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Abstract. We present results concerning absolute closeness of multivalued
mappings for some well-known classes of pointwise closed mappings. The main
results are the characterizations of absolute closeness for cofinally continuous and
for residually continuous multivalued mappings. We found necessary and sufficient
conditions so that the multivalued mapping F' : X — Y cannot be extended to a
cofinally or a residually continuous mapping F' : X* — Y from a space X* in which
X is a proper dense subset. We also proved some characterizations of cofinally and
residually continuous mappings.

Our aim is to give, for multivalued mappings, some generalizations of the re-
sults obtained in [1], [2] and [3] related to the characterizations of absolute closeness
for a singlevalued continuous mappings.

In [4, theorem 3], were proved some sufficient conditions for multivalued
pointwise closed mapping F : X — Y that cannot be extended to an upper
semicontinuous (u.s.c.) or a lower semicontinuous (l.s.c.) mapping from a space
X* in which X is a dense proper subset, i.e., there were found sufficient conditions
for the absolute u.s.c. or absolute l.s.c. closeness of multivalued mappings.

We prove a criterion for absolute closeness of mappings for the class of mul-
tivalued pointwise closed cofinal continuous mappings in which the class of u.s.c.
mappings is contained, if the space Y is T3-space. Also, we prove a criterion for
absolute closeness of mappings for the class of multivalued pointwise closed residual
continuous mappings which is identical to the class of l.s.c. mappings.

The terminology and the notation that we shall use throughout this article
will be as follows.

(1) Let F : X — Y be a multivalued mapping of a topological space X onto
a topological space Y. The inverse image of y € Y by the mapping F is the set
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F'y = {z | y € Fz}. The inverse mapping F' : Y — X of the mapping F is
defined pointwise by the inverse images F'y, for all y € Y. The image of a set
A C X by the mapping F'is the set FA = J{Fz |z € A} ={y | F'yNn A # 0} and
the small image of the same set by the mapping F is the set F#A = {y | F'y C A}
=Y \ F(X \ A). The inverse image of a set B C Y by the mapping F is the set
F'B=J{F'y |y € B} ={z| Fx N B # 0} and the small inverse image of the
same set by the mapping F is the set F’B = J{z | Fx C B} = X \ F'(Y' \ B).

In addition, we shall give some well-known inclusions, implications and defi-
nitions concerning multivalued mappings that will be used frequently in the sequel.
If A C Xis a set, then F#¥A C FA and FPF#*AC F'F#A C AC F'FA C F'FA.
If BCY is aset, then F°B C F'B and F¥F’BC FF°BC BC F#F'B C FF'B.
If AA' CY,then ANA' =0 = FANF#*A'" =, and if B,B' C Y, then
BNB' =0 = F'BNF°B' = 4.

(2) Let us remark that multivalued cofinal and residual mappings are usually
defined locally, by nets in a topological space, as follows.

Previously note, that a net ¢ : (9,<) — X in a topological space X con-
verges to © € X (written ¢(®,<) — z) provided that it is residual in every
nhood U of z, ie., if for each nhood U € (z) there is a dy € D such that
dy<d = ¢(d) =z4€Uforeachd e®. If F: X — Y is a multivalued
mapping of a space X onto a space Y and ¢ : (D,<) — X is a net in X converg-
ing to an ¢ € X, then limsup,; Fz4 and liminfy; F'zy denote the topological limes
superior, respectively limes inferior of the net {Fz4|d € ®} in Y. Then:

(3) y € limsup, Fz4 iff for each nhood V € B(y) in Y the set
AWV)={d| FzanV # 0}
is cofinal in the directed set (D,<), i.e., for each index d € D there is some
d' € A(V) so that d < d';

y € liminfy Fzy iff for each nhood V € (y) in Y the set A(V) is residual in
the directed set (D, <), i.e., there is some d € D so that d' > d implies d' € A(V).

Note that liminfg Fzg C limsup, F'z4, since the set A(V) is cofinal in the
directed set (D, <), if it is residual in the directed set (D, <).

(4) A multivalued mapping F' : X — Y is cofinally continuous (residually
continuous) iff limsupy; Fxq C Fzx (Fz C liminfy Fzy) for each z € X and each
net ¢ : (D,<) — X converging to x

(5) The mapping F is Y-compact if the image Fz of each z € X is compact
and F' is X-compact if the inverse image F'y of each y € Y is compact. The
mapping F is closed (regularly closed) if the image of each closed (regularly closed)
set is closed. Furthermore we shall assume that all mappings are pointwise closed,
i.e., the image F'z of each point z € X is a closed set.

A criterion of cofinal continuity of multivalued mappings will be proved first.

THEOREM 1. A multivalued mapping F : X — Y of a space X onto a space
Y s cofinally continuous iff for each x € X

1) Fz ={FU|U € {(x)},
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For the proof of the theorem we need the following

LEMMA 1. Let F': X — Y be a multivalued mapping. Then for each z € X
and each y € {FU | U € U(z)} there is a net ¢ : (D,<) — X converging to x,
so that y € liminf,; Fx .

Proof. At first we define a relation < in the Cartesian product
D = U(x) x B(y)

of the open neighbourhood system $4(z) of z and the open neighbourhood system
B(y) of y, putting

(*) UV)SU, V) U CUANV CV).

It is easy to see that < is a partial order and a direction on ®. Indeed, let
UV, U, V") € Uz) x B(y) = D. Then from U,U" € U z) and U" =
UnU" € Ux), follows U" C U and U" C U’ and, also, from V,V' € B(y),
V"=V nV'eYB(y), follows V! CV and V" C V'. By the definition (*) we have

(U, V) <@@",v") and (U, V") < (U",V").

If y € NM{FU | U € Y(z)}, then y € FU for every nhood U € i(z), so
V NFU # ( for every nhood V € U(z). Since VNFU # 0 < F'VNU # 0,
the net ¢ : (9,<) — X can be defined putting p(U,V) = z4 € F'V N U, for each
d = (U,V) € D, where x4 is any point in F'V NU. The net ¢ : (D,<) — X
converges to x. Indeed, if U € i(x) is any nhood, then dy = (U,Y) is such an
“index” that for each “index” d' = (U’',V")

do <d = o(d)=pU",V)=zy e FF'V' NU' CU'CT,
since dg < d' implies U' C U.
Now let V, V' € B(y) so that V' C V. Then for each “index” d' = (U',V"),
we have dg = (X,V) < (U',V') =d' and
do <d' = U, V')=9(d)=z4 e F'V'NU' CFV'CF'V.
Since ¢4 € F'V <= Fzy NV # (), we have proved that the set

A(V)={d| FzanV # 0}

is residual in the directed set (D, <). Since V' € L(x) is an arbitrary set, it follows
that y € liminfy Fzg.
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Proof of Theorem 1. (a) Let F': X — Y be a cofinally continuous mapping
and y € N{FU | U € U(z)}. By Lemma 1 there is a net ¢ : (D,<) — X
converging to = so that y € liminf; Fag C limsup,; Fxg. Since F' is cofinally
continuous, limsup, F'eq C Fz, so y € F'o and we have proved the implication

ye([FU|U € =)} = ye Fu,

from which follows the inclusion (J{FU | U € 4(x)} C Fz. Since the converse
inclusion is obvious, the equality (1) is proved.

(b) Now let the equality (1) hold and let ¢ : (®, <) — X be a net converging
to . We shall prove the inclusion

(2) limsup Fzq C Fz.
d

Let y € limsup, Fz4. Then for every V € B(y) the set A(V)={d| FzaNV # 0}
is cofinal in (®,<). Since (®,<) — =z, for each U € i(x), there is an index
dy € D so that dy < d = ¢(d) = x4 € U, for every index d € D,

As the set A(V) is cofinal in (D, <) for dy thereis d’ € A(V) so that dy < d'.
Then z4 € U and Fzg NV # 0,50 0 # Fzg NV C FUNV and, because V' € B(y)
is any set, y € FU. But since U € U(z) is an arbitrary set too,

y€({FU|U € W(x)} = Fz.

So the implication y € limsup, Fzqy = y € Fz, as well as the inclusion (2) are
proved. By definition of cofinal continuity of multivalued mappings, F' is cofinally
continuous in £ and Theorem 1 is proved. O

COROLLARY 1.1. A multivalued mapping F : X — Y of a space X onto a
space Y is cofinally continuous iff the inverse mapping F' : Y — X is cofinally
continuous.

The proof of the corollary follows from Theorem 1 and the next

LEMMA 2. Let F : X — Y be a multivalued mapping of a space X onto a
space Y. Then

(a) (Vz € X)(Fz = ({FU | U € i(z)})

(b) (Vy eY)(F'y = {FV |V e By)}).
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Proof. Let the equality (a) hold and y € Y. Then

ze({FV|VeB(y)} < (VW eBy)(z € FV)
= (YV € B(y)) (YU € U(z))(UNF'V # D)
— (VU € 4(z))(VV € BW))(FUNV #0)
— (VU € U(z))(y € FU)

= (y €[ {FU | U € U()} = Fa),

by (a). Since y € Fx <= x € F'y, it is proved the implication
ze({FV|VeB(y)} = zeFy,

which implies the inclusion {F'V | V € B(y)} C F'y. As the converse inclusion
is obvious, the implication (a) = (b) is proved. The proof of the implication
(b) = (a) is similar. O

Proof of Corollary 1. By Theorem 1 and Lemma 2 the mapping F' is cofinally
continuous iff (Vy € Y)(F'y = ({F'V | V € B(y)}). But, by Theorem 1 the
mapping F” is cofinally continuous iff (Vy € Y)(F'y = {F'V | V € B(y)}), so the
mapping F is cofinally continuous iff the mapping F' is cofinally continuous.

COROLLARY 1.2. A multivalued w.s.c. mapping F : X — Y of a space X
onto a space Y is cofinally continuous, if: (i) Y is a Tz-space or (ii) Y is a
T>-space and the mapping F is Y -compact.

Proof. The corollary will be proved if we show
(1) Fz=(\{FU |U € d(z)}

for each z € X. Let y € Y \ Fz. From the assumptions (i) or (ii) there ex-
ists an open set W so that Fx C W C W C Y \ {y}. Then it follows that

x € F°Fx C FPW = U, € Y(z), since U is open because F is u.s.c. mapping.
Hence, N{FU | U € U(z)} C FU, C FFPW C W C Y \ {y} and the implication
y¢ Fr = y ¢ ({FU |U € Y(z)} and the inclusion N{FU | U € Y(x)} C Fx
are proved. Since the converse inclusion is obvious, the corollary is proved. O

THEOREM 2. Let F : X — Y be a multivalued mapping of a space X onto
o space Y and let X* be a space in which X is a dense subspace so that

(vz* € X) ((WFO N X) | U e w (@)} £0),
where 4*(z*) denotes the open neighbourhood system of ©* € X*. Then the map-

ping F : X* — Y defined by Fx* = ({F(U*NX) | U* € U*(x*)}, is cofinally
continuous, for each x* € X*.
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If F is cofinally continuous, then F is a cofinally continuous extension of F.

Proof. Let ¢ : (9,<) — X* be a net in X* converging to an z* € X*. If
limsup, Fz; € Fz*, then there is a y € limsup, Fz}; \ Fz*. But then y ¢ Fz* =
({F(U*NX)|U* € U*(x*)}, and there is a U§ € U*(z*) so that y ¢ F(Us N X).
Then y € Y\ F({U;NX) = Vo € B(y), since V, is open in Y. Because y €
limsup, Fz}j, the set A(Vg) = {d | Fz; N Vo # 0} is cofinal in the directed set
(9, <).

Since p(®, <) — z*, for the set U € U*(x*), there is an index dy € D so
that for each d € ©, dy < d = ¢(d) = z; € U§. Then as the set U is open,
Ug € U*(z}). Soif do < d, then

(8)  Fry=(WFONX)|U* €@} CFU nX) C Y\ Vo

By cofinality of A(Vp) it follows that, for the index dy, there is an index d' € A(V})
so that dg < d’ and Fz% NV, # 0. Hence, by (3) 0 # Fz NV C (Y\Vo)NV, and we
have contradiction. Therefore for every z* € X* and every net ¢ : (9,<) — X*
converging to z* we have limsup, Fz}; C Fz*, and the mapping F is cofinally
continuous.

Now we show that F is an extension of F, i.e., Fx = Fz, for each 2 € X.
Since z € U* N X for each U* € U*(x), we have

Fz C({FU*NX)|U* € Y*(a*)} = Fz.

Ifye Fr={F(U*NX)|U* € 4*(z*)}, then by Lemma 1 there is a net
v : (®,<) — X converging to x, so that

(4) y € limsup F'z,.
d

Since F' is cofinally continuous, we have lim sup, Fzq C F'z, and y € Fz by (4). So
the implication y € Fx = y € F'z, as well as the inclusion Fz C Fz are proved
and the proof of the theorem is completed. O

Observe that by [6] a topological space X is absolutely closed iff there does
not exist any space X* with X as a dense subspace. Also by [6], a topological
space X is absolutely closed iff every free open ultrafilter 4 (i.e., maximal centred
system of open sets) has a nonempty adherence adif = N{U | U € U} # 0. Let
now F': X — Y be a multivalued mapping of a space X onto a space Y. We call
the mapping F' absolutely cofinally (residually, u.s.c., l.s.c.) closed iff there is no
cofinally continuous (residually continuous, u.s.c., l.s.c.) extension F : X* — Y
of the mapping F' to a space X* in which X is dense subset.

The next two theorems present a basic characterizations of absolute cofinal
and residual closeness of the multivalued mappings and are generalizations of cor-
responding criteria for continuous single valued mappings.
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THEOREM 3. Let F: X — Y be a multivalued cofinally continuous mapping
of a T3-space X onto a space Y. The mapping F is absolutely cofinally closed iff
(a) F is X-compact and (b) F is closed mapping.

Proof. (1) (a) Let F be an absolutely cofinally closed mapping. If F' were
not X-compact, then it would exist a point 4y € Y so that the set F'y would not
be compact. Therefore, there is an open cover 8l = {U, | @ € A} of F'y so that for
all its finite subfamilies

Ll*:{U.Cx(l) |7':177n}7£@7
Fiy\ || = F'y\ | J{Ua@) i =1,...,n} #0.

Since X is a T3-space, it may be assumed that also
(1) Fy\|{Tag li=1,...,n} #0

for every finite subfamily U* = {U,) |i=1,...,n} # 0 C 4l

Now let B be the family of all sets B, = X \U,. Then, by (1), F’y\U_a¢ ]
and hence F'y N B, # 0. But then from F'yN B, # 0 < y € FB, C FB, it
follows that

(2) y €| J{FB, | a € A}.

Since By = X \Uqy <= B, = X \ U, and F'y C || = U{U, | a € A}, we have
({Bala€ A} =X \Us|a€ A} =X\ J{Us|ae A} CX\Fy.
Since the mapping F is cofinally continuous, then F'y = {F'V | V € B(y)} by
Lemma 2. If z ¢ F'V, then there is an open set B, C X so that F'V C B, C

B, CX\{z}and F'V C(\{B, |z € X\ F'V'}.

Let now 9B, be the collection of all open sets By, if z € X \ F'y. Then we
have

ad B, = \{B. |z € X\ F'y} = {{F'V |V eB@)} = Fy.

Note that, if By, By € 981, then

BaﬂBa'=(X\Ua)ﬂ(X\Ua:)=
=X\ (UaUUy) 2 F'y\ (Ua UUu) # 0;

if B,, B, € Bs, then there are V, V' € U(y) so that

B,NBy DFVNEFV D Fly+#4,
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and if B, € 98, and B, € B,, then
B,NB, DB,NF'V D B,NF'y#0.

Because of that, the family 8 = 9B; U B, may by taken as a base of an open
ultrafilter 20 in X. Observe that the ultrafilter 20 is free, since

ad20 C adB = [ﬂ{ﬁa o€ A}] N [ﬂ{E |z e X\F’y}]
C(X\F'y)nF'y=4.

Now if B, € Bs, then there is a set V € iU(yH) that F'y C F'V C F'V C B, and
y€ FF'y C FB, C FB,. Therefore y € (\{{FB, | B, € B>} and by (2) we have

ye [{FBalaea)| n[({FB. | B. € B} = ({FW | W e 20} #0.

Now we put {20} = z* and X* = X U{z*}. On the set X* we define a topology ¥*
keeping on X the existing topology and taking at the point z* as the neighbourhood
system U*(z*) the family {W U {z*} | W € 20}. Then X is a dense subset in the
space (X*,%*) and we may define the mapping F : X* — Y setting Fz* =
({FW | W € 20} and Fz = Fz if z € X. Then y € Fz* # () and by Theorem
1, the mapping F is cofinally continuous at z*. So F is a cofinally continuous
extension of F', contrary to the assumption that F' is absolutely closed. Hence, the
mapping F' is X-compact.

(b) Further, we shall show that F' is closed if it is absolutely closed. Let
C C X be any closed set. We need only to prove the inclusion FC C FC.

Ifye FC\ FC, then (VYV € B(y))(VNFC # () andy ¢ FC. But y ¢ FC
< F'ynC = and, since F is X-compact, there is an open set By C X so that
C C By C By C X\ F'y. Let now B = B, U {By}, where B, is the same family as
in (a). Then B, N By D F'V NC # 0, since for each B, € By, B, D F'V for some
V € B(y) and

(VV € By))(V NEFC #0) <= YV € B(y))(F'V N C £ 0)
— (VW eBW)(FVNC£0).

So the family % may be accepted as a base of an open ultrafilter 20 in the space
X. The ultrafilter 27 is free, since

ad20 = ({7 | W € W} C adB = [D{E |a:€X\F’y}] nBo
= [(WFV |V eBw)}| nBo=FynBs C Fyn(X\Fy) =0.

Observe here, that y € [{FB, | By € B2}|NFBy # 0, since by C C By it follows
that y € FC = y € FBy and, as is proved in (a), y € N{FB, | B, € B>}. Asin
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the part (a) of the proof we may define the mapping F : X* — Y setting Fz* =
({FW|W € 2} and Fz = Fz if z € X, where {20} = z* and X* = X U {z*}.
Then Fz* # 0, since y € {FB; | B, € B2} = N{FW| W € 2}. The mapping
F is a cofinally continuous extension of F, contrary to the assumption that F' is
absolutely closed. Hence, F' is closed.

(2) Now let both conditions (a) and (b) hold and let ${ = {U, | @ € A} be
any open ultrafilter with adil = N{U.| a € A} = 0. If y € Y is a point, then for
each a € A, it may not be F'yNU, # 0, since the family § = {F'ynU, | U, € U}
is a closed filter in the compact subspace F'y by (a). Then it must be

@#ﬂ{F'yﬂUu|a€A}:F’yﬂ[ﬂ{Ua|a€A} =F'ynady

what contradicts the assumption ad{{ = (). Hence, there is a set U, € {4 so that
F'ynUgy = 0. Now let Wy = X \ Uy. Then F'y C Wy and Wy N Uy = 0. The
set F'#Wy = Vj is open in Y, since W is open and F closed. But y € F#F'y C
F#Wy = Vp, so Vj is an open nhood of y in Y. Since

WoNUy =0 = F#WOHFUa’Zma

ie., Vo N FUy = 0, it follows that y ¢ FU, O (\{FU.| @ € A}. Because the
point y € Y is arbitrary, there must be {FU, | « € A} = @, and F cannot be
extended to a cofinal continuous mapping of any overspace X* in which X is a
dense subspace. So the mapping F' is cofinally absolutely closed. O

COROLLARY 3.1. Let F : X — Y be an u.s.c. mapping of a T3-space X onto
a compact To-space Y. Then F is absolutely u.s.c. closed iff (a) F is X-compact
and (b) F is closed.

The corollary follows from the well known fact that, if Y is a compact Ts-
space, then the multivalued cofinally continuous mapping F' : X — Y is an u.s.c.

mapping.

COROLLARY 3.2. Let F : X — Y be a mapping of a T3-space X onto a
Ts-space Y. The mapping F is on both sides cofinally absolutely closed iff it is
perfect (= F and F' are closed and F is X -compact and Y -compact).

Note that Corollary 3.2 also presents a characterization of multivalued perfect
mappings.

Let us remark that the next criterion of absolute residual closeness of the
multivalued mappings, which we shall prove further, is a criterion of absolute lower
semicontinuous closeness too, since the class of residual continuous multivalued
mappings is the same as the class of lower semicontinuous mappings. Although that
fact has for a long time been known, for sake of completeness we shall, however,
give a short proof of it.

Let FF: X — Y be a multivalued residual continuous mapping. Since F'
is Ls.c. iff the inverse F' is open or, equivalently, iff the small inverse F” of F is
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closed, it is enough to prove that F” is closed. Therefore we only needs to prove
the inclusion F*B C F”B, where B C Y is any closed set.

Let us note that (4(z), <) is a directed set, if in 4(x) we define partial order
<byU<LU <= U'CU,for U,U" € $4(x). Since

z € F*B < (YU € U(z))(UNF°B #0),

we may define a net ¢ : (U(z),<) — X, converging to * € F’B, by putting
o(U) =z, € UN F’B, for each U € Y(z). Further, we shall prove the inclusion
liminfy Fz, C B. Let y € liminfy F'z,, by any point. Since

o(U)=2, e UNF'BC F’B < FX, C B,

ifUeA(V)={U|Fz, NV # 0}, it follows that § # Fz, NV C BNV, for each
V € B(y). So y € B = B and the implication

Y€ limUianwU = y€B

as the inclusion liminfy F'z,, C B are proved. Since the mapping F' is residually
continuous at z iff Fz C liminfy Fz, we have the inclusion Fz C B, i.e., z € F’B.
So we proved the implication z € FP B = z € F’B and the inclusion F’B C
F'B.

Let now F be a l.s.c. mapping and ¢ : (9,<) — X a net converging to
z € X. But the mapping F is L.s.c. iff the set F'V C X is open as the set V C Y is
open. So, if V € U(y) is an open nhood of a y € Fz, then z € F'y C F'V € (x).
Since the net converges to z, for the nhood F'V = U € $(z), there is an index
d, € ® so that, for each d € D,

d, <d = o(d)=z4€ F'V, ie, d, <D = Fz,nNV #0.

Thus we have proved that the set A(V) = {d | Fx,NV # (0} is residual in the direct-
ed set (D, <) and, as the set V' € B(y) is arbitrary, it follows that y € liminfy Fz,, .
So we have proved the implication y € Fo —> y € liminfy Fz,, from which fol-
lows the inclusion F'z C liminfy F'z,, and that F is residually continuous in € X.

The next criterion of absolute residual closeness of the multivalued mappings
is also a criterion of absolute lower semicontinuous closeness, since, as it has been
showed, the class of residual continuous multivalued mappings coincides with the
class of lower semicontinuous (l.s.c.) mappings.

THEOREM 4. Let F : X — Y be a multivalued residually continuous map-
ping of a Ty-space X onto a Ty-space Y. The mapping F is absolutely residually
closed iff (a) for each free open ultrafilter 8 in X with adil = 0 and each y € Y
there is a U € U so that F'ynU = (; (b) F is a regular closed mapping.
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Proof. (1) (a) Let the mapping F' be absolutely residual closed and let 4 be
any free open ultrafilter with ad{f = (). Let us note that, for each y € Y,

*) F'y=(JF'V |V € By},

since the mapping F' is pointwise closed. Indeed, since the set F'x is closed and
xz ¢ F'y <=y ¢ Fz, the set Vj = Y\ Fz is an open nhood of y. Then F'y C F'Vj,
asy € Vp and, because of VoNFz = ) <= z ¢ F'V}, we have proved the implication
z ¢ F'y = =z ¢ F'Vp from which follows the inclusion

(MF'V |V eDBy)} CF'V, CFy

and the equality (*).

Let now y € Y be any point. If we suppose that F'yNU # 0, for each U € 4,
then by (*) we have

0£FynT = [ﬂ{F'V |V e ‘B(y)}] NT=(H{FVNT|VeBy)

So F'V NU # B, for each U € Y and V € B(y). Since the mapping F is residually
continuous iff it is Ls.c., the set F'V is open, so F'V NU # (), for each U € U
and each V € U(y). From the supposition that { is an ultrafilter it follows that
F'V e\, for each set V € U(y).

Put now {{} = 2*, X* = X U {2*} and assume for the nhoods of z* € X*
all the sets U* = U U {z*}, U € 4. If on X we keep the existing topology, then on
X* is defined a topology in which X is a dense subset.

Further on X* we define the mapping F : X* — Y, by putting Fz* = {y}
and Fz = Fz, for each x € X. We shall prove that F is a residually continuous
extension of F. Indeed, it is obvious that I is residually continuous at each z € X
and we need only to prove that F is residually continuous at z*.

Let ¢ : (9,<) — X* and be a net converging to z*. If V € B(y), then
a* € Fy CFV = {2*} UF'V = U* and so U* is an open nhood of z*. Then
there is an index do € ® so that for each d €

d>dy = ¢(d)=z4€ F'V, ie, d>dy = FzasNV #£0.

Since for each z € X, Fx = Fuz, it follows that d > dy = FzqNV # 0.
Thus we have proved that the set A(V) = {d | Fr4 NV # 0} is residual in
the directed set (D,<), for any set V € U(y). Then y € liminf; Fz4, thus we
proved the implication y € {y} = Fz* = y € liminf;Fz, as well as the
inclusion {y} = Fz* C liminfy Fx4, which shows that the mapping F is residually
continuous at z*, since ¢ : (9, <) — X* is an arbitrary net converging to z*. But
then the mapping F' is not absolutely residually closed, contrary to the supposition.
So F satisfies the condition (a).
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L (b) Let C =Int C C X be any regularly closed set. If we prove the inclusion
FC C FC, then the condition (b) will be proved. Let y € F'C be any point. Then
V N FC # § for each nhood V' € U(y) and also F'V NInt C # @, since

VNFC#0<=0#FVNC=FVnIntC <= F'VNIntC #0.
If V,V' € B(y), then V' =V NV’ € B(y) and
0#FV"NIntC CF'VNIntCIN[F'V'NInt C].

Then we may assume that the family 8 = {F'VNIntC | V € B(y)} as a base of
an open ultrafilter 25 of all open sets W C X containing any set F'V NInt C € B.
Then, obviously, Int C € Yl and {F'V |V € B(y)} C 4.

If we suppose that y ¢ FC, then § = F'yNC D F'yNInt C and
W={WIWew}C({FVNIntC |V e B(y)}
- [ﬂ{F'V |V e m(y)}] NIntC = F'y NIt C = 0,

and it follows that the ultrafilter 20 is free. Then, as in the part (a), putting
{W} = 2*, X* = X U {2*} and defining a topology on X* and the mapping
F:X* — Y asin (a), we obtain that F is a residual continuous extension of F
contrary to the supposition that F' is absolutely residually closed. So F' satisfies
the condition (b).

(2) Now let F satisfy both (a) and (b), and suppose F' is not absolutely
residually closed. Then, there is a residual continuous extension F : X* — Y of
F, where X* is any space in which X is a dense subset.

If z* € X*\ X, then the family ${*(z*) of open nhoods of z* in X* is an
open ultrafilter and the family { = {U | U = U* N X,U* € U*(z*)} is a free open
ultrafilter in the subspace X, since {U* | U* € U*(z*)} = {z*} in each T»-space.

If y € Fx* then by (a) there is a set Uy € U so that F'y N Uy = (). But then
y ¢ FU, and, since F is by (b) regularly closed, the set FU, is closed in Y. So
Vo = Y \ FU, is an open nhood of y, since y € Y \ FUy = Vp. Because F is a
residually continuous mapping iff is l.s.c., the set 7’% is in X* an open set, as the
set Vo is open. The set FlVO is, also, an nhood of the point z in the space X*, since
from y € Fz* and y € Vj it follows that Fz* NV # 0 and z* € FVj.

So FVy € U*(z*) and FVy N X = FV, € 4 and, as 4 is an ultrafilter,
FVonU # 0, for each U € 4. But since FVoNU # 0§ <= VoNFU # () and Uy € Y,
it must be also ) # Vo N FUy C Vo N FUy = (Y \ FUy) N FU,, what is impossible.
Hence, the mapping F' is absolutely residually closed. O

COROLLARY 4.1. A multivalued continuous (= u.s.c. & l.s.c.) mapping
F:X —Y of a Ta-space X onto a Tr-space Y is absolutely closed iff (a) for each
free open ultrafilter U in X with adih = () and each y € Y, there is a U € U so that
F'ynU =0; (b) F is a regular closed mapping.
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COROLLARY 4.2. A singlevalued continuous mapping f : X — Y of a T»-
space X onto a Ta-space Y is absolutely closed iff (a) for each free open ultrafilter
U in X with ad = () and each y € Y there is a U € U so that f~'yNU = 0; (b)
F' is a regular closed mapping.
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