ON THE LIMIT PROPERTIES OF THE PICARD SINGULAR INTEGRAL

M. Górzeńska and L. Rempulska

Abstract. We present some direct and inverse approximation theorems for the Picard singular integral in the spaces $L^p(1 \le p \le \infty)$ and the generalized Holder spaces. Those theorems extend and improve the results for the Picard integral given in [1]–[3].

1. Notations 1.1. Let $L^p \equiv L^p(R)$, $1 \le p < \infty$ be the space of real functions Lebesgue-integrable with p-th power over $R := (-\infty, +\infty)$ and let $L^\infty \equiv L^\infty(R)$ be the space of real-valued functions uniformly continuous and bounded on R. The norm in L^p we define as usual

$$||f||_{L^{p}} \equiv ||f(\cdot)||_{L^{p}} := \begin{cases} \left(\int_{R} |f(x)|^{p} dx \right)^{1/p} & \text{if } 1 \leq p < \infty, \\ \sup_{x \in R} |f(x)| & \text{if } p = \infty. \end{cases}$$
 (1)

Let X be one of the spaces L^p , $1 \le p \le \infty$, with the norm (1). For a given $f \in X$ denote by $\omega_2(\cdot; f, X)$ the modulus of smoothness of order 2, i.e.

$$\omega_2(t; f, X) := \sup_{|h| \le t} \|\Delta_h^2 f\|_X$$
 (2)

for t > 0, where

$$\Delta_h^2 f(x) := f(x+h) + f(x-h) - 2f(x). \tag{3}$$

Denote as in [4] by Ω^2 the set of functions of the type of modulus of smoothness of order 2 [5, p. 116], i.e. Ω^2 is the set of all functions ω satisfying the following conditions:

- (a) ω is defined and continuos on $<0,+\infty$).
- (b) ω is monotonically increasing and $\omega(0) = 0$.
- (c) $\omega(h)h^{-2}$ is monotonically decreasing for h > 0.

It is easy to verify that for every $\omega \in \Omega^2$, there exist positive constants M_1 and M_2 ($M_i = M_i(\omega)$, i = 1, 2) such that

$$M_1 t^2 \le \omega(t) \le M_2 t^2 \int_{t}^{1} \omega(z) z^{-3} dz$$
 (4)

for all $0 \le t \le 1/2$.

Similary as in [4], for a given $\omega \in \Omega^2$, denote by X^{ω} the class of all functions $f \in X$ for which

$$||f||_{X^{\omega}}^* := \sup_{h>0} ||\Delta_h^2 f||_X / \omega(x) < +\infty.$$
 (5)

In X^{ω} we define the norm

$$||f||_{X^{\omega}} := ||f||_X + ||f||_{X^{\omega}}^*. \tag{6}$$

Denote as in [4] by \tilde{X}^{ω} , $\omega \in \Omega^2$, the class of all functions $f \in X$ such that $\lim_{h\to 0+} \|\Delta_h^2 f\|_X/\omega(h) = 0$. The norm in \tilde{X}^{ω} we define by (6). X^{ω} and \tilde{X}^{ω} with the norm (6) are called the generalized Hölder spaces. If ω , $\mu \in \Omega^2$ and the function

$$q(h) := \omega(h)/\mu(h), \qquad h > 0, \tag{7}$$

is monotonically increasing, then

$$X^{\omega} \subset X^{\mu} \text{ and } \tilde{X}^{\omega} \subset \tilde{X}^{\mu}.$$
 (8)

If $f \in X^{\omega}$, then

$$\omega_2(t; f, X) \le \omega(t) \|f\|_{X^{\omega}}^*, \quad t > 0.$$
 (9)

If $f \in \tilde{X}^{\omega}$, then

$$\omega_2(t; f, X) = o(\omega(t)) \text{ as } t \to 0 + . \tag{10}$$

1.2. In the papers [1]–[3] are examined the limit properties of the Picard singular integral

$$P(x,r;f) = (2r)^{-1} \int_{R} f(x+t) \exp(-|t|/r) dt, \tag{11}$$

 $x \in R, r \in I := (0, 1 > \text{and } r \to 0+, \text{ for the functions } f \text{ belonging to } L^p \ (1 \le p \le \infty) \text{ or the classical Hölder spaces } H^{\alpha}(0 < \alpha \le 1) \text{ of continuous functions.}$

The purpose of this note is to generalize the resulte given in [1]-[3].

By $M_k(\cdot)$, $k = 1, 2, \ldots$, we shall denote suitable positive constants depending only on the indicated parameters.

2. Auxillary results. In this section we shall give some auxiliary inequalities.

LEMMA 1. If $f \in X$, then $||P(\cdot, r; f)||_X \leq ||f||_X$, $r \in I$.

Proof. By (1) and (11) we have

$$||P(\cdot, r; f)||_X \le ||f||_X (2r)^{-1} \int_R \exp(-|t|/r) dt$$

for all $r \in I$. We also have

$$\frac{1}{2r} \int_{R} \exp(-|t|/r) dt = \frac{1}{r} \int_{0}^{+\infty} \exp(-t/r) dt = 1,$$
 (12)

for all $r \in I$. Hence the proof is completed.

Lemma 2. If $f \in X^{\omega}$, then $\|P(\cdot,r;f)\|_{X^{\omega}}^* \leq \|f\|_{X^{\omega}}^*$ for $r \in I$, which proves that, for every fixed $r \in I$, the function $P(\cdot,r;f)$ also belongs to X^{ω} .

Proof. By (5) we have

$$||P(\cdot, r; f)||_{X^{\omega}}^* = \sup_{h>0} ||\Delta_h^2 P(\cdot, r; f)||_X / \omega(h), \qquad r \in I.$$

From (11) and (3) we get

$$\Delta_h^2 P(x,r;f) = P(x,r;\Delta_h^2 f) \quad (x \in R, h \in R, r \in I), \tag{13}$$

which by Lemma 1 gives

$$\|\Delta_h^2 P(\cdot, r; f)\|_X \le \|\Delta_h^2 f\|_X,$$

 $r \in I$, $h \in R$. From this and by (5) we obtain our assertion.

Lemma 1 and Lemma 2 imply the following

Corollary 1. If $f \in X^{\omega}$, then $||P(\cdot, r; f)||_{X^{\omega}} \leq ||f||_{X^{\omega}}$ for all $r \in I$.

LEMMA 3. If $f \in \tilde{X}^{\omega}$, then $P(\cdot, r; f) \in \tilde{X}^{\omega}$, for every fixed $r \in I$.

Proof. By (13) and Lemma 1,

$$0 \le \frac{\|\Delta_h^2 P(\cdot, r; f)\|_X}{\omega(h)} = \frac{P(\cdot, r; \Delta_h^2 f)\|_X}{\omega(h)} \le \frac{\|\Delta_h^2 f\|_X}{\omega(h)}$$

 $(h > 0, r \in I)$. Hence, by the assumption $f \in \tilde{X}^{\omega}$, we obtain

$$\lim_{h \to 0+} \|\Delta_h^2(\cdot, r; f)\|_{X} / \omega(h) = 0,$$

which proves that $P(\cdot, r; f) \in \tilde{X}^{\omega}$.

It is easy to verify that

LEMMA 4. For $k = 0, 1, 2, \ldots$ and r > 0 we have

$$\int_{0}^{+\infty} t^{k} \exp(-t/r) dt = k! r^{k+1}.$$

LEMMA 5. If $f \in X$, then $\|\partial^2 P(\cdot, r; f)/\partial x^2\|_X \le \|f\|_X r^{-2}$ for every $r \in I$. Proof. From (11) we get

$$\frac{\partial^2}{\partial x^2} P(x, r; f) = \frac{1}{2r} \int_R f(t) \left(\frac{\partial^2}{\partial x^2} \exp(-|x - t|/r) \right) dt$$
$$= \left(2r^3 \right)^{-1} \int_R f(x + t) \exp(-|t|/r) dt = r^{-2} P(x, r; f)$$

for $x \in R$ and $r \in I$. From this and by Lemma 1 we obtain the desired inequality.

3. Approximation theorems Let

$$U(r, x; f) := P(x, r; f) - f(x)$$
(14)

for $x \in R$ and $r \in I$.

3.1. First we shall consider direct approximation problem in the norm of the space X.

Theorem 1. If $f \in X$, then $||U(\cdot, r; f)||_X \leq \frac{5}{2}\omega_2(r; f, X)$ for all $r \in I$.

Proof. By (11), (12), (14) and (3), we have

$$U(x,r;f) = (2r)^{-1} \int_{0}^{+\infty} \left(\Delta_t^2 f(x)\right) \exp(-t/r) dt$$

for all $x \in R$ and $r \in I$. From this and by (1), (2) and the properties of $\omega_2(\cdot; f, x)$ [5, p. 116] we get

$$||U(\cdot, r; f)||_{X} \le (2r)^{-1} \int_{0}^{+\infty} \omega_{2}(t; f, X) \exp(-t/r) dt$$
$$\le (2r)^{-1} \omega_{2}(r; f, X) \int_{0}^{+\infty} (\frac{t}{r} + 1)^{2} \exp(-t/r) dt$$

for all $r \in I$. Now using Lemma 4, we obtain our thesis.

From Theorem 1 and by (9) we obtain the following

COROLLARY 2. If $f \in X^{\omega}$, then $||U(\cdot,r;f)||_X \leq \frac{5}{2}||f||_{X^{\omega}}^*\omega(r)$ for all $r \in I$. In the case $\omega(t) = t^{\alpha}$, $0 < \alpha \leq 2$, we have $||U(\cdot,r;f)||_X \leq \frac{5}{2}||f||_{X^{\omega}}^*r^{\alpha}$ for all $r \in I$.

3.2. In this part we shall give an inverse approximation theorem in the norm X. We shall use the notation (14).

Theorem 2. Suppose that $f \in X$ and

$$||U(\cdot, r; f)||_X \le \omega(r) \tag{15}$$

for all $r \in I$, where ω is given function belonging to Ω^2 . Then

$$\omega_2(t; f, X) \le M_1^* t^2 \int_t^1 \omega(z) z^{-3} dz$$
 (16)

for all $t \in (0, 1/2)$, where $M_1^* = M_1(||f||_X, \omega)$.

Proof. We shall apply the Bernstein method [5, p.345]. For every fixed integer $m \geq 2$ we can write

$$f(x) = P(x, 2^{-1}; f) + \sum_{k=1}^{m-1} \left\{ P(x, 2^{-k-1}; f) - P(x, 2^{-k}; f) \right\}$$

$$+ f(x) - P(x, 2^{-m}; f), \qquad x \in R.$$
(17)

Let

$$v_n(x;f) := P(x,2^{-n-1};f) - P(x,2^{-n};f) \qquad (n=1,2,\ldots).$$
(18)

From (17) and by (3), (14) and (18) we get

$$\Delta_h^2 f(x) = \Delta_h^2 P(x, 2^{-1}; f) + \sum_{k=1}^{m-1} \Delta_h^2 v_k(x; f) + \Delta_h^2 U(x, 2^{-m}; f)$$

=: $A_1(x, h) + A_2(x, h) + A_3(x, h)$.

for $x \in R$ and $h \in R$. We notice that

$$\Delta_h^2 P(x,r;f) = \int_{-h/2}^{h/2} \int_{-h/2}^{h/2} \frac{\partial^2}{\partial x^2} P(x+t_1+t_2,r;f) dt_1 dt_2.$$

Hence, by Hölder-Minkowski inequality and by Lemma 5, we get

$$||A_{1}(\cdot,h)||_{X} = \left\| \int_{-h/2}^{h/2} \int_{-h/2}^{h/2} \frac{\partial^{2}}{\partial x^{2}} P(x+t_{1}+t_{2},1/2;f) dt_{1} dt_{2} \right\|_{X}$$

$$\leq h^{2} ||\frac{\partial^{2}}{\partial x^{2}} P(x,1/2;f)||_{X} \leq 4||f||_{X} h^{2}.$$
(20)

From the assumption (15) we have

$$||A_3(\cdot, h)||_X \le 4\omega(2^{-m}). \tag{21}$$

From the Fubini theorem if follows that

$$P(x, 2^{-n-1}; P(\cdot; 2^{-n}; f)) = P(x, 2^{-n}; P(\cdot, 2^{-n-1}; f))$$

for n = 1, 2, ... and $x \in R$. Hence and by (18) we get

$$v_n(x;f) = P\left(x, 2^{-n-1}; f(\cdot) - P(\cdot, 2^{-n}; f)\right) - P\left(x, 2^{-n}; f(\cdot) - P(\cdot, 2^{-n-1}; f)\right).$$

Further, we find

$$\Delta_h^2 v_n(x; f) = \int_{-h/2}^{h/2} \int_{-h/2}^{h/2} \frac{\partial^2}{\partial x^2} v_n(x + t_1 + t_2; f) dt_1 dt_2,$$

Hence, by (14) and Lemma 5, we get

$$\begin{aligned} \|A_{2}(\cdot,h)\|_{X} &\leq \sum_{k=1}^{m-1} \|\Delta_{h}^{2} v_{k}(\cdot;f)\|_{X} \\ &\leq h^{2} \sum_{k=1}^{m-1} \left\{ \|P\left(\cdot,2^{-k-1};U(\cdot,2^{-k};f)\right)\|_{X} + \|P\left(\cdot,2^{-k};U(\cdot,2^{-k-1};f)\right)\|_{X} \right\} \\ &\leq h^{2} \sum_{k=1}^{m-1} \left\{ \|U(\cdot,2^{-k};f)\|_{X} \cdot 2^{2k+2} + \|U(\cdot,2^{-k-1};f)\|_{X} \cdot 2^{2k} \right\}. \end{aligned}$$

Now applying the assumptions (14) and (15), and by properties of the function $\omega \in \Omega^2$, we obtain

$$||A_{2}(\cdot,h)||_{X} \leq h^{2} \sum_{k=1}^{m-1} \left\{ 2^{2k+2}\omega(2^{-k}) + 2^{2k}\omega\left(2^{-k-1}\right) \right\}$$

$$\leq 5h^{2} \sum_{k=1}^{m-1} 2^{2k}\omega\left(2^{-k}\right) \leq 10h^{2} \int_{2^{-m}}^{1/2} \omega(z)z^{-3}dz.$$
(22)

Using (20)–(22) and (19), we get

$$\|\Delta_h^2 f\|_X \le 4\|f\|_X h^2 + 4\omega \left(2^{-m}\right) + 10h^2 \int_{2^{-m}}^{1/2} \omega(z) z^{-3} dz \tag{23}$$

for every integer $m \geq 2$ and $r \in I$. Now let 0 < t < 1/2, $|h| \leq t$ and let m be an integer such that $2^{-m} \leq t < 2^{-m+1}$. Then, by properties of $\omega \in \Omega$, from (23) and (2) it follows that

$$\omega_2(t; f, X) \le 4||f||_X t^2 + 4\omega(t) + \frac{5}{2}t^2 \int_t^1 \omega(z)z^{-3}dz.$$

Now using (4), we obtain (16).

In the case $\omega(h) = M_5(\alpha)h^{\alpha}$, $0 < \alpha \le 2$, from Theorem 2 we get

Corollary 3. If $f \in X$ and $\|U(\cdot,r;f)\|_X \le M_5 r^\alpha$, $r \in I$, where $0 < \alpha \le 2$, then

$$\omega(t; f, X) \le M_6(\alpha) \begin{cases} t^{\alpha} & \text{if } 0 < \alpha < 2 \\ t^2 |\log t| & \text{if } \alpha = 2, \end{cases}$$

for all 0 < t < 1/2.

3.3. Now we shall examine the limit properties of $P(\cdot, r; f)$ in the Hölder norms.

THEOREM 3. Suppose that $\omega, \mu \in \Omega^2$ and the function $q(\cdot)$ defined by (7) is monotonically increasing for h > 0. If $f \in X^{\omega}$, then

$$||U(\cdot, r; f)||_{X^{\mu}} \le M_6(\mu) ||f||_{X^{\omega}}^* q(r)$$
(24)

for all $r \in I$, where $M_6(\mu) = \frac{5}{2}\mu(1) + 12$.

Proof. By our assumptions and (8) we have $P(\cdot,r;f) \in X^{\mu}$ for every $r \in I$. Hence the function $U(\cdot,r;f)$ $(r \in I)$ defined by (14), belongs to X^{μ} and by (6) we have

$$||U(\cdot,r;f)||_{X^{\mu}} = ||U(\cdot,r;f)||_X + ||U(\cdot,r;f)||_{X^{\mu}}^*$$

for every $r \in I$. Using Corollary 2, we get

$$||U(\cdot, r; f)||_X \le \frac{5}{2} ||f||_{X^{\omega}}^* \mu(1) q(r), \quad r \in I.$$

By (5), for every $r \in I$, we have

$$||U(\cdot,r;f)||_{X^{\mu}}^{*} \leq \sup_{h>r} \frac{||\Delta_{h}^{2}U(\cdot,r;f)||_{X}}{\mu(h)} + \sup_{0 < h < r} \frac{||\Delta_{h}^{2}U(\cdot,r;f)||_{X}}{\mu(h)} =: S_{1}(r) + S_{2}(r).$$

Since $\|\Delta_h^2 U(\cdot, r; f)\|_{X} \le 4 \|U(\cdot, r; f)\|_{X}$ and by Corollary 2, we get

$$S_1(r) \le 4(\mu(r))^{-1} ||U(\cdot, r; f)||_X \le 10 ||f||_{X^\omega}^* \cdot q(r), \quad r \in I.$$

From (3), (14) and (13) it follows that $\Delta_h^2 U(x, r; f) = P(x, r; \Delta_h^2 f) - \Delta_h^2 f(x)$ for $x \in R$, $h \in R$ and $r \in I$. Hence, by Lemma 1, we get

$$\left\|\Delta_h^2 U(\cdot,r;f)\right\|_X \leq \left\|P(\cdot,r;\Delta_h^2 f)\right\|_X + \left\|\Delta_h^2 f\right\|_X \leq 2\left\|\Delta_h^2 f\right\|_X, \ \ r \in I.$$

Consequently,

$$S_{2}(r) \leq 2 \sup_{0 < h \leq r} \frac{\left\| \Delta_{h}^{2} f \right\|_{X}}{\mu(h)} = 2 \sup_{0 < h \leq r} q(h) \frac{\left\| \Delta_{h}^{2} f \right\|_{X}}{\omega(h)}$$
$$\leq 2 \|f\|_{X\omega}^{*} q(r) \quad \text{for } r \in I.$$

Summing up, we obtain (24).

Similarly, we obtain the following

Theorem 4. Suppose that the functions ω, μ, q satisfy the assumptions of Theorem 3. If $f \in \tilde{X}^{\omega}$, then

$$||U(\cdot, r; f)||_{\tilde{X}_{\mu}} = o(q(r)) \text{ as } r \to 0 + .$$

Theorem 3 and Theorem 4 imply

COROLLARY 4. Let the assumptions of Theorem 3 be satisfied and let $q(h) \leq M_7(\gamma)h^{\gamma}$, h > 0, $0 < \gamma < 2$. If $f \in X^{\omega}$, then

$$||U(\cdot, r; f)||_{X^{\mu}} \le M_8(\mu, \gamma) ||f||_{X^{\omega}}^* r^{\gamma}$$

for all $r \in I$, where $M_8(\mu, \gamma) = \left(\frac{5}{2}\mu(1) + 12\right) M_7(\gamma)$. If $f \in \tilde{X}^{\omega}$, then

$$||U(\cdot, r; f)||_{\tilde{X}^{\mu}} = o(r^{\gamma}) \text{ as } r \to 0 + .$$

In the case $\omega(h) = h^{\alpha}$, $\mu(h) = h^{\beta}$, $0 < \beta < \alpha \le 2$ and $f \in X^{\omega}$ we have

$$\|U(\cdot,r;f)\|_{X^{\mu}} \leq \frac{29}{2} r^{\alpha-\beta}$$

for all $r \in I$. If moreover $f \in \tilde{X}^{\omega}$, then

$$||U(\cdot, r; f)||_{\tilde{X}^{\mu}} = o(r^{\alpha-\beta})$$
 as $r \to 0 + .$

REFERENCES

- [1] E. Deeba, R.N. Mohapatra, R.S. Rodriguez, On the degree of approximation of some singular integrals, 8 (1988), 345-355.
- [2] A. Khan, On the degree of approximation of K. Picard and E. Poisson-Cauchy singular integrals, Rend. Mat. 2 (1982), 123-128.
- [3] R.N. Mohapatra, R.S. Rodrigez, On the rate of convergence of singular integrals for Hölder condinuous functions, Math. Nachr. 149 (1990), 117-124.
- [4] J. Prestin, S. Prössdorf, Error estimates in generalized trigonometric Hölder-Zygmund norms, Z. Anal. Anwend. 9(4) (1990), 343-349.
- [5] A.F. Timan, Theory of Approximation of Functions of a Real Variable, Moscow, 1960 (in Russian).

Institute of Mathematics Technical University of Poznań Piotrowo 3A 60-965 Poznań, Poland (Received 18 08 1993)