caractères sont réalisables dans \mathbf{R} , alors les caractères de G sont réalisables dans $\mathbf{Q}(2^{1/2})$.

Démonstration D'après Gow [2], $|G| = 2^r 3^s$.

COROLLAIRE 4. Les caractères de groupe symétrique S_n sont réalisables dans \mathbf{Q} .

 $D\'{e}monstration$ Si a est un element d'ordre impaire, le 2-Sylow groupe de $N_G(\langle a \rangle)$ est le produit direct d'un groupe isomorphe avec $\operatorname{Aut}_2(\langle a \rangle)$ avec un 2-Sylow groupe de $C_G(a)$. Alors le caractère μ est invariant dans H et il existe $\theta \in \operatorname{Irr}(H)$ à valeurs rationnelles de telle sorte que $\theta_{|H_0} = \mu$.

COROLLAIRE 5. Soit G un groupe résoluble fini et $\Gamma \in Irr(G)$ de telle sorte que $m_{\mathbf{Q}}(\Gamma) = 2$ et Γ est réalisable dans \mathbf{R} . Alors $2^5/|G|$.

 $D\'{e}monstration$ Supposons que 2^5 /|G|. Alors $|H| \le 2^4$ et $|H_0| \le 2^3$. Soit $|H| \le 2^3$. Alors $|H_0| \le 2^2$ donc le caractère μ est linéaire et le Corollaire 1 fournit le resultat.

Soit $|H|=2^4$ et $|H_0|=2^3$. Alors il existe une extension θ de μ à H. Parce que $(\theta_{H_0},\mu)=1$ et $m_{\mathbf{Q}}(\mu)=1$ on a que $m_{\mathbf{Q}}(\theta)=1$. Soit μ non-linéaire. Alors H_0 est quaternionique ou dihedral. Mais le seul caractère nonlinéaire dans le groupe quaternionique a absolu Schur indice 2 et alors H_0 est le groupe dihedral D_4 . Les groupes d'ordre 16 qui contiennent D_4 sont $\mathbf{Z}_2 \times D_4$, le groupe semidihedral, le groupe dihedral et le groupe

$$U = \langle \{u, b, c | u^4 = b^2 = c^2 = 1, ub = bu, cu = uc, bcb = cu^2 \} \rangle.$$

Pour le groupe $\mathbf{Z} \times D_4$ le resultat est évident.

Pour le groupe simidihedral et pour U un calcul simple prouve que l'invariante Frobenius–Schur $\nu_2(\theta)=-1$, contradiction.

Soit $H=D_8$ et $H_0=D_4$. Soit $D_8=\langle y,b\rangle$ avec o(b)=8 et $D_4=\langle y,b^2\rangle$. Parce que

$$N_G(\langle ax \rangle)/C_G(\langle ax \rangle) \simeq \operatorname{Aut}(\langle ax \rangle) = \operatorname{Aut}\langle a \rangle \times \operatorname{Aut}\langle x \rangle$$

il existe $z\in N_G(\langle ax\rangle)$ tel que $zaxz^{-1}=a^{-1}x$. Si $o(z)=2^kq$ où q est impair, prenons $t=z^q$ alors $taxt^{-1}=a^{-1}x$ et $o(t)=2^k$. Alors il existe un 2-Sylow groupe H^g de $N_G(\langle a\rangle)$ si bien que $x\in H_0^g$ et $t\in H^g$ où $g\in N_G(\langle a\rangle)$. Parce que $H^g\simeq D_8$, le seul élément d'ordre 2 dans $H_0^g\simeq D_4$ qui commute avec un élément de $H^g\backslash H_0^g$

34 Ion Armeanu

est gb^4g^{-1} , alors $x=gb^4g^{-1}$. Parce que $gxg^{-1}\in H_0^g$ est une involution, il est une de gb^4g^{-1} , gxb^2g^{-1} , gxb^4g^{-1} et la seulle qui coresponde aux conditions imposées est gb^4g^{-1} . Alors $gxg^{-1}=x=gb^4g^{-1}$, contradiction.

RÉFÉRENCES

- [1] C. Curtis I. Reiner, Representation Theory of Finite Groups and Associative Algebras, Interscience, New York, 1962.
- $[2]\ R.\ Gow,\ \textit{Groups whose characters are rational valued},\ J.\ Algebra,\ \textbf{40} (1976),\ 280-289.$
- $[3]\ R.\ Gow,\ \textit{Real-Valued and 2-rational group characters},\ J.\ Algebra,\ \textbf{61} (1976),\ 388-413.$
- [4] I. M. Isaacs, Character Theory of Finite Groups, Academic Press, New York, 1976.

University of Bucharest Faculty of Physics Mathematics Department Bucharest Magurele Romania (Received 01 06 1992) (Revised 20 10 1993)