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Abstract. Using a functional g, defined by (2), we introduce tree kinds of
orthogonality in normed spaces and, using them, we prove three theorems on isomor-
phisms of a normed space and an inner product space. Certain new characterizations
of inner product spaces are obtained using functional g.

There are many known conditions on a normed space X which ensure that
X is isometrically isomorphic to an inner product space [1]. However, much less is
konwn if we ask when X is isomorphic to an inner product space. By using the no-
tion of orthogonality in normed spaces, Partington proved the following important
result, which will be used below.

LeMMA 1. [8, Theorem 4]. Let X be a real normed space and let L be an
orthogonality relation in X which satisfies:

1) ifx Lz, thenx =0,

2) ifx Ly, theny L =,

3) ifx Ly, then ax L by for all a,b € R,

4) ifx Ly andzx L 2z, thenz L (y + 2),

5) if z,y € X, then there is an a € R such that x L (az + y),

6) if xn L yn for allm € N, and if x,, & x, Yy =y (n = 0), then z L y,

7) there is a constant C > 0 such that ||z|| < ||az + y|| whenever z L y and

la| > C.

Then X is isomorphic to an inner product space.

For a relation L, satisfying 1)-6), Partington defined a functional z — f, €
X* by fz(y) =awherey =ax+ 2,2 € S(X), z L zand fa, = Afz (X* denotes
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the topological dual of X and S(X) is the unit sphere of X). In the same paper he
proved the following: Assuming 1) through 6), the condition 7) is equivalent to

7') There is a constant C > 0 such that ||fz|| < C for all z € S(X).
We are going to replace 7) with a more natural condition.

LEMMA 2. If the relation L satisfies 8), then 7) is equivalent to:

7") There is a constant C > 0 such that x L y = ||z|| < Cl|lz + y||-

Proof. Assume 7"). Then, by 3), z L y implies Zz L &y (la| > C). Now
7") implies |%| |lz]| < C ||%£U + éy“ and, using |a| > C, we get ||z]| < ||az + y|-
Conversely, assume 7) and let L y. Then there is a C' > 0 such that ||z]| <
[|Cz + yl||. Using 3) we get z L Cy and 7) gives ||z]| < ||Cz + Cy|| = C||z + y||

It is clear, that in a general normed space, an orthogonality relation cannot
be difined with all the properties 1), 2), 3), 4), 5), 6) and 7). Therefore we define
certain orthogonality relations which, under some additional conditions, satisfy the
conditions of Lemma 1.

Let (X, ||z||) be a real normed space. On X? the following functionals always
exist:

Te(2,y): = lim (o + ty[| = |z]]) /¢ tagl
(2) 9(z,y):=1/2-[lzl|(r-(,y) + 74+ (z,9)), =,y € X.

The functional g is a natural generalization of inner product (.,.) on X2. It
has the following properties:

9(z,z) = ||l|]?, (3)
glaz,By) = afg(z,y) (a,B € R), (4)
9@,z +y) = llzl” + g(z,y), (5)
lg(z,y)| < ll=llllyll  (see [3]). (6)

If X is smooth, then g is linear in the second argument, and in this case
[y, z]: = g(x,y) defines a semi-inner product in the sense of Lumer. However, g can
be linear in the second argument even if X is not smooth. For example on I* x [*
the functional g is defined by

9(z,y) = llzll Y _(sgnz)ye (@ = (z1),y = (jr) €1")
k

and is clearly linear in y.
If g is linear in the second argument, then we say that X has property (G).
The orthogonality of a vector x to a vector y in X can be defined in several
ways (see [5]). The most commonly used definition of orthogonality is the Birkhoff
orthogonality:
zLlpy e (VA€ R)z] < llz+ Ayl
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By use of the functional g the orthogonality | can be defined in several ways:

where min; ||z + ty|| = ||z + toy|| (Such a tg always exists since p(t) = ||z + ty|| is
convex). All of these notions of orthogonality are generalizations of the classical
one, defined by a scalar product.

In [2] it was proved that X is smooth if and only if, 2 1, y & 2 Lp y for
every z,y € X\{0}.

Let us introduce some definitions and establish the notations. The sequence
(en) in X is g-orthonormal if
1, i=j3
€;,ej) = .
g( iy J) { 0, i ;éj
A g-orthonormal sequence (e,) is a total sequence in X if

(VkeN)ep Lygz=>2=0.

oo 99, 2)
Tyl
We define, using a g-orthonormal sequence (e, ), the following

y (the projection of the vector z on the vector y (see [4])).

g(en,z)g(en,y) _
n
We quote, for reference, the following result:

LEMMA 3. [9, Theorem 3.6] If [-,-] is a semi-inner product on X? and if X
is smooth, then lim,,_, [z, yr] = [z,y] whenever ||z — z|| = 0 and ||yr, — z|| = 0
(n — 00).

Next we state the main results of this paper.

THEOREM 1. Assume X is smooth and assume the functional g has the
property

(8) 9(z,9)9(y, x) = 9(,2)9(2,2) = 0 = g(2,y + 2)9(y + 2,x) = 0.

Then X is isomorphic to an inner product space.
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Proof. Since X is smooth, using properties (3)—(6) of g, the properties (8)
and Lemma 3, it is easy to check that 19 satisfies the conditions 1), 2), 3), 4) and
6) of Lemma 1. Let us check that the conditions 5) and 7) are also satisfied.

5) Choose z,y € X, * # 0. Then, with a = g(z,y)/||z||> we have that
g(z,az + y) g(ax + y,x) = 0 which gives 19 ax + y. Therefore 5) holds.

7) Assume z 19 y ie. g(z,y)g(y,z) = 0. If g(z,y) = 0 then g(z,z + y) =
lzlI> < llzlllle + yl| and hence ||z]| < ||z + yll. If g(y,2) = 0 then ly|| < ||z + y||
and by inequality ||z|| — ||y|| < ||z + y|| we have ||z|| < 2||z + y||. From the Lemma
2 we conclude that 7) holds.

It only remains to apply Lemma 1, and it follows that X is isomorphic to an
inner product space.

THEOREM 2. Let X be a smooth normed space and assume g satisfies the
following condition

9)  9(z,y) +9(y,7) = g(z,2) + g9(2,2) = 0= g(y + 2,7) = g(y,z) + g(z, 7).

Then X is isomorphic to an inner product space.
Proof. Using properties (3)—(6) of g, Lemma 3 and Theorem 1 [7], it is easy

9
to check that L satisfies conditions 1), 2), 3), 5) and 6) of Lemma 1. Let us verify
conditions 4) and 7).

g g
4) Assume z Ly and z L z i.e. g(z,y) + g(y,x) =0 and g(z, 2) + g(2,2) = 0.
Since X is smooth, g is linear in the second variable and this gives

9z, y+2)+9(y,z) +9(z,z) =0.

Now, using (9), we conclude
9@,y +2)+9(y+2z,2) =0,

9
that isz Ly + z.

g
7) Assume z Ly ie. g(z,y) + g(y,z) = 0. This implies
l2)1* + g(z,y) + [lylI* + gy, 2) = l|=[1* + [ly|*.

Using (5) we get g(z,k +y) + g(y,z +y) = ||z]|*> + ||lyl|*>. This and condition (6)
gives [|z[” + [lyll* < (llzll + lyIDllz + yll. Set [lz]] = ¢ cos#, [ly|| = ¢ sin®, the last
inequality becomes p < (cosé + sin)||x + y|| and therefore ||z|| < 2||z + y||. Using

g
Lemma 2 we conclude that L satisfies 7).

The result now following from Lemma 1.

Problem 1. 1If the condition (8) (or the condition (9)) holds, will it follow
that X is isometrically isomorphic to an inner product space?
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THEOREM 3. Let X be a normed space satisfying condition (G). Let (e,) be
at most countable total sequence in X such that

(10) inf Zg (e, 2

Then X is isomorphic to an inner product space.
Proof. Clearly, L°¢ satisfies 1), 2), 3), 4) and 5). In veiw of Lemma 1, it
suffices to check conditions 6) and 7").

6) Assume z,, = Z, Yy, >y (n = ), Ty, L yp, [|Z0]|| < Cillyk|| < Ca. Since
g(ek,.) € S(X*) (properties (G) and (6)), from

Z g(ex, zr)g 6myk < Z 0102,

we get

_ glex, z1)g ekayk) _ _ glex,z)g(er,y)
0= lgrolo E = Ek ==
This means x 1° y.

7') Assume z 1° z, y = ax + z and z € S(X). Then g(ex,y) = ag(ex, ) +
g(ex, z) for each k, that is

glew,z)g(er,y)  g°(ex,x)  gler,x)g(ex,2)
k2 SO k2 :

Summing over k, we get

gler,z)g(er,y) _ g°(ex, ) gler, x)g(ex, 2)
I Y

k k

The last term is equal to zero, so
_ g €k, T ek; g ek;
D Jgtery) / 2
For such an a, we have
g eka
Z =/ Jof Z :

Using (10) we deduce that there is a C' > 0 such that |a] < C for all z,y € S(X).
Since f;(y) = a we are done.
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Finally, let us state two additional characterizations of inner product spaces
in terms of the functional g (see [4] and [6]).

THEOREM 4. Let X be a normed space. Then the following conditions are
equivalent:
(i) X is an inner product space,
(i) sup; ges(x-) {f(@)e(y) = F@)e@)} = =[Pyl - ¢*(=,v),
(iil) X is smooth and g(y — yz,z) =0 for all z,y € S(X).

Proof. (i) < (ii). If X is an inner product space, then

D(z,y):= sup *){f(:v)cp(y) — f)e()}

frpeS(X

is the area of a parallelogram with vertices in 0, z, y and z + y, so D(z,y) =
llzll [lyll| sin(z,y)|, where cos(z,y) = (z,y)/lz| [|y[l. Thus,

D(z,y) = VzIPllyl? - (z,9).

Also, in an inner product space we have g(z,y) = (z,y). We proved (i) = (ii). Now
assume (ii). Then D(z,y) = D(y,z) implies g(z,y) = g(y,z) (z,y € X). Using
Theorem 4 of [6], this gives g(z,y) = (z,y) (z,y € X).

(i) & (iii). Clearly (i) implies (iii). Let us prove the converse. Assume X
is smooth and g(y — y.,z) = 0 for all z,y € S(X). By definition of y, we get:
9Y = Yz,z) = 0 & g(y — 9(z,y)z,2) = 0 = g(y — 9(z,y)z,9(z,9)z) = 0 &
9y — 9(z,y)z,y — g(z,y)z —y) = 0 = |ly — g(=,y)z[I> = g9(y - 9(z,y)z,y) =
lly — 9(z,y)z|| < 1 (because of |g(y — g(z,y)z,y)| < [ly — g(z,y)=[]). Therefore
9(y — Yz, ) = 0 implies ||y — g(z,y)z|| < 1. Now we refer to Proposition 18.17 from
[1]: If ||y — ¢, (z,y)z]| <1 for all z,y € S(X), then X is an inner product space.
(Note that in a smooth space we have ¢/, (z,y) = g(z,y)).
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