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Abstract. We consider existence of solutions for quadratic minimization
problem on an ellipsoid and on a polyhedron. In the case of polyhedron, we present
a necessary and sufficient conditions for Tikhonov well-posedness of the problem.

1. We consider the following extremal problem:
J(u) = ||Au — f||% = inf, u € U,
where U is the ellipsoid
U={u€H:|Bul¢c<R}
or the polyhedron

U={ueH: (cu) <P i=1,...,m}.

Here H, F, G are real Hilbert spaces; A : H — F, B : H — G are bounded
linear operators; f € F, ¢; € H, ¢; # 0,4 = 1,...,m are fixed elements from the

corresponding spaces; §;, 4 = 1,...m and R > 0 are given real numbers.

The results of this paper complete the results from [1]-[3]. Namely, in the
case of an ellipsoid (1), (2), we get necessary conditions for the existence of solutions
and show that these conditions are sufficient for normal solvable operators A and B;
in the case of polyhedron (1), (3), we present the necessary and sufficient conditions

for the existence of solutions as well as for the well-posedness.

AMS Subject Classification (1991): Primary 49J27
Key Words: quadratic functional, minimization, well-posedness



106 Jac¢imovié¢, Krni¢ and Potapov

Let us introduce the following notation: R(A) is the range space of the oper-
ator A, AU = {Au : u € U} is the image of U under the action of A, Ker A is the
kernel of A, A* : F — H is the adjoint operator of A, M is the closure of the set
M C H with respect to the norm of H, L' is the orthogonal complement of the
subspace L, P is the orthogonal projector of H onto R(A*).

The operators A and B generate the following orthogonal decompositions of
H:
H=R(A*)®Ker A, H = R(B*) ®Ker B.

An operator A is called normal solvable if R(A) = R(A). This condition is equiva-

lent to R(A*) = R(A*) [4].
LEMMA 1. [5] A linear bounded operator A : H — F is normal solvable if
and only if
p = inf{||Au|| : v L Ker 4, ||u|| = 1} > 0.

This lemma implies immediately

LEMMA 2. If a linear bounded operator A : H — F is not normal solvable,
then there exists a sequence (p,) such that

Pn € R(A*)a ”pn” = ]-; Pn — 0, Apn — 0 as n = .

Let us notice that the set U in (2) and (3) is convex and closed with respect
to the norm of H. If, moreover, the set U in (2) is bounded, then the existence of
a solution for (1), (2) for each f € F follows by Weierstrass theorem [6]. If U is
unbounded (that is always so for U in (3) when dim H = oc), then the problems
(1), (2) and (1), (3) have solutions for each f € F if and only if AU is a closed
set in F (see [1], [2]). We will use this existence criterion repeatedly in the sequel.
Now we formulate the necessary conditions for the solvability of the problem (1),

(2).

THEOREM 1. Suppose that the problem (1), (2) has a solution for each f € F'.
Then at least one of the following conditions is satisfied:

(i) R(A*) N R(B*B) = {0},
(ii) Ker A + Ker B = Ker A + Ker B.

Proof. Assume that R(A*) N R(B*B) # {0}. The continuity of the operator
A and the closure of the set AU imply that the set

A™Y(AU) = Ker A + Ker B + Vg,

where Vg = {u € R(B*) : ||Bu|| < R}, is closed in the space H. Let y € R(A*) N
R(B*B), y # 0. Take a point z € H such that y = B*Bz. Present z, according to



On well-posedness of quadratic minimization problem on ellipsoid and polyhedron 107

(4), in the form z = 2z + 22, 21 € R(B*), z2 € Ker B. Then y = B*Bz;, and, for

the point zg = ﬁzl, we have

w0 € R(B*), B*Bxo € R(A*) N R(B*B), ||Bxo|* = R?,

in particular, £y € Vg. Now take any point yog € Ker A + Ker B. The point yq + ¢
is a limit point of the closed set Ker A+ Ker B + Vg. Therefore, the point yg + xg is
presentable as yo+2xg = po—+ 2o, where py € Ker A+Ker B and zg € Vg. Multiplying
both sides of (6) by B* Bz, and taking into account (5) and the orthogonality

R(A*)NR(B*B) L Ker A+ Ker B,
we find that R? = ||Bxol||> = (Bzo, Bxo). Since zp € Vg, we obtain
[1B(z0 — 20)|I” = || Bwol|* — 2(Bwo, Bzo) + [|Bzol* < 0

and therefore g = z9. Now we have yg = py € Ker A + Ker B. Recalling that yg
was an arbitrary point from Ker A + Ker B, we finally get the condition (ii). This
concludes the proof. O

The following example shows that the assumptions about normal solvability of
both operators A and B do not guarantee the existence of solutions of the problem
(1), (2) for all f € F.

Ezample. Take H = F = G =I5 and consider two closed subspaces of l»:

L={xz€ly: z=(0,22,0,24,0,26,0,...)},
M={z€ly: 2=(0,22,22/2,24,24/4,%6,26/6,...)}.
Define A as the orthoprojector of I, onto L' and B as the orthoprojector of I onto

M*. Then A = A*, B= B* = B*B, Ker A = L, Ker B = M, operators A and B
are normal solvable but both relations (i) and (ii) from Theorem 1 are violated:

zo = (1,0,0,...) € R(A*)NR(B*B) = L+ n M+ # {0},
KerA+KerB=L+M #L+ M =Ker A+ KerB = {z0}".

It means that in this case the problem (1), (2) can not have a solution for each
fels.

One can ask about additional conditions that normal solvable operators A
and B should satisfy for the existence of a solution of the problem (1), (2) for each
f € F. In order to answer this question, we shall prove the following

LEMMA 3. Let A be a normal solvable operator and let V C H be a convex
closed set. Then L
AV = A(Ker A+ V).
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Proof. For each yo € AV there exists a sequence (u,),u, € V such that the
sequence y, = Au, converges to yo as n — co. According to (4) we can present u,,
as

Up = Tp + Zn, Tn € R(AY), 2z, € Ker A.

Then
Az = Aup = yn = Yo, N —> 00.

As the operator A is normal solvable, (7) implies that the sequence (x,,) is bounded.
Therefore, (z,,) (or some its subsequence) converges weakly to some limit 2o and
also z, € V + Ker A. The set Ker A + V' is weakly closed, thus zg € Ker A+ V
and
yo = lim Au, = lim Az, = Azg € A(Ker A+ V).
n—oo n—oo

Therefore, we have proved the inclusion AV C A(Ker A + V). Conversely, for each
yo € A(Ker A + V) there exists a sequence u,, € Ker A + V such that the sequence
Yn = Au, — yo as n — oo. Present the elements u,, € Ker A + V in the form:

Up = 2n + Tpn, 2n € Ker A, z,, € V.

Since y, = Au, = Az, € AV, it follows that yo € AV. Thus we have proved the
inclusion A(Ker A + V) C AV, which completes the proof. O

Now we show that for normal solvable operators A and B the statement of
Theorem 1 can be inverted.

THEOREM 2. Let A and B be normal solvable operators. If at least one of
the conditions (i) or (ii) from Theorem 1 is satisfied, then the problem (1), (2) has
a solution for each f € F.

Proof. First consider the case (ii) when
Ker A + Ker B = Ker A + Ker B.

Using Lemma 3 for V = Ker B, we get

A(Ker B) = A(Ker A + Ker B) = A(Ker A + Ker B) = A(Ker B),

i.e., the set A(Ker B) is closed. Then, by Theorem 3 in [2], it follows that the
problem (1), (2) has a solution.

Now consider the case (i) when R(A*) N R(B*B) = {0}. Since the operators
A*, B*B are normal solvable and their ranges R(A*), R(B*B) are closed, we get

H={0}' = (R(A*)NR(B*B))* =Ker A + Ker B,

i.e., the set Ker A + Ker B is dense in H. Note that ellipsoid (2) has a nonempty
interior (we consider R > 0), therefore U + Ker A+Ker B = H. On the other hand,
U =U + Ker B, hence U + Ker A = H. Finally, we see that

AU = A(U + Ker A) = AH = R(A),
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i.e., the set AU is closed. This concludes the proof. O

Let us consider the existence problem for (1), (3). Suppose the operator
B : H — R™ is defined by Bu = ({c1,u),{c2,u),...,{tm,u)), u € H. The
operator B is normal solvable and

R(B*) :{i)\,cz H )\z’ ERl, 1= 1,...,m} =£(C1,C2,...,Cm).
i=1

Since H = R(B*) @ Ker B, the constraints (3) can be presented in the form
(f1) U=V;&®KerB,

where
Ve ={ve R(B"): {ci,v) <P, j=1,...,m}.

THEOREM 3. The problem (1), (3) has a solution for each f € F if and only
if the operator A is normal solvable.

Proof. The implication normal solvability = existence was proved in [1, p. 12].
Let us prove the converse implication. First observe that (f1) implies AU = AVp +
A(Ker B). We claim that AU = AV + A(Ker B). Since by assumption the set AU
is closed, we see that any point y € AVg + A(Ker B) as a limit point of AU belongs

to AU. So, we have obtained that AV + A(Ker B) C AU. It is obvious that the
inverse inclusion is valid. Therefore

AVj + A(Ker B) = AV + A(Ker B)

is really true. Adding A(R(B*)) to both sides, by the inclusion V3 C R(B*), we
get
R(A) = A(R(B*)) + A(Ker B) = A(R(B*)) + A(Ker B).

To conclude the proof, it remains to note that the set R(A) is closed as a sum of
the finite-dimensional subspace A(R(B*)) and the closed subspace A(Ker B). O

2. Consider the question of well-posedness for the problem (1), (3) in
Tikhonov sense.

Definition. [1] The problem (1) is well-posed in the space H in Tikhonov
sense if the following three conditions hold: 1) J, = inf{J(u) : v € U} > —o0;
2Q)U, ={u€eU:Ju)=J.} #0; 3) each minimizing sequence (uy,) of the problem
(1) converges strongly in H to the solution set U,, i.e.,

d(un,Uy) = inf{||lu, —ul| : v € U,} = 0 as n — oo.

If at least one of the conditions 1), 2), 3) is not valid, then the problem is
called ill-posed.
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THEOREM 4. The problem (1), (3) is well-posed in the sense of Tikhonov if
and only if the operator A is normal solvable.

Proof. Let A be a normal solvable operator and let u,, be an arbitrary min-
imizing sequence of the problem (1), (3). Present the elements u, in the form
Un = Pun + (I — P)u, and note that
(f2) [|Puy,, — Pu.|]| = 0 as n = oo,

where u, € U, is a solution (for instance, normal) of the problem (1), (3). Consider
the sequence v, = Pu, + (I — P)u,,. Then

J(vy) = J(Puy) = J(us) = Ji
and
(ciy vn) = (¢iy Pus) + (ciy (I — P)uy) = {(¢;,un) + {¢;, Pux — Puy), i=1,2,...,m.
Let us introduce the notation a;, = {(¢;, Pus — Puy,). The last relation implies that
(£3) {ci;vn) < Bi + Qin,
and, moreover, according to (f2)
(f4) o > 0asn—o00,i=1,2,...,m.

Present the set U, in the form: U, = (Pu. + Ker A) N U and notice that v € U, if
and only if v = Pu, + (I — P)v and

(f5) Bi > {(ci,v) = {ci, Pus) + {¢;, I — P)v), i=1,...,m.

Take the finite-dimensional subspace
L=L{(I-P)cr,(I—-P)ecay...,(I—Plep}

and denote by ) the orthogonal projector of H onto L. Then we have

(f6) ((I = P)e;, (I — P)v)y ={((I — P)c;,Qu), i=1,...,m.

According to (f5) and (f6), we get that for each v € U,

(f7) (I = P)ei, Qu) < B —vi, i=1,2,...,m,

where v; = {¢;, Pu.). Using (£3), (f7), we obtain

(f8) (I =P)c;, Qup) <Bi —vitaim, i=1,2,...,m, n=1,2,...
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In the subspace L define the set W by
(fg) WZ{HJEL<(I—P)C,,U})Sﬂ,—’%,l=1,2,,m}

According to (f7), Qu € W for all v € U,. By virtue of (f4), (£8), and Hoffman’s
lemma [7] we derive

(f10) d(Qup, W) = inf{||Qu, —w|| :w € W} = 0, n — oo.

Note that in (f10) the infimum is achievable for each n = 1,2,... and take the
elements w, € W so that d(Qun,, W) = ||Qu, — wy||. Furthermore, consider the
sequence Y, = Pus+ (I —Q)(I — P)up+wn, n=1,2,... Then, foralln=1,2,...
J(Yn) = J(Puy) = J(us) = Ji, and using (f9) we get

7

{ciyyn) = (ci, Pus) + {(ci, (I — Q)(I — Plun) + {ci, wn)
=7 + (ci, (I = P)un) — (Qci, (I — P)un) + (ci, wn)
=5 +{(I = P)¢;, (I — P)uy) — {(I — P)es, (I — P)uy) + (I — P)e;,wy)
<7+ Bi —vi = Bi

~_

This means that (y,,) is a minimizing sequence for the problem (1), (3) (moreover,
yn € Uy). Let us now note that

lvn = ynll = |Pus + (I = P)up — Pus — (I = Q)(I — P)un — wy|
= ”Q(I_ P)un - wn” = ”Q'Un - wn“

Finally, by (f10), we obtain

d(un, Us) < ||un = ynll < [lun —vnll + [[vn = yall
= ||Pun — Pul|| + ||Qun — wn|| = 0, n — o0,

hence, the well-posedness of the problem (1), (3) is proved.

Suppose conversely, that the problem (1), (3) is well-posed in the sense of
Tikhonov. It is necessary to prove that the operator A is normal solvable. Let
us suppose conversely that R(A*) # R(A*). Then, according to Lemma 2, there
exists a sequence p,, such that

(fll) Pn € (A*)a ||pn|| =1, p, =0, Ap, = 0, n — oo.

Let ¢1,...,cx be some base of the system c¢j,...,¢,. Define the sequences
(Any)s-- -5 (An,) so that for the elements

k
Un = Ux +pn+Z)\mci

=1
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we have
<vn7ci> = <u*aci>7 t=1,...,m.

These relations form a system of linear equations

Ang{C1,¢i) + Any(c2,¢i) + -+ -+ Any{ck, ) = —(Pn,ci)y, 1=1,...,m.
This system is equivalent to the shortened system
(f12) Ang{er, ¢i) + Ang{ea, ci) + - + Ap ek, ¢) = —{pn,ci), i=1,...,k.
The system (f12) has a unique solution Ay, ,..., A, ; moreover, by virtue of (f11),

we have
lim A\,, =0, i=1,...,k.

n—oo

Thus we see that (v,,) is a minimizing sequence; however, by (f11), we derive that

k
d*(vn, Us) > |Ipnll® = Z)\ii lles||> = 1 as n — oo.
i=1

Therefore, we have constructed a minimizing sequence (v,,) that does not converge
to the solution set U, but this is impossible under the above assumption of the

well-posedness of the problem (1), (3). This completes the proof. O
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