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Abstract. We consider classes of spaces of Beurling and Roumieu type tem-
pered ultradistributions containing some spaces of quasianalytic tempered and all
spaces of non-quasianalytic tempered ultradistributions. We prove that every ultra-
distribution f in a space of the considered classes has the form

f = P(A)Ul + u2,

where P is an ultradifferential operator, u is a smooth function, ug is a real analytic
function, and both of them satisfy some exponential growth conditions. Also, we
give the boundary value representations for elements in the spaces of considered
classes. Precisely, we prove that every solution of the heat equation, with appropriate
exponential growth rate, defines an element in a space of the corresponding class,
and conversely, that every element in a space of the considered classes is a boundary
value of a solution of the heat equation with appropriate exponential growth rate.

1. Introduction

Tempered ultradistributions spaces have appeared in papers of many authors
in the last three decades and even earlier. Among others we mention Gel’fand and
Shilov [7], Bjork [2], Wloka [21], Grudzinski [8], Avantaggiati [1], De Roever [20],
Kashpirovskij [10], Pathak [17] and Pilipovié [19]. In general, besides Beurling and
Roumieau, for the theory of boundary value problems and of ultradistributions we
should mention Kéthe, Tilmann and their pupils, Sebastido e Silva and his school,
H. Komatsu and the Japanese school, C.C. Chou, J. Cioriinescu, V.V.Zarinov,
S. Pilipovic and many others who have contributed much to the theory. In this
paper, we give new representation theorems for the spaces in classes of tempered
ultradistributions containing some quasianalytic tempered and all non-quasiana-
lytic tempered ultradistributions of Beurling type as well as of Roumieu type.
Examples of spaces of tempered ultradistributions which are considered in the paper
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are: (in the Roumieu case) dual spaces of Gelfand—Shilov space S5, a,8 > 1/2,
dual spaces of the generalized Gelfand—Shilov spaces of S—type (introduced in [7]),
and (in the Beurling case) the space ¥/, a > 1/2, (introduced in [19]).

In a series of papers [14], [15] and [16], Matsuzawa developed a calculus
approach to the theory of hyperfunctions by treating an element u(z) of a space
of generalized functions as the initial value of a unique solution U(z,t) of the heat
equation

(% ‘A)U(w,t) =0, (1) €eR" xRy

U(z,0) = u(z), (1)

which satisfies the appropriate growth rate condition determined by the space.
In this way the elements of the following spaces were characterized: the space of
distributions D', spaces of Gevrey ultradistributions with compact support &’ {5}7
&' (5)7 s > 1 [15]; spaces of tempered distributions S’ [16]; spaces of hyperfunctions
B [14]; spaces of Gevrey tempered ultradistributions (of Roumieu type) &' §; spaces
of Beurling type ultradistributions with compact support &’ (MP); spaces of Fourier
hyperfunctions F' [11] and extended Fourier hyperfunctions G’ [5].

In this paper we use the heat kernel tehnique to characterize classes of Beurl-
ing as well as Roumieu type tempered ultradistributions. Our interest lies in the
quasianalytic case, although the theorems do not exclude the non-quasianalytic
case. We prove that every ultradistribution f in the considered classes has the
form

f(z) = P(A)ur(z) + ua(2),

where P is an ultradifferential operator, u (z) is a smooth function, us(z) is a real
analytic function, and both functions satisfy some exponential growth conditions.
Also, we give the boundary value representations for elements of the considered
classes. Precisely, we prove that every solution of the heat equation, with appro-
priate exponential growth rate, defines an element of the corresponding class, and
conversely, that every element of the considered classes is a boundary value of a
solution of the heat equation with appropriate exponential growth rate.

Our results concerning boundary value representations for elements of Roum-
ieu type tempered ultradistributions spaces generalize results of the paper [6]. This
generalization is not a trivial one, since instead of Gevrey sequences ({p!*, p € N}),
satisfying strong conditions, we deal with more general class of defining sequences.

2. Preliminaries

We use multi-index notation |a| = aq +az+---+ag, a! = aglas!---agl, z* =
e ay? -l o) = /22 + 23+ + 2%, whered €N, a = (a1,az,...,0q4) € NZ,
z = (z1,22,...,74) € RL. For z € R?, p(x) € C®(R?),

o(*) (@) = (8/02)p(2) = (8/021)* (8/02)* --- (8/Dwa)™*.
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Let {Mp, p € No} and {N,, p € Ny } be sequences of positive numbers, where
My = Ny = 1. The following conditions will be used: (for their detailed analysis
see, for example [12])

(M.1) (logarithmic convezity)
Mg SMpflMP-f-lJ b= 1727"'

(M.2) (stability under ultradifferential operators) There are constants A and H such
that
M, < AH? min M;Mp—,, p=0,1,...
0<q<p

(M.3) (strong non-quasi-analyticity) There is a constant A such that

> Mq_1 <A pMp :
M, = Mpn

p=12,...
g=p+1

Some results remain valid, however, when (M.2) and (M.3) are replaced by
the following weaker conditions:

(M.2)’ (stability under differential operators) There are constants A and H such that

My < AHPM,, p=0,1,...;

(M.3)’ (non-quasi-analyticity)

oo

Z%<oo.

p=1 P

The corresponding conditions for the sequence {N,, p € Ny} will be denoted
by (N.1), (N.2), (N.3), (N.2)’and (N.3)’.

The so-called associated functions for the sequence {M,, p € Ny} are

M(p) = sup log 2 T(p) = sup log 2%, W(p) = sup log2 7
p) = sup log—, p) = sup log ——, p) = sup log =,
pENp My PENg M, pENo Mp2

where p > 0.

The corresponding associated functions for sequence {N,, p € Ny} will be
denoted by N(-), N(-) and N(-).

Remark 1. The Gevrey sequence
p? or (p)? or T(l+sp), peNy, s>1,

satisfies all the above conditions and M(p) ~ p'/¢, M(p) ~ p/C=1 M (p) ~
pt/ o) (see [7]).
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We shall also use the following condition which is equivalent to the fact that
the sequence N, = MPQ, p € Ny satisfies condition (N.3) and which follows from
(M.3) see [18, p. 300].

(C) There exists a positive integer k such that
lim inf (%) >k,

p—=oo \ My,
where m, = M,/M,_1,p=1,2,....
Remark 2. 1. The equence M, = p!*, p € Ny, s > 1/2, satisfies condition

(C), but not (M.3), (1/2<c<1).

2. If mp = p(logp)*, o > 0, p = 1,2,... then the sequence {M, =
ms---mp, p € Ny} satisfies (C).

An operator of the form

oo

Pd)= ) and* aq€C,

x| =0

is called an ultradifferential operator of class (M) (respectively of class {M,})
if there are positive constants L and C (respectively for every L > 0 there is a
constant C' > 0) such that

laa| < CL*/M,, o€ NI
R denotes a family of increasing sequences {h,, p € N}, with positive ele-

ments, tending to infinity.

3. Spaces S((jj\\ép)), Sfﬁp}} and their duals

Definition 1. The space S%’TT, m,n > 0, is the space of smooth functions ¢
on R?, such that

Mo Nig|

B (a)
|$ 14 ($)| S C‘P m|a|n|m ’

for every a, 3 € NZ, (3.1)
where the constant C,, depends only on ¢. It is a Banach space with the norm

- a,pend Mia N g| o0
Let L) .
p) _ s 1s M,m P} - . M,m
Sivyy =PIl SNy Sy = indlim Sy

n—00 n—0
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The notation &7 denotes S((IJ\\,JP”)) or Sff‘vf}}-

Remark 3. The inclusion i : Sf — S, where S is the Schwartz space of rapidly
decreasing functions, is continuous.

Remark 4. The space Séﬁp}} is a generalized Gel’fand—Shilov space of S—type

as defined in [G]. In particular, if M, = p"™ and N, = p*?, p € Ny, s,7 > 0, the
{M,}
Sz} -

Remark 5. If conditions (M.1), (M.3)’, (N.1), (N.2)’ and (N.3)’ are satisfied,

the spaces S((ﬁ,/[”)) and S{{Jjg”}} are test spaces for tempered ultradistibutional spaces
P P

of Beurling and Roumieu type, respectively. More precisely (see [13]),

Gelfand-Shilov space S; is equal to

1. The inclusion ¢ : D* — Sy is continuous.
2. The set Sy\D* is nonempty.
3. The space D* is dense in Sf.

Here D* denotes the spaces DM») or DIM»} | For the definition and properties
of D* see [12].

Remark 6. If conditions (M.1), (M.3)’, (N.1) and (N.3)’ are satisfied, the
inclusions ¢ : F — Sg,/[:}}, andi: G — S((II\‘,?)), are continuous. Here G is a test space
for the space G’ of extended Fourier hyperfunctions (defined as in [5]), and F is a
test space for the space F' of Fourier hyperfunctions (defined as in [11]). (For the
proof see [13].)

The following theorem characterizes the topology in the spaces S(M») and
S{MP}_

THEOREM 1. Let conditions (M.1), (C), (N.1), (N.2)’ and (N.3)’ be satisfied.
A sequence @; in the space S((JJ\%’)) (respectively S{{JA\;I:}} ), converges to zero in the

space S((JI\\,/I:)) (respectively in Sfjl\\,i”}}), as j — oo, if and only if, for every m,n >0

(respectively for some m,n > 0)

le]
m a .
Omn(j) = sup 20— |0f” (@) exp[N(nla)]| =0, as j—oc0.  (33)
a€EN§ ]
zeR?

Proof. Let us prove the theorem for the space S((th,i”)).

(a) First, we prove that o n(¢;) = 0, as j — 0, implies that sy, (¢;) = 0,
as j — 0. Let my,ny > 1, and let j € N be fixed. Since ¢; € S((j\\,i"))
m,n >0,

, for every

jal, 5 m *nl’

() d
my'n ——— 2P ()| < 00, a,B € NE,
P M\ali |/5’|| ! | 0
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it follows that
mlalplB]

|3:’6g0(-a) ()| converges to zero uniformly in z € R?, as |a + 8| = oo.
Mo Nig|

(3.4)
By condition (N.2)’ for every m,n > 0, there exists a C > 0, such that for
every a, 3 € Nd,

_ mlel (1 4+ nH)PIH+1 B ()] 1
M N ™7

r)|<C —.
Mo N 7 ||

From conditions (M.1), (C), (N.1) and (N.3)’ it follows that the sequences
{mlol /M), 0 € N¢} and {(1+nH)/P*1 /N 5,1, B € N¢} are bounded. Therefore,
there exists a constant C' > 0 such that

lal 81 c
monT 8 )
9@ @) <, el >k,
Mo Nig k
which implies that
mla‘n‘lgl (a) d
——|2P ¢ (x)| converges to zero uniformly in (o, ) € N*¢, as |z| = 0.
M| Nig)
(3.5)
Now, (3.4) and (3.5) imply that there exist zo € R?, ap, By € NZ, such that
mlalp Bl laol | Bol
(@) mn Bo, (ao0)
sman(pi) = sup sup 21— |27 (2)] = T |25 0| (z0)|
7 aBeNg oerd Mia|Njg T Migo|Nigo) * ™
mel ()
< sup ——llp;™ (z) exp[N (n[z])]llc = Tm,n(;)- (3.6)
aend Mia|

(b) Let us prove that s, ,(¢;) = 0 as j — 0, implies that o, ,(¢;), = 0,
as j — 0. Let 5 € N be fixed. Similarly as above one can prove that ¢; € S((N”)

implies
mialgldl
Lo 2P, ()| converges to zero uniformly in (z,a) € R xNg, as | 8| = oo;
lae| £Y]8]
mielgldl
2 N 2P, (x)| converges to zero uniformly in (z, 5) € R* xN§, as || = o0;
la|£¥]8]
melnlfl
3. W|wﬁg@j (z)| converges to zero uniformly in (a, 3) € NI xN¢, as |z| — oc.
la|£Y]8]
From these facts there exist ay, 81 € N¢ and 2, € R? such that
lat|y|B1]
(a) m n (1)
omn(pj) = sup ||<P (@) exp[N (nz])][loo = 727" 0" (1))
T e M|a\ * " Mo, Nig,| g
leel 8]
ml®ln (@)
< su 1270, (@)oo = $m,n(5)- 3.7)
ageng Mia/Nig " 79 TN
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Analogously, the assertion can be proved for the space Sg\‘,ip}}. |

From the proof of the second part of the previous theorem we have:

THEOREM 2. Let conditions (M.1), (C), (N.1), (N.2)” and (N.8)’ be satisfied.
If p € S((JA\;I:)) (respectively Si{j\\,i"}} ) then there exists C' > 0 such that for every
m,n >0 (respectively some m,n > 0)
My

|
m|a‘

o' ()] < C—> exp[-N(njz|)], =€ R". (3-8)

Let us give the heat kernel characterization of the spaces Sf. Denote by
E(z,t) the heat kernel:

(4nt) =42 exp[—|z|?/4t], t> 0,

3.9
0, t<0. (3.9)

Bl = {

The function E(x,t) is an entire function of order 2 for ¢ > 0 and has the following
properties [15].

(EQ0) E(z,t) satisfies the heat equation.

(E1) [paE(z,t)dz =1, t>0.

(E2) There are positive constants C' and a’ such that

‘(,)%E(m,t)‘ < Clal+1=(al+d /20 1/2 axpl o' /48], ¢>0,  (3.10)

where a' € (0,1) can be taken as close as desired to 1.

(E3) If conditions (M.1), (M.3)’, (N.1) and (N.3)’ are satisfied, E(-,t) is an element
of St for every ¢ > 0.

THEOREM 3. Let conditions (M.1), (M.2)°, (C), (N.1), (N.2)’ and (N.3)’ be
satisfied and ¢ € Sf. For every t > 0, the function

Ut = [ Bl =y.000)dy (311)

is an element of S, and U(z,t) converges to () in S, ast — 0.

Proof. We shall prove this theorem for ¢ € S((Jlt,i”)). The proof for ¢ € SEJA\Z:’}}

is analogous.
Let us prove that
60(

5 (U@, 1) = (@) exp[N(n|x|)]Hoo S0, ast—0,  (3.12)

mlel

sup
aend Ma|
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for every m,n > 0. Let § be a small positive number. We have

aa (67 o
5oz (U@ — @) | = | [ B@—y 0w - ¢ @)y
X Rd
=| [, B0 @ =)~ @)
<[ Bl e - 1) - @)y
ly|<o
+ E(y, )0 (z — y)|dy
ly|>0
+ [ B0l @)y
ly|>0
Since ¢ € S((jé”)), by the mean value theorem and Theorem 2, we have
I = E(y,t)|¢' (z — y) — o) (z)|dy

ly|<é
< / By, 1)) (= — y)| |y| dy
ly| <o

Miaj41
e+

<c 5[ Bly,t)exp[-N(als — oy|)dy, (3.14)

ly|<d

for some § € (0,1) and every 1,7 > 0. For § small enough, |y| < d, and z € R?,
we have

. )
N(i|z — 8y|) > N(§|m|). (3.15)
Now, inequality (3.14), (3.15) and condition (M.2)’ and property (E1) imply that
there exists C' > 0 such that
M
I, < C—51 6 expl-N(mla), (3.16)
m

where m = m/H and 7t = 7i/2.
From (3.8), and the definition of the heat kernel, it follows that there exists
C > 0 such that

I = E(y, )| (z — y)|dy (3.17)
ly|>d
Ma| a2 2 3
< C——(4mt) exp[—y~/4t] exp[—N (A|z — y|)]dy,
mlel ly|>6

for every m,n > 0.
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Condition (N.1) implies that the associated function N(-) satisfies (see [3])
N(p+6) < N(2p) + N(20), p,6>0. (3.18)
Taking 2p = fi|z — y| and 26 = 7ily|, we get
N(ife —y)) = N(Fle =yl + Zlyl) = NG@ly) > N (Zlol) - NGilyD).  (3.19)
By (N.1) and (N.3)’ (see [12, Lemma 4.1, (4.7)]) we have

N(nly|) < nly| < ny?, (3.20)
for |y| large enough. Therefore from (3.17), (3.19), (3.20), it follows that

L <C (471'15)_"”2 exp [— g—z] exp [— N(gkﬂ)} ;/I“le \ylzéexp [— g—j + N(ﬁ|y|)] dy
<Ceg ]\ﬁ/;fllg\‘ exp [— N(gm)] /y|26 exp [— Zé—i + ﬁy2]
<Ce Aﬁfl'g“ exp [ - N(gm)] , (3.21)

2
where g; = (47t) %/ exp [ - %} tends to zero as t — 0.

Finally, since ¢ € S((lj\‘é")) , by (3.8) and by the properties of the function E(z,t)

we have that there exists a C' > 0 such that

h=[ Ewoe® @< i@l [ Eaod
ly|=8 ly|=é

< 5,0 Mol expl- N (nla))], (3.22)

m|a‘

for every m,n > 0, where &; = fly|>5 E(y,t)dy tends to zero as t — 0.

From (3.13), (3.16), (3.21) and (3.22), we obtain that U(z,t) converges to

o(z), in the space S((IJ\Z”)), as t tends to zero. 0O
MP MP MP MP
The dual spaces for S((Np)) and S{{NP}}, are denoted by S’ ENP)) and &' } Np}} ,
respectively, or for brevity, S’ ; Using Theorem 2 it is easy to prove the following
theorem:

THEOREM 4. Let conditions (M.1), (C), (N.1), (N.2)’ and (N.3)’ be satisfied.

If f e S’EAN/I:)) (respectively f € S’Eg;’}}) then for some m,n > 0 (respectively every

m,n > 0) there exists C > 0 such that
nﬂa\ (@)
[(f,¥)| < C sup Sy |o'* exp N (n|z|)|. (3.23)

aENg la|
zeR?
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(Mp) and SI{MP}

!
4. Structure theorems for the spaces S (N) (N}

We will use the following notations:

PO =+ [[ (14 5-). >0
p=1
P Q=+ I (1+ h,,inp)’ hy € R.

p=1

If (M.1), (M.2) and (M.3) are satisfied, the operator P, (d/dz) is an ultradifferential
operator of class (M,) and the operator Py, (d/dz) is an ultradifferential operator
of class {Mp}, (see [12]).

The following lemma, asserts that there exists a parametrix for the equation
Py, (d/dx)u = 4. Its proof is inspired by constructions in [12, Lemma 11.4] and [4,
Lemma 2.

LEMMA 5. Let the sequence M, satisfy conditions (M.1), (M.2), (M.3). For
every € > 0 and every constant h > 0 (respectively every sequence h, € R) there
exist smooth functions v and w such that:

1. suppw C [0,¢],

x Pp!
2. |v(z)] < Cexp [— sup,, log hl’Mp]’
=Py
(resp. [v(z)| < Cexp [— sup, log hlxﬁ])’ for some C > 0,
pMp

3. [P (2)| < C2PhPM,, (resp. [vP)(z)| < C2Phy ---h,M,), for some C > 0,
4. suppw C [e/2,€],
5. |w® (z)| < CLPhP?M,, (resp. |w® (z)| < CLPhy---h,M,), for every L > 0
and some C > 0,
and Py, (d/dz)v(z) = 0 + w(z).
Proof. We will prove the lemma in the Roumieu case. Let ¢ > 0, h, € R and

Gp=hi---hpMp, p € Ny. By G(-) and G(+) we denote the associated functions for
the sequence {Gp, p € Ny }. Put

M) =5 | PrlO e (4.)

Note that in the proof of [12, Lemma 11.4] the following entire function was con-
sidered:

1 *© .
Z —/ PhP(C)_le”CdC.
27T 0

Since the sequence {G,,p € Ny} satisfies conditions (M.1), (M.2) and (M.3)’, by
analogous arguments as in [12, Lemma 11.4] one can prove that:
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(i) The integral (4.1) converges absolutely on {z|argz € (7/2,37/2)}. It can be
continued analytically on {z|argz € (0,37/2)} by

1 coel™ —1,2¢
[y(z) =4 2wiJo Py, (()"'e*d(, argz e (0,7),
I'(2), argz € (1/2,37/2),

where a € [-7/2,7/2], and Re(ze!®) < 0, and on {z|argz € (7/2,27)} by
{ I'(2), argz € (n/2,3m/2),

B

F_(Z) = Ooei
& PO tetdc, args e (r2m),
0

where 8 € [-7/2,7/2], and Re(ze??) < 0;

(i)
php(i)r(z):—il for Re() < 0; (4.2)

dz 2mi 2’

(iii) The functions I';. and I'_ are bounded, satisfy (4.2), and

+i0c0
L / TPy tedC, @ >0,
—100

v(x) =T_(z —i0) — Ty (z +i0) == {
0, z < 0.

(iv) The function g(z) = Re(vy(z)), € R, is a real analytic function on R\{0};
g(z) =0 for z < 0 and

l9(x)| < Avzexp[-G(1/x)], = €Ry. (4.3)

Let us now prove the estimates for the derivatives of the function g. Let
q € N. Since for every £ > 0,

1 £+ioco
$@I <@ =0 [ om0 e,
T Je—ico
using the estimation (see [12, p. 88])
= ¢
exp[G(|¢])] < 1+——), Re(() >0,
(Gl ,,131( o) Re©

we have

1 shico ) |dg|
@ (g)] < L inf / ACTlACT ¢
l9 (x)|_27r§1r>10< e_ico |1Ph (Q)]° )

1. e ¢ exp[=G(SD], 5 o
sl (. i)

§+ioco q
< i (/ I in ﬂ|dg|e$5).
3

IA

A
|
-
=8

—ico |1+ C[? peNo [C]7
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By putting p = ¢, we get

1 £+ico G

(9) i z€
9'"(z)| < — inf / d¢
| | ( £—ico |1 + C'Z | | )
Gy . o ( st /“"” ||
27 éél% (e fico |1+ §|2)

et G, hyM,
( ) S3EET L

IA

IA

forge Nand { =1/z.

Let u be an element of £(%?)(R), equal to 1 on (—00,£/2], and equal to 0 on
[e,00). Put
v(z) = g(x)u(x), zeR (4.4)

By (4.3) and the fact that suppv C [0, €], there exists a C' > 0 such that

jo(2)] < Cexpl~G(1/2)]

For z € [0,¢]
wlt— ~ (¢ G q
|<Z<) ) (g ’“’(m)|§0kzzo(k) 5 €Gyk S C2G,. (45)
Let . [0 x € (—00,e/2)
0 ={ o)1, zee/ao
and w = gu.

As real analytic functions are ultradifferentiable (see [12]), and £1»} is closed
under pointwise multiplication, it follows that w € £{%»}. Since the support of w
is compact, it follows that w € DI},

The operator Py, (d/dx) is an ultradifferential operator of class {G,} and
therefore P, (d/dz)w € D(%»). Furthermore, since

P, () 9(@) = Re (Pi, (5 )2(@)) = 6(a)

we have

which completes the proof. [
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THEOREM 6. 1. Let conditions (M.1), (M.2)’°, (C), (N.1), (N.2)’ and (N.3)’
be satisfied and f € S’ EJA\/,I:)) (respectively f € S' ?N/I:}} ). The function

Ulz,t) = (f(y), BE(z —y,1))

is well defined on Ri“ = {(z,t)|]z € R?, t > 0}, belongs to C’°°(]Rd++1) and satisfies
the heat equation

(% - A)U(m, £) = 0. (4.6)

Furthermore, for some m,n > 0, (respectively for every m,n > 0) and arbitrary
T > 0, there exists a positive constant C' such that

Uz, 1) < Cexp [N(nlz) + %H(?)] s€RL, te(0,T).  (47)

Also, for any ¢ € S((ﬁé”) (respectively any ¢ € Sg\‘,ip}}), we have

Uz, t)(z)de — (f,¥), t—0. (4.8)

R4

2. If conditions (M.1), (M.2), (C), (N.1), (N.2)’ and (N.3)’ are satisfied, the
converse is also true: for every smooth function U(x,t) defined on Rf‘l , satisfying

conditions (4.6) and (4.7), for some m,n > 0, (respectively for every m,n > 0)

there exists unique f € SIEJA\;[:))’ (respectively f € S'LA\%}}) such that

Ulz,t) = (f (), E(z — y,1)). (4.9)

Proof. We shall prove the assertion of the theorem only in the Beurling case.
The assertion in the Roumieu case can be proved analogously.

1. Let f € S’EANJ:)). The function U(z,t) = (f(y), E(x — y,t)) obviously
belongs to C”(R‘fl ). Using Theorem 4, the estimate (3.10), condition (M.2)’, the
fact that E(-,t) € S((ﬁ,i”)), for every fixed ¢t > 0, and

N(hly|) = N(2h|lz —y[) < N(h|z]), h >0,
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(which follows from (3.18) by a similar argument as in (3.19)), we obtain

U(=z, )| = [{f(v), (:v—y, t))]

|
<Gy sup £ B o — y,0) explN (i)
a€Ng laf
la| —yl?
< Cysup K Alal41,-(al+a) /2 11/2“ exp M]HV(MZ/D]H

L>=(Rg)

a€eNg el (16t/a’) )
al+1
< C sup (14 k)lelHiglel+y—(al+d)/2(q 4 1)!”2M X
a€ENg M|a|+1
x (41677 /a')"?|| E(2|w — y|,16T/a’) exp N{hly [l oo ) <
st~ (a4 d)
<G(c ‘*dMQ—() |E(2lz~yl, 16T /a") exp[N (hly))]|| o )
fal+d ’
1—/C
oo L71( )] [t 16 o]
1—/C
< Cuexp [531(2)] | expl-N @l — yespN iy,

< Cexp [N(n|:v|) + %H(%)],

for some k,h > 0, n = h, m = C3 = (14 k)(1 + H)C, where C is a constant in
(E2).

2. Assume that U(z,t) satisfies (4.6) and (4.7). Note that the sequence
{M?, p e Ny} satisfies conditions (M.1), (M.2), (M.3), since the sequence {M,, p €
No } satisfies (M.1), (M.2) and (C).

Let ¢ > 0. Applying Lemma 5 to the sequence {Mg, p € No}, we get that
for every h > 0 there exist smooth functions v,w € C§°(R), with properties

suppv C [0,€], suppw C [g/2,¢], (4.10)
[o(0)] < C sup log (ht)pﬂg = Cexp [ M(%)] £>0,  (4.11)
and such that
Ph<%)v =5+w, (4.12)
where g e L
2() = () 10+ g )
Let

(4.13)
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Put h = 1/m. Since suppv C [0, €], we have that

lg(x,t)| < Cexp[N (n|z|)] /OE exp [%M (t Ts) -M (%) ]ds (4.14)

M (™) Jds < Cexp[N(nlz])],

< Cexp[N (nlz|)] /05 €xp [_ % s

d+1
for (z,t) € R
It is easy to see that

|h(z,t)| < Cexp[N(n|z])], (z,t)€ ]R‘fl. (4.15)

The functions g(z,t), h(z,t) are smooth on R} and satisfy the heat equation. It
can be easily proved, by using (4.10) and (4.11), that g(x,t) and h(x,t) can be

continuously extended on RT! = {(z,t)|z € R?, t > 0}. Put
1 I I d
go(SE) —%1_13%!](33,0), ho(iB) —}%h(x,O), z € R

The functions go(z) and ho(z) are C*°(RZ+1).
Since suppw C [e/2, €], the function h(z,t) can be continued analytically to
{(z,t) € R¥*! x € R?, t > —¢/2}. Thus ho(z) is a real analytic function.
From (4.14) and (4.15) it follows
lgo(z)| < Cexp[N(n|z|)] and |ho(z)| < Cexp[N(n|z|)]. (4.16)

for some n > 0. Since g(z,t) satisfies the heat equation, it follows from (4.12), that

d
Ule,t) + h(z,t) = P2 )g(e,t) = Pu(=D)g(z. ). (4.17)
Define
f(z) = Pr(—A)go(z) — ho(2). (4.18)
From (4.16) it follows that go, hg € S’ EJA\/{I:)). Since Py is an ultradifferential operator
of class (M?), we have that P(—A)go € S’EJA\?:)). Therefore, f € SIEJA\/’I:))'

Let us prove that U(z,t) = (f(y), E(x — y)). Put

Az, t) = 9 E(z —y,t)g0(y)dy, t>0;

B(:Eat) = Rd E(.’L’ - yat)ho(y)dy: t>0.
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The functions A(z,t) and B(z,t) satisfy the heat equation and A(z,t) and
B(z,t) converge locally uniformly to go(z) and hg(x), respectively, as ¢ converges

to zero. Therefore, they can be continuously extended to Rfrl and

}1_r>r(1) Az, t) = go(z) = 1151_15(1) g(z,t), and 1151_15(1) B(z,t) = ho(z) = %gr(l) h(z,t).

Furthermore, the functions A(z,t) and B(z,t) satisfy the following growth
conditions:

Let us prove the first inequality. For arbitrary é > 0,

A <1 [ Bl.0m(— s

< C/ E(y,t) exp[N(n|z — y|)]dy + C E(y,t) exp[N (n|z — y|)]dy
ly|<d ly|>d

=I5 + L.

Using (3.18) we get that

i < CexpIN 2nla))] [ P DN @)y
< CoxplN @nlel)]explN (20d)] [ By, 1y

< Cyexp[N(2nlz])] < C explaz?],

for some n > 0. For § > 0 large enough, by (3.18), we have

2
b < Clant) 2 exp{N(2nfal)] [ expl-4; + N(2nlyldy
ly|>d

52 1 y?
< —d/2 - 2
< C(4nt) exp[N (2n|z|)] exp[ ym (1 b)] /y>6 exp| ATh + 2ny°ldy

< Oy exp[N(2n|z|)] < Cexp[2na?),

for some n > 0 and ¢ € (0,T), where 0 < b < min(1,1/8Tn).

By the uniqueness theorem for the initial-value heat equation (see [9, p. 216],
it follows that the solution of the problem

ug — Au =0, te (0,00), U(Z',O):f(ib'),
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is unique, provided we restrict ourselves to a solution satisfying
lu(z, t)] < Cexplas?,  te(0,T).

Therefore,

@) = Aat) = [ o=y 000(0)dy,

h(z,t) = B(z,1) = / E(z — y, t)ho(y)dy.

Rd
From above (4.18) and (4.17) it follows that
» E(x—y,t)f(y)dy = » E(z —y, )[P(=A)g0(y) — ho(y)]dy

= P(=8) [ B = yti@)ds = [ B —y.0hl)dy
= P(—A)g(m,t) - h(.Z'J’) = U('Z'at)a
ie. U(z,t) = {f(y), E(x — y,t)). The uniqueness can be easily proved. O
THEOREM 7. Let conditions (M.1), (M.2), (C), (N.1), (N.2)’ and (N.3)’ be

satisfied and f € S' (My) respectively f € S' Mo} ) There ewist an ultradifferential
(Np) {Np}

operator P(d/dz) of class (M) (respectively {M}), a smooth function ui(x) and
a real analytic function uz(x) such that

lui(z)| < Cexp[N(n|z])], and |uz(z)|] < Cexp[N(n|z])],
for some n > 0, (respectively every n > 0), and

f(@) = P(A)ur(z) + ua(2).

Proof. Let f €S’ (M) respectively S’ (My}) and let
(Np) {Np}

Ulz,t) = (f(y), E(z - y,1)).

By the first part of the Theorem 6, we have that U(z,t) € C*™ (]Ri“), (4.6), and
(4.7). By using the same construction as in the proof of the second part of the
Theorem 6 one can prove that

U(.fL’,t) = P(_A)g(mat) - h(.’lf,t), (419)

where g and h are defined as in (4.13). Note that since U(z,t) converges to f(x)

(Mp) a5t — 0F (see the proof of the first part of Theorem 6), the

H !
in the space S (Ny)?
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function g(x,t) converges to a smooth function go(z), and h(z,t) converges to a
real analytic function ho(z) as t — 0% with

|90(2)| < C'exp[N(n|z|)], and [ho(z)| < Cexp[N(n|z])],

for some n > 0, (respectively every n > 0). This and (4.19) imply

f(@) = P(=A)go(x) — ho(z)

(My) {Mp}

in the space SI(N,,) (respectively SI{N,,} ). Put ui(z) = go(z) and ua(z) = —ho(x).
This completes the proof. [
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