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ON THE OPERATOR SOLUTIONS
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Abstract. We analyze the character of the solutions of a class of difference
equations in the field of Mikusinski operators F. These difference equations are in
fact the discrete analogues for the differential equations in the field F corresponding
to some partial differential equations.

1. Introduction. The linear partial differential equation with constant
coeflicients on the set {(z,t)|z € R, t > 0} :

p
62+z al+

o
) ZA’ 6;1:26# ZB Ox atz ZC ua;t = (@9,
i=0

i=
with some initial and/or boundary conditions is the mathematical model for dif-
ferent physical systems. In (1), A;, ¢ = 0,1,...,p, B;, i« = 0,1,...,q, and
C;, 1=0,1,... ,r, are numerical constants, p, ¢ and r are natural numbers, while
the function f(z,t) on the right hand side is given.
If one has the initial conditions
P u(x, t)

ozrotr |,

fory=0,v=0,1,...,r—1, u=1v=0,1,...,.q—-1, pu=2,v=0,1,... ,p—
1, then the Mikusinski operator calculus can be applied, in order to obtain the
solution. (For reader’s convenience, we give some notions from that theory in
Section 2; for complete exposition, see [2].) In the field of Mikusiiski operators F,
the following nonhomogeneous differential equation corresponds to (1):

(2) ZA stu (x) + Zq:Bisiu’(a:) + icisiu(m) = f(=),
i=0 =0
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where s is the differential operator, f(z) = {f(z,t)} and u(z) = {u(z,t)} are,
respectively, the given and the unknown operator function (for the notations and
notions, see Section 2). The most important case is when the operator function
f(z) is represented by a continuous function.

In Section 3, using the usual difference schemes, we come to a second order
difference equation in the field F, and, in particular, we analyze its characteristic
equation. We find sufficient conditions on the numbers r, p and ¢ which imply that
the solutions are represented by continuous functions.

In Section 4, we use classical methods from [1] for finding the explicit solution
of the difference equation in F. Of course, these classical methods had to be adapted
for the Mikusifiski operator calculus. Similar problems were considered in [3], [4]
and [6], though for less general difference equations.

Finally, in Section 5, analogously to [7] and [8], we estimate the approximation
error, i.e., the difference between the exact solution of the differential equation (2)
and the approximate one, given as the solution of the corresponding difference
equation. We show that the error of approximation in the field F is of the same
order as in the usual numeric case.

2. Notations and notions from the Mikusinski calculus. The set
C4+ of continuous functions defined on [0,00), with the usual addition and the
multiplication given by the convolution

t
£(8) * gt) = / F(D)glt —7)dr, t>0,

is a ring. By the Tichmarsh theorem, C; has no divisors of zero, hence its quotient
field can be defined (see [2]). Elements of that field, the Mikusiriski operator field
F, are called operators. They are quotients of the form f/g, where f € C; and
0 # g € C4; the last division is observed in the sense of convolution. Clearly, a
function a = a(t) from Cy can be observed also as an operator. This operator is
unique and will be denoted simply by a. We shall write then a = {a(t)} and say
that the operator a is represented by the continuous function a(t).

Among the most important operators are the identical operator I = f/f,
where f is any function from C. , not identically equal to zero; the integral operator
¢ = {1} together with its positive powers ¢* and the inverse operator of £, the
differential operator s. The following holds

bs=1, (*={t*""T(a)}, a>0,
{£™ ()} = s"x — s"1a(0) — - - - — 2PV (0)].
Let us denote by F. the subset of F consisting of the operators represented by

elements of C,, and by Fr the subset of F consisting of the elements I, for some
numerical constant +.
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The only convergence in F that we shall use is the type I convergence, which
is defined as follows: A sequence of operators (p,)neN converges to p € F if there
exists an operator ¢ # 0 such that the operators qp,, n € N, as well as gp are in F,,
and the last sequence converges uniformly on every compact set to the continuous
function qp.

The convergence of an infinite sum in the field of Mikusiniski operators is
defined accordingly. An example that will be used several times in this paper is
the infinite series ) ° | ¢, where ¢ € F,. It is important to note that this series
converges and its sum is an operator from F,.

The operators can be compared if they are from F.. So for two operators
a ={a(t)} and b = {b(t)} from F. we define a < b if a(t) < b(t) for each ¢t > 0 (see
[2, p. 237]). Analogously, for two operator functions we define

a(z) <7 b(z), =z € le,d],
if a(z) and b(x) are represented by continuous real valued functions of two variables,
a(z) = {a(z,t)}, b(z) = {b(z,t)} and a(z,t) < b(z,t) for z € [c,d], t € [0,T].
The absolute value of an operator a from F., a = {a(t)}, is the operator
la| = {la(t)[}. Also, we put |a(z)| = {|a(z,?)[}.
If the operators a and b are from F., then

la+ 0] < |af + |b],

t
jab| = ‘/0 a()b(t — 7)dr| < [al[t],

< = )
ol <r oI} o(T) = max [a()

3. Difference equations in F. As we announced in the introduction, we
consider the nonhomogeneous differential equation (2) in the field of Mikusiriski
operators F.

The differential equation (2) can be written in the form

3) Pu'(z) + Qu'(z) + Ru(z) = f (),
where P = zp: s'4;, Q= Xq: s'B;, R = XT: 5C;.
i=0 =0 =0

As is usual in numerical analysis for h > 0, instead of u'(x) we take

uw(z + h) —u(z — h)
2h

and also instead of v (z) we put

u(z + h) — 2u(z) + u(z — h)
h? '
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So we obtain the difference equation in the field F corresponding to (3):

u(z + h) — 2u(z) + u(z — h) uw(z + h) —u(z — h)
h? 2h

4 P +Q + Ru(z) = f(x).
Let us take an arbitrary real zo. If we put z, = z,—1 + h, h > 0, n =
0,+1,+2,..., and define the operator f, by f, = f(z,), then the equation (4) can

be written as the difference equation
(5) aun—1 + bup + cunyr = fn,

where a, b and ¢ are operators from the field F. Putting ry = max(p,q) and
ro = max(p,r), we have

(6)
= ;f_2 ( - %> N % (AO B @) I+5s™ (a2l + ¢a) = a1 + 5™ (a2] + ¢a),
(7)

I I
b=—13 (2P — Rh?) = 3 (=2A0 + 1*Co) I + 8™ (bo + @) = byl + 5" (b2l + ¢s),
(8)

I Qn\ I Boh . .
C=ﬁ<P+T>=ﬁ<AO+T>I+S (Cz[+¢c)=C1[+S (Cz[+¢c).

In the previous three relations a1, by, ¢1, as, ba, ca are numerical constants and ¢,
b, ¢ are operators from F.. In this paper we analyze the solution of difference
equation (5) depending on p, g, r, more precisely on 1, 7.

The characteristic equation of the difference equation (5) has the form

9) a+bw+ cw® =0.

Let us analyze the solution of the equation (9).

It is known that the field of Mikusiriski operators has very good algebra-
ic properties, which also means that the usual addition and multiplication with
operators can be treated in the same way as with real numbers.

Using relations (6), (7) and (8), the characteristic equation (9) can be written
as

arl +s™ (a2[ + ¢a) + (bll + 5™ (bzl + ¢b))w + (01[ + 5™ (CQI + ¢C))w2 =0.
First, let us consider the expression b? — 4ac:

b% — dac = (b I + s™2(bod + ¢3))2 — 4(ar I + s™ (a2l + ¢a))(c1 I + 5™ (c2I + ¢.))
= bf] + 2b18™ (boI + ) + g2 (boI + ¢b)2 —4aiei 1
— 45" (arco] + arde + aser I + ¢1¢g) — 45> (an] + ¢o) (el + ¢o).
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If ro >ry >0, by # 0, then it can be transformed as

b% —4ajic + 2b11™

(021 + 1)~ b2l + oy

_ gg(ri—2r2) a2 + arpe + azcil +ci¢a 4g2(r1=2) (aol + ¢o)(caI + ¢C))
(b2 + ¢)? (bod + )2

b2 — dac = 5272 (byl + ¢)> (I 4 g

So we can write for ro > r; > 0:
(10) b? — dac =: 822 (oI + ¢p)*(I + ¢1).
The operator I/(bal + ¢)? is of the form I + ¢, where ¢ is represented by a

continuous function; therefore, the operator 11, given in (10), is represented by a
continuous function too. From relation (10) we obtain

Vb2 — dac = 5™ (boI + ) Z (1/2> (1)’

i=0
(b21+¢b) +8T2 bzI+ (,255 Z ( )
=1
Hence
(11) Vb2 —dac =: s" (b2l + ¢p) (L +1Pg,1),

where the operator 1),,; is represented by a continuous function.
If, however, r; > rs > 0, then we have

b2 —daje; 227 (byd + )2 n

b — dac = s*™ (—4ascy) (I + 2

—4ascs —4ascy
2by 5221 (boI + o) _4£T1 (arcal + ar1¢pe + azcr I + c16,) _4a2¢c + oy + ¢a¢c)
—4&202 —4&202 —4a202 ’
So we can write
(12) b2 — dac = 2™ (—4agcs)(I + 2),

and in this case (r1 > ro > 0) we have

V& —dac= s %z(m) )

e +nv=ime Y (1)

i=1
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or

(13) Vb2 — dac =: s \/—4ascs (I +1,2).
In relations (12) and (13) v and 1), are operators from F,.
If p=r; =ry >0, then we have
b* — dac = s?P (b3 — dascs) (I + 3)

So in this case we can write

VI —dac = 57\ B3I — dasca(I + ),

where 13 and 1), 3 are operators from F..

LEMMA 1. Assume that coefficients of the equation (5) are of the form (6),
(7) and (8), and ro > r1 > 0. Then one of the solutions of the characteristic
equation (9), say w1, belongs to F., the other one, say w2, does not, but I /ws does.

Proof. Solutions of the equation (9) have the form

_ —bl_[ —s™ (b2I + ¢b) + vV b2 — 4dac

w1,2

e 2(crd + s™ (cal + ¢c))
by — 57 (ba] + ) £ 5 (bl + 60) (I +1y,)
202 I+ C_lgm + ﬂ
C2 C2

The first solution w; has the form

_ _blzm 4 g2 (b2I+¢b)wq,1 i(_l)j (C_ler1 + ﬁ)] ‘

202 Co Co

w1
=0

From (11) it follows that s™~"'4, ; is an operator from F,, and since the operators
b, Yq,1 and ¢, are from F., we obtain that the operator wy is from F..
The second solution wy of the characteristic equation has the form

_ bl = 26" (bo + ) — 8™ (bl + p)¢Pgn i(—l)i Gy Pe ’
- o .

202 Co

w2
=0

Since ro — r; > 0, the last operator does not belong to F.. However, the operator

I/ws is from F,, because it can be written as

I 2(ciI + 5™ (co] + ¢c))
wy  =bil =28"2(ba] + ¢p) — 872 (b2 + dp) g1

e el + 5™ (col + @)

o —by byl ﬁ { ﬂ

I+ o Ty T (2 + 2b2)¢q,1
AL +5r17r2(02j+¢c) i . VAL o)) I o 7
= S (R R AT (e :
by (=1) 2b, + bo + 2 + 2by Va1

Jj=0
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LEMMA 2. If coefficients of the equation (5) are of the form (6), (7) and
(8), and if 11 > ro > 0, then the characteristic equation (9) has the following two
solutions:

W = (51[ + 6c,15 Wy = (52]+ 60,2
where 1, d2 are numerical constants, while §.1 and 6.2 are operators from F..

Proof. When r1 > ra, the solutions of the characteristic equation are

A —b1I — s™2(boI + ¢hp) £ Vb2 — 4dac
b2 2(c1I + 5™ (eI + ¢c))

202 I + c_lgn + &
C2 C2
_ 00 J
_ bl — 8™ (bol + dy) £ V/—4agca(L + ¢y.2) 3 (1) (C_lgn n ﬂ) ‘
2¢o : C2 C2
7=0
Since then ry —r; < 0 and s™ ™ = (™~ "2  we can introduce numerical

constants d;, d» and operators d;,1, dc 2 from F,, by
(14) wj = (st—F (58,]-,

for j = 1,2. In (14) the numerical constants J; are equal to £1/—as/ca.

Similarly we can prove

LEMMA 3. If coefficients of the equation (5) are of the form (6), (7) and (8),
and if v = ry > 0, then the solutions w;, j = 1,2, of the characteristic equation
(9) are

(15) wj = 012l + dc jta.

In (15), 83,4 = (—b2 = Vb2 — 4azc2) /(2¢2) are numerical constants, while 4 3
and d.,4 are operators from F..

4. The operator particular solution of the difference equation. The
particular solution of the difference equation (5) has the form

(16) Un= Y Gn_rfr,
k=—0o0
with
alw{“k + ﬂlwgfk, n—k<0;
(17) Gnk = n—k n—k
w4+ Py, n—k >0,
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where a1, (1, as, B2 are operators from F.

LEMMA 4. Let us suppose that the conditions of Lemma 1 are fulfilled (ro >
r1 > 0). Then, the operators G, given by (17) can be given in the form

o <0,
(18) G — ag{ wy, forn<

wr,  forn 20,

where as is an operator from F.. Hence operators G, are represented by continuous
functions for every n € Z.

Proof. By Lemma 1 the operators w; and I/w, are from F,, hence the oper-
ator G, can be written in the form

frwy, n <0
(19) Gn = { 2

aswy, m>0.
For n = 0 we have as = (1. The coefficient as can be obtained from the equation
(20) aG_1 +bGo +cGy =1,

where a, b, ¢ are coefficients of the equation (5) having the forms (6), (7) and (8),
respectively. From (19) it follows that

(21) G_l = 052/(4)2, Go = Q2, G1 = OW1-
Using the last two relations ((20) and (21)), we obtain
o ((all—}—s” (a21+¢a))/w2+ (bl.[—}-srz (ng—{—d)b))—}—(clI—l-s“ (CQI+¢C))w1) =1,

where ay, as, by, by, ¢1, c2, 1, T9 are numerical constants and ¢,, ¢y, P, are the
operators from F.. So we have

I
@2 = (a1 I + s™(ax + ¢g))/wa + (D1 I + ™2 (bal + ¢p)) + (1] + s™1(cal + ¢e))wn
e
h by I+’)’

Since ro > r; > 0, the operator v is from F; it has the form

ax 02 ba I b o [ca _ 2 ¢
= Ly ri—re [ 22, ¥a gy Lra 70 e ri—re [ 22, Ye .
7 <b2 * (b2+b2)> w2+b2 +bz+ by s b2+bz 1

So we have

2 & .
=5 > (—1)kk =00
2 k=0

(5]
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Since r > 0, and I/w, and wy are represented by continuous functions, it follows
that ap is an operator from F,.. Therefore the operators G,,, for each n, are from
F., and the relation (18) holds.

THEOREM 1. If conditions of Lemma 1 and Lemma 4 are fulfilled (ro > r1 >
0) and operators fy in the equation (5) are of the form fr = Fyps™, for m < rq,
where Fj, are numerical constants satisfying |Fy| < F (for some F > 0), then
the particular solution of equation (5) exists in the field F and is represented by a
continuous function.

Proof. If r5 > ry > 0, then we have

o {wg_k forn -k <0,
r=Q
nok ? Wtk forn —k > 0.

In that case the operators G,,_j, are from F, and therefore the solution of difference
equation (5) has the form (see (16))

(22)  un= > Gno sze"ﬂ—ma< SoowrFR+ Y wg—ka>.

k=—oc k=—o0 k=n+1
The last two series converge because the operators w; and I/w» are from F,.

LEMMA 5. Suppose that r1 > ro > 0 (compare to Lemma 2). If 61 < 1 and
02 > 1, then the operator G, can be written as
(021 4 0¢,2)™, forn <0;

23 G, =
) a3{ (011 +68.1)™, forn >0,

where as is represented by a continuous function and operators G,, are from F..

Proof. Since §; < 1 and §, > 1, it follows that we can take a; = 82 = 0, and
we obtain from (24)

(24) Gn = { Pr(020 +6c2)", 1 <O;

(611 + 0.1)", n>0.

For n = 0 it follows that as = 81 =: a3z. The coefficient a3 can be obtained from

the equation
aG_1 +bGy + Gy =1,

where a, b, ¢ are coefficients of the equation (5) having the forms (6), (7) and (8),
respectively. From the relation (24) it follows that Gy = a3 and we have

(a1] + 5™ (a2 + ¢a)) s (Sl + c2) 4+ az + (e + 8™ (ca + ¢¢))az (611 + 6.1) = I

Since r; > r2 > 0, we have

I
(a1[ + 8"t (ag + ¢a))(521 + (5672)71 + I+ (011 + 8™ (CQ + ¢c))(61I + 50’1) )

Q3 =
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A I

— - ——, where
v I+

If we denote by v2 = 3—2 + ¢261, then we have as =
2

alérl ¢a) I
A= +— )
( Y2 Y2 021 + 0.2

as & [ Oc,2 o cal™ b
DD (2] +—+ + ) (61 + 601) + C2be 1.
"2 .= 92 Y2 Y2 Y2

From the last expression it follows that the operator A is represented by a continuous
function and therefore the operator as has the form

& .
= —- —1)IN = (Mo}
o > (-1 a

=0

as

and is represented by a continuous function too. This implies the relation (23).
Therefore, the operators G,, given by the relation (23) are from F..

Similarly we can prove

LEMMA 6. Suppose that r1 > ro > 0. Then we have

011+ 6.1)", forn <0;
Gn:a4{(1 DAY for 8, > 1,64 < 1;

(62-[ + 50,2)n; fOT n Z 07

{ (011 +0¢,1)" = (621 + 6c,2)", for n < 0;
Gn = Q5

1 1;
0, forn > 0; for 61 > 1,6, > 1;

0, for n <0;

o a6{ (BT +002)" — (Do +8,2)", forn >0, 1701 <1< d

where ay, as and ag are represented by continuous functions. In all three cases the
operators G, are from F,.

Finally, we can give the following

THEOREM 2. If the conditions of Lemma 5 (and Lemma 6) are fulfilled in the
equation (5), i.e. T4 > ra > 0, and operators fy, satisfy the condition fr, = Fl™ for
m < r1, where F}, are numerical constants satisfying |fr| < F, then the particular
solution of the equation (5) is represented by a continuous function for ry —m > 0.

Proof. We shall prove only the case when §; > 1 and §; < 1; the other cases
are handled similarly. Then we have
(52[ + 56,2)n—k forn—k < 0,

Gp_ir =
k a3{ (611 +6c1)" % forn—k > 0.

In this case we can write (611 + (56,1)"_’c = (5?"“ + pen—ka for n —k > 0, and

I(6-1 + 5072)—(’“—70 = 152*(’“") + pe,k—n,2, for k —n > 0, where p; j_n2 are some
operators from F..
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So the solution of the difference equation (5) has the form

Up = i Gn—kfk = Enimal

k=—o00
n n o o
x ( S R Y Fpen st 3 A Y Fp)
k=—0oc0 k=—o0 k=n-+1 k=n-+1

The first and the third series converge as numerical series and the second and the
forth series converge in the field 7. Therefore in this case (r; > m) the solution
U, is again represented by a continuous function.

5. The error of approximation. In this section we shall keep z in some
fixed interval [A, B]. Also, we shall consider in this section only the case when
r>p.

Let us suppose that the solution of the equation (2) is from F. and has a
continuous fourth derivative in the field of Mikusiniski operators. Let us denote by
u(z;) the exact solution (the solution of the equation(3)) and by w; the approximate
solution of the same equation (which by Theorems 1 and 2 also belongs to F.). In
fact u; is the solution of the difference equation (5).

In order to give the error of approximation, we have to estimate the difference
between the equations (2) (or (3)) and (5). So we obtain

. — . . g . . — .
ZAiSi (u"(wj) — Lt 2;2] - u]_l) + Z B;s" (u'(a?j) - et 2hu11>

=0

+ i C;s' (u(x;) — uj) = 0.
=0

From the previous relation we have

r _ p o | |
lu(z;) — uj| = ‘(gcisi) 1 (; A;st (u//(xj) Uit 2:2] + U]—l)

q . — .

If r > p, then

(&) / (B =I(5) /(< (oo )

is represented by a continuous function and it can be estimated by

() / (o)

<r Ry (T)L.
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Also, assuming that r > ¢, from the estimation

q r
> B;s' > Cist || <1 Ra(T)E,
i=0 =0
we have 2 T
lu(z;) —ujlr < & <R1 (T)# + R2M3(T)> 2,
where .
Mz(T = max |u(l) ($7t)|7 i = 374

z€[A,B], t€[0,T]

Therefore the solution of the equation (5) given by (22) can be treated as the

approximate solution of the differential equation (2).

Let us remark that the error of approximation is of order A2 in the field of

Mikusinski operators, analogously to the case when we are working with numerical
constants.
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