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Abstract. A conservative extension of the classical first order logic which al-
lows making statements about probability is introduced. Some classes of probability
models are described. An infinitary axiomatic system which is sound and complete
with respect to these classes of models is given.

1. Introduction

The first order probability logic LP is given in [3,4] Its language is obtained
by adding probability operators of the form P, to the classical first order language,
where s belongs to a set Index which is a finite subset of [0,1]. Formulas in the
scope of a probability operator are classical first order formulas. LP allows making
formulas such as P>;a, with the intended meaning “the probability of « is greater
then or equal to s”. In [3,4] a finitary axiomatic system is provided, and the
corresponding extended completeness theorem is proved.

In this paper we investigate another first order probability logic, denoted LPg,
whose language contains a list of probability operators of the form mentioned above,
but the set Index is the set of all rational numbers from [0, 1]. It turns out that such
an assumption makes LPg different from LP. Namely, the compactness theorem
does not hold for LPg, while it holds for LP: consider an arbitrary classical sentence
a and the set T = {—~P_ga} U {P<;/n,a : n is a positive integer}; although every
finite subset of T' is satisfiable, the set T is not. A consequence is that, if we want the
extended completeness theorem, we cannot obtain a finitary axiomatization. In this
paper, we describe some classes of probability models, give an axiomatization with
an infinitary rule, and prove the corresponding extended completeness theorems.
We also discuss (un)decidability of LPg.
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2. Syntax

Let Index be the set of all rational numbers from [0,1]. The language of
LPg is a countable classical first order language extended by a list of probability
operators P, for every s € Index. Let us denote the set of all classical first order
formulas by Forc. The formulas from the set Forg will be denoted by «, 3,.... If
o € Forg, and s € Index, then P> o is a basic probability formula. The set of all
probability formulas is the least set Forp containing all basic probability formulas,
and closed under formation rules: if A, B € Forp, then -A, AA B € Forp. The
formulas from the set Forp will be denoted by A, B, ... Let Forg UForp be denoted
by For, and the set of all sentences from For by Sentences. The formulas from the
set For will be denoted by ®, ¥,... We use the usual abbreviations for the other
classical connectives, and also denote ~P>,(a) by P<y(a), P>1_s(—a) by P<,(a),
—P<,(a) by Ps(a), and & A =® for an arbitrary ® € For by L.

3. Semantics

We use the possible-worlds approach to give semantics to formulas and in-
terpret formulas such that they remain either true or false. An LPg-model is a
structure M = (W, D, I, A, u) where:

e W is a non empty set of objects called worlds,
e D is a function which assigns to every w € W a domain D(w),

e [ is a function which assigns to every w € W a classical interpretation I(w),

A is an algebra of subsets of W, and

 is a finitely additive probability measure, p: A — [0, 1].

Let M = (W,D,I,A,u) be an LPg-model. A variable valuation v assigns
some element of the domain D(w) to every world w and every variable z, i.e.,
v(w)(z) € D(w). If D(w) is a domain, d € D(w), and v is a valuation, then
vy[d/z] is a valuation like v except that vy [d/z](w)(z) = d. The values of terms
and classical formulas in a world is defined as usual. For example, the value of a
classical formula (Vz)a in w € W for a given valuation v (denoted by I(w)((Vz)a),)
is true if and only if for every d € D(w), I(w)()y, [d/2] is true. A classical formula
holds in a world w of an LPy model M (denoted by (M,w) = «) if for every
valuation v, I(w)(a), is true.

Let M be an LPg model and a a classical sentence. The set {w € W :
(M,w) | a} is denoted by [a]pr- We will omit the subscript M from [a]y and
write [a], if M is clear from the context. An LPg-model M is measurable if [o] is
measurable for every classical sentence a. In this paper we will focus on the class
LPg Meas of all measurable LPg-models, as well as on its subclasses: LPg au, the
class of all LPg meas-models such that a model M = (W, D,I,A,u,) belongs to
LPg an if A is the power set of W, and LPg,, the class of all LFPg meas-models
with o-additive measure.

Let L be one of the above class of models. The satisfiability relation =C
L x Sentences fulfills the following conditions:
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if & € Forg, M E a if (Yw € W)(M,w) E a,

M Ps,aif u(la]) > s,

if A€ Forp, M =-Aif M }£ A, and

if A,BeForp, M =AANBif M =Aand M |= B.

A set T of sentences is L-satisfiable if there is an L-model M such that every
sentence from 7' is satisfied in M. A sentence ® € For is L-valid if it is satisfied in
every L-model.

4. Complete Axiomatization

The axiom schemata for LPg are:

1) axiom schemata of the classical first order logic
2) ona
) P<ya = Pega, s >

) Pcsa = P<sa

) (PZTO‘ A stﬂ A le(_‘(a A ﬁ))) - szin(l,r-i-s) (a \4 ﬂ)
(6) (P<raAP<yff) & Pepys(aVp),r+s<1

while the inference rules are:
(1) From ® and ® — ¥ infer ¥.
(2) From « infer (Vz)a
(3) From « infer P>;a.
(4) From A — P5,_q /0, for every integer k > 1/s, and s > 0 infer A — P ,a.

(
(
3
(4
(5

The main difference between the axiomatic system for the logic LP and the
one given above is that the inference rule 4 does not appear in the former system.
Note that formulas obtained by applications of the inference rules must obey the
formation rules, i.e., in the inference rules 2 and 3, @ must be a classical formula.
A formula ® € For is deducible from a set T' of sentences (T' F ¢) if there is an
at most countable sequence of formulas ®¢, ®y,...,®P, such that every formula in
the sequence is an axiom or a formula from the set T, or it is derived from the
preceding formulas by an application of an inference rule. A set T of sentences is
inconsistent if 7' F 1, otherwise it is consistent.

In the proof of the completeness theorem the Henkin procedure will be used.
We begin with some auxiliary statements.

THEOREM 4.1 (Deduction theorem) If T' C Sentences, & € Sentences, and
TU{®} ¥, then T+ ® — U, where ® and ¥ are either both classical or both
probability formulas.

Proof. We use the transfinite induction on the length of the proof of ¥ from
TU{®}. For example, we consider the case where B = C = P>,0 is obtained from
T U {A} by an application of the inference rule 4, and A is a probability sentence.
Then:

T,AF C = Ps,_1/;6, for every integer k> 1/s
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T+ A= (C — Ps;_1/0), for every integer k > 1/s, by the induction
hypothesis

T+ (ANC) = Ps,_1/40, for every integer k > 1/s
T+ (AAC) = P>,0, by the inference rule 4
T-A—B

The other cases follow similarly. O

THEOREM 4.2. Let a and (8 be classical sentences. Then:
(1) F PZl(a — /8) - (PZSa — PZS/B)
(2) - PZra — PZSOZ, r>s
Proof. 1. If s = 0, the statement obviously holds. So, let s be a rational

number from (0, 1]. First note that by an application of the inference rule 3, we
obtain

1) F Psi(—aVv-l)
from F - V —L. Similarly, from F (-a A =L) V =—a we have
(2) FPsi((mraA—-Ll)V-ma).

By the axiom 5, we have - (P>;a A P>on L AP>1(naV—1)) = P>s(aV L). Since
F P>o—L by the axiom 2, from (1) it follows that

() F Pssa — Pss(aV L).

The expressions P>,(aV L) and =P>,—~—a denote P<;_;(—a A—L), and Pc;—a,
respectively. By the axiom 6, we have - (P<i_;(—maA—L)APcy—ma) = Pci((maA
—L1)V—-a). From (2) we obtain that F (P<i—s(-maA—L)APcs=—a) = (P<i((—aA
-L1) V==a) A =Poi((-a A =L) V =—a). It follows that F P<i_s(—a A -Ll) —
—|P<S—|—|Oz, ie.

(4) I_PZS(QVJ_)—)PZS_!_!CL
From (3) and (4) we obtain:

(5) F PZSO[ — P23—|—|a_

The negation of the formula P>i(a — 8) = (P>sa = P>,0) is equivalent to
P51 (~aVB)APs;aNP.yf. By (5) this formula implies P> (—~aVB3)AP>;~—aAP.,3
which can be rewritten as P>i(—a V 3) A P<i_s—a A P,3. From the axiom 6,
P<i_s—a A Peyf = Poi(ma V@), and Poya = —Psa, we have F —(P>1(a —
B) = (P>sa = P>,f3)) = P>1(—~aV ) A—Ps1(—aV §), a contradiction. It follows
that + PZl(Oé — ﬂ) — (stoz — stﬂ).
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2. By the axioms 3 and 4, we have - P>,a = Ps,a, forr > s, and - P50 —
Ps,a. Thus, F Psra = Psga, forr > 5. O

THEOREM 4.3. (Completeness theorem for LPg meas) Let T C Sentences.
Then, T is consistent if and only if T has an LPg mMeas-model.

Proof. The (<)-direction follows from the soundness of the above axiomatic
system. In order to prove the (=)-direction let us suppose that T' is a consistent
set of sentences, that clconseq(7') is the set of all classical sentences that are con-
sequences of T' and that Ag, A1,... is an enumeration of all probability sentences.
We define a sequence of sets T;, ¢ = 0,1,2,... such that:

(1) To = T U clconseq(T) U {P>1a : o € clconseq(T)}

(2) for every i > 0, if T; U {4;} is consistent, then T;11 = T; U {4;}, otherwise,
Ti+1 =T;U {‘!Ai},

(3) if the set T;4, is obtained by adding a formula of the form —(B — P>,v),
then for some positive integer n, B — =P>;_;/,7, is also added to Tj41, so
that T, is consistent.

Every T; is a consistent set. T is consistent because it is a set of conse-
quences of a consistent set. Suppose that 7; is obtained by the step 2 of the above
construction and that neither T; U {4;}, nor T; U {—A;} are consistent. It follows
by the deduction theorem that T; = A; A = A;, which is a contradiction. Consider
the step 3 of the construction. If T; U {B — P>} is not consistent, then the set
T; can be consistently extended as above. Suppose that it is not the case. Then:

(1) T;, ~(B = P>47v), B — ~P>,_1/37 = L, for every k > 1/s, by the hypothe-
sis

(2) T;,~(B = P>sy) F ~(B = =P5,_147) for every k > 1/s, by the deduction
theorem

(3) T;,~(B = P>4y) b B — Ps,_q7 for every k > 1/s, from 2, by the
classical tautology —(a — 7) = (a = =)

(4) T;,~(B = P>,v) F B = P>y, from 3, by the inference rule 4

(6) Ti F ~(B = P>,v) = B = P>, from 4, by the deduction theorem

(6) T;+ B — PZS")/

Since T; U{B — P>,7v} is not consistent, from T; - B — P> it follows that
T; is not consistent, a contradiction.

Let T* = U;T;. The set T* is a deductively closed set that does not contain
all sentences. First note that for every ® € Sentences, if T; F ®, then it must be
® € T*. If & is a classical sentence, then T + &, and ® € Tg. If & = A, is a
probability sentence, and ® ¢ T, then Tax(ik}+1 F @ and Thacfiky41 F —9, a
contradiction. Since T is a consistent set, there is at least a classical sentence «
such that T I/ a. If A is a probability sentence, it cannot be A = Ay € T*, and
—A = Ay € T*, because Tmax{k,m}+1 i consistent. Finally, we can prove that if
A is a probability sentence, and T* F A, then A € T*. Suppose that the sequence
by, P,,..., A of formulas which forms the proof of A from 7™ is countably infinite
(otherwise there must be some k such that Ty - A, and it must be A € T*). We
can show that for every i, if ®; is obtained by an application of an inference rule,
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and all the premises of ®; belong to 7", then ®; € T*. Suppose ®; is obtained
by the inference rule 1 (modus ponens) and its premises ®} and ®? belong to 7*.
There must be some k such that ®},®? € Ty. From T}, - ®;, it follows ®; € T*.
If ®; is obtained by the inference rules 2 and 3, then Ty + ®;, and ®; € T*.
Suppose that ®; = B — P>,y is obtained by the infinitary inference rule 4, and
that the premises ®; = B — P, 1,7, 9] = B = P>, _1/(34+1)7,--- belong to
T*. If ®; ¢ T*, by the step 3 of the construction of T*, there is some j > 1/s,
such that B — —P>, 1/;7 € T*. Let | = max{k,j}. By the axioms 3 and 4,
B - Ps>,_ 1y €T*, and B = =P>;_ 1,y € T*. There must be a set T, which
also contains these formulas. It follows that T,, U {B} is not consistent. Thus,
B ¢ T*, and there is some j such that ~-B € T;,T; - B =+ 1L, T; F B — P>;7, and
B — P>,y € T*, which is a contradiction. Hence, from T I A, it follows A € T™*.

The set T™* is used to construct a tuple M = (W, D, I,{[a] : « is a classical sen-
tence}, p, ), where:

o W = {w: w = clconseq(T)} contains all the classical first order interpreta-
tions with at most countable domains that satisfy the set clconseq(T') of all
classical consequences of the set T'; the corresponding domains are denoted
by D(w),

e D maps every w € W to D(w),

e I(w) is the interpretation w,

o i : {[a] : o is a classical sentence} — [0, 1] such that p([a]) = sup{s: P>,a €

T*}.

The axioms guarantee that everything is well defined. For example, by the
classical reasoning we can show that {[a] : « is a classical sentence} is an algebra
of subsets of W. The theorem 4.2.1 implies that if [o] = [8], then u([a]) = p([0])-
From the axioms 2—6 about probability it follows that u is a finitely additive prob-
ability measure.

By the induction on the complexity of formulas we can prove that for every
sentence &, M = @ iff ® € T*. For example, let ® be a classical sentence. If
® € clconseq(T'), then by the definition of M, M = ®. Conversely, let M = &.
Then, by the completeness of the classical first order logic, ® € clconseq(7T"). If
® = P>;a € T*, then sup{r : P>.(a) € T*} = p([a]) > s, and M = ®. For
the other direction, suppose that M = ®, i.e., that sup{r : P>,(a) € T*} > 5. If
u([@]) > s, then, by the well known property of supremum and monotonicity of y
(the theorem 4.2.2), ® € T*. Let u([a]) = s. If & ¢ T™*, then by the step 3 of the
construction of T*, for some integer k > 1/s, =P>, 1 /,a ¢ T*. It follows that s
cannot be the supremum of the set {r : P>,a € T*}, which is a contradiction. The
other cases follow easily. O

THEOREM 4.4. (Completeness theorem for LPg an) Let T C Sentences.
Then, T is consistent if and only if T has an LPg an-model.

Proof. The proof can be obtained by applying the extension theorem for
additive measures [1] on the measure p from the canonical model M described in
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the theorem 4.3. It is proved that there is an additive measure &z defined on the
power set of W which is an extension of the measure p. O

THEOREM 4.5. (Completeness theorem for LPg ,) Let T C Sentences. Then,
T is consistent if and only if T has an LPg ,-model.

Proof. By the Loeb process and a bounded elementary embedding [2] we can
transform the canonical model M from the theorem 4.3 into a o-additive probability
model *M such that for every ® € Sentences, M =@ iff *M =®. O

5. Decidability

LPg-logic is undecidable since it contains the classical first order logic. How-
ever, some fragments of LPy are decidable. One of these fragments is the monadic
first order probability logic (without function symbols except constants) in which
the arity of all relation symbols is 1. By the Herbrand theorem, every first order
classical sentence « is satisfiable if and only if the set E(«) of formulas that form
the Herbrand expansion of « is satisfiable. Formulas from E(a) are without vari-
ables and can be understood as formulas in the classical propositional logic. In the
monadic case, for every formula « the set E(a) is finite. Thus, the satisfiability
of the monadic LPg-logic can be reduced to the satisfiability of the proposition-
al probability logic. Since the propositional probability logic is decidable [3], the
monadic LPg-logic is decidable.
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