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ABSTRACT. We prove the existence and uniqueness of classical solutions to mixed
boundary problems for the equation

ou 9%y
a(im t) - @(wa t) + q(z)u(m,t) = f(zi t)
on a closed rectangle, with arbitrary self-adjoint boundary conditions. The initial

function, the potential ¢(z) and f(z,t) belong to some subclasses of W,Ek)(-) (1<
p < o0, k € N) that are defined by monotonicity conditions of “Dirichlet—Jordan
type”. We also give a priori estimates of the solutions.

Introduction

1. On the problem. Let G = (a,b) be a finite interval of the real axis R,
and let T > 0 be an arbitrary number. In this paper we consider the problem
of existence of a real-valued function u = u(z,t) defined on the closed rectangle

Q = [a,b] x [0,T] and satisfying the partial differential equation

du 8%u

1) @t = o

z,t) + q(@)u(z,t) = f(z,t), (z,t) €Q,
the initial condition

(2) u(z,0) = p(z), z €@,
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and the boundary conditions

alou(a, t) + allu’m (aa t) + ﬂlou(b: t) + 611“; (b, t)
t

0,
3
®) asou(a, t) + aorug(a,t) + Baou(b,t) + Paruy(b,t) =0,

te[0,T7],
where (o, i1, Bio, Bi1) € R* (i = 1,2) are linearly independent vectors, and g(z),

o(z), f(z,t) are given real-valued functions. We suppose that conditions (3) are
such that the formal Schrodinger operator

(4) L(v)(z) = —v"(z) + q(z)v(z), z€G,
and the boundary conditions

aov(a) + ag1v'(a) + Biov(b) + B11v' ()

-0,
) azov(a) + ag1v'(a) + Bov(b) + B21v' (b) =0,

generate an arbitrary self-adjoint operator L, with discrete spectrum. (By this we
mean a self-adjoint extension L of the corresponding symmetric operator Ly; we
suppose that the potential g(z) allows such an extension (see [3, §18]).)

A real-valued function u = u(z,t)is called a s-classical solution of the mixed
boundary problem (1)—(3) if it has the following properties:

L) u(z, t), uy(z, t), uys (z,t) € C(Q);

2,) u(z,t) satisfies equation (1) for all (z,t) € Q;

3.) u(z,t) satisfies conditions (2)—(3) in the ordinary sense.
Using the Fourier method, we first prove the existence (and uniqueness) of a s-
classical solution to the problem (1)—(3) (Theorem 1), under certain “reasonable”
smoothness conditions imposed on functions ¢(z), ¢(z) and f(z,t). Then we modify
the above definition as to replace condition 1,) by the following one:

13) u(z,t) € C(Q), ui(w,1t),u=(2,t) € C(Q).
For this class of solutions, which we call classical solutions (see [1]), two existence
and uniqueness theorems are obtained: Theorem 2, proved by the Fourier method,

and Theorem 3 which is established by a modification of the Fourier method.
In all the cases considered an a priori estimate of the solution is given.

2. Main theorems. Let AC(G) be the class of (real-valued) absolutely con-
tinuous functions on the closed interval G' = [a,b], and let BV (G) be the class
of functions having the bounded variation on this interval. By I/IO/,(,k) (G) we de-
note the set of functions h(z) in the class W,Sk) (G) (1 < p< +4o00, k € N) such
that h(a) = h'(a) = --- = hkV(a) = 0 = h(b) = W' (b) = --- = K~V (b). (By
definition, h(z) € ngk) (G) if functions h(z),h'(z),...,h* 2 (z) are continuously
differentiable on [a,b], h** Y (z) € AC(G) and h'¥)(z) is in L,(G).)

A function h(z), defined on a set A C [a,b], is said to be piecewise monotone
on A if there exists a set {zo,21,...,Zn(n,4)} C [a,b] such that

a=x0 <1 < < Tppa) =D,



ON CLASSICAL SOLUTIONS OF MIXED BOUNDARY PROBLEMS 55

and h(z) is monotone on the set A N [z;_1,;] for every i € {1,...,n(h,A)}. (In
the class of piecewise monotone functions we include functions that are monotone
(non-increasing or non-decreasing) on the set A.) Let g(z,t) be a function defined
on a set D(g) C €, where

Dig) = |J (A x {t}).

te[0,T]

This function is called piecewise monotone uniformly with respect to t € [0, T if it
is piecewise monotone on A; C G for every t € [0,T], and the set

{n(g, A1) e N |t €[0,T7}

is bounded. In this case it will be said that g(zx,t) has property (A).
We say that a function g(z,t), defined on €, belongs to the class BV (G) uni-

formly with respect to t € [0,T] if g(x,t) € BV(G) for every t € [0,T], and the set
{V2(g(-,t)) | t € [0,T]} is bounded. This property is said to be property (B).
Finally, let g(x,t) be a function defined on the closed rectangle Q. We say that

this function satisfies the Holder condition on [0,T], with an exponent a € (0,1],
uniformly with respect to © € G if

(6) (Vz € G)(V¢,t' €[0,T]) lg(z,t) — g(z, )| < BJt = ¢'|*,

where the constant B > 0 does not depend on z.

We can state now our results.

THEOREM 1. Let us suppose: 1) g(z) € AC(G).
2) o(z) € W1(3)(G), and ¢(z) satisfies the boundary conditions (5); L(¢)(a) =0 =
L(p)(b); L(p)'(x) is a bounded, piecewise monotone function on its domain, or

L(p)'(z) € BV(Q).

3) f(z,t) € C(Q); f(z,t) € I/%/gl)(G) for every t € [0,T]; f.(x,t) has the property

(A) and it is bounded on D(f.), or f.(x,t) has the property (B).

Then, there exists a unique s-classical solution of the problem (1)—(3) which
can be represented as a series converging absolutely and uniformly on Q. This series
can be differentiated twice with respect to the variable z, and once with respect
to the variable t. The obtained series for the derivatives of the solution converge
absolutely and uniformly on ).

Also, if u(z,t) is the s-classical solution, then the following a priori estimate
holds:

lllogay < D (Ilellzae) + 16" lzuer + Il
where the constant D > 0 does not depend on functions ¢ and f.

In the case of classical solutions we can prove
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THEOREM 2. Let the following conditions be satisfied: 1) q(z) € C(G).
2) o(z) € ng) (@), and ¢(x) satisfies the boundary conditions (5); ¢'(x) is a

bounded, piecewise monotone function on its domain D(¢'), or ¢'(z) € BV (G).

3) f(x,t) € C(Q); f(x,t) € ng)(G) for every t € [0,T]; f.(x,t) has the property
(A) and it is bounded on D(f!), or f!(z,t) has the property (B).

Then, there exists a unique classical solution of the problem (1)—(3) which can
be represented as a series converging absolutely and uniformly on Q. This series
can be differentiated twice with respect to x, and once with respect to t on every
closed rectangle Q. = G x [¢,T] (e € (0,T)). The obtained series for the derivatives
of the solution converge absolutely and uniformly on Q..

Further, if u(z,t) is the classical solution, then the following a priory estimate
holds:

(*) lullo) < D (Il + M) + I llo)

where M (¢') = n(¢',D(¢"))- sup |¢'(z)| if ¢'(x) is bounded and piecewise mono-
z€D(¢’)

tone on D(¢'), or M(¢') = VE(y') if ¢'(z) € BV(G). The constant D > 0 does
not depend on ¢(x) and f(x,t).

THEOREM 3. Let the following conditions be satisfied: 1) q(z) € C(G).
2) p(x) € ng) (@), and p(z) satisfies the boundary condition (5); ¢'(x) is a

bounded, piecewise monotone function on its domain, or ¢'(z) € BV (G).
3) f(z,t) € C(Q), and f(x,t) satisfies the Holder condition on [0,T], with an
exponent a € (1/2,1], uniformly with respect to z € G.

Then, there exists a unique classical solution of the problem (1)—(3) which can
be represented as a series converging absolutely and uniformly on Q. This series
can be differentiated once with respect to x or t on every closed rectangle Q..
The obtained series for the first derivatives of the solution converge absolutely and
uniformly on Q..

Also, if u(z,t) is the classical solution, then the a priori estimate (x) holds.

Remark 1. If we change the definition of classical solution as to replace t €

[0,T]in (3) by t € (0,T], then assumption “p(z) satisfies the boundary conditions
(5)”, appearing in Theorems 2 and 3, can be dropped.

Remark 2. Let us suppose that the coefficients of linear forms (5) satisfy
condition 011,321 — aglﬂn ;ﬁ 0. Then,
1) assumption L(p)(a) = 0= L(p)(b) (Theorem 1) can be dropped;
2) assumption ¢(z) € I/?/gl)(G) (Theorems 2 and 3) can be replaced by ¢(z) €
w(G):
3) assumption f(z,t) € I/(E/'gl)(G) (Theorems 1 and 2) can be replaced by f(z,t) €
Wil (@).
It seems that the problem of existence of classical solutions to mixed boundary
problems with general self-adjoint boundary conditions, for the equation considered,
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has not been thoroughly studied yet (see also [5]). In this paper some contribu-
tions in that direction are given. The technique used in proofs of the theorems is
essentially different from the techniques known so far for justification of the Fourier
method in the case of classical mixed problems (for instance, with the zero boundary
conditions). It is based only on uniform and exact, with respect to order, estimates
for eigenfunctions (and their derivatives) of the operator (4)—(5). Theorems 1 and
2 are proved by using only differentiation of the formal series representing the so-
lution. But in the proof of Theorem 3 we use a general extension of a method
developed by Chernyatin [7]. This method contains only one differentiation of the
series mentioned, and gives us a possibility to decrease the smoothness condition
imposed on function f(z,t). In his paper Chernyatin supposed conditions 1) and
3) from Theorem 3 were satisfied, and proved the existence and uniqueness of the
classical solution to equation (1) satisfying the conditions

u(z,0) =0, ze€][0,n]; u(0,t) =u(m,t) =0, te€l0,T].

We prove the uniqueness of the solutions by a technique used in [5].
Note that the corresponding mixed boundary problem for an one-dimensional
hyperbolic equation of second order was investigated in [9]-[10].

3. Auxiliary propositions. Our approach to justification of the Fourier
method is based on a set of results obtained by several authors.

Consider an arbitrary non-negative self-adjoint extension L of the operator
(4) with the potential ¢(x) € Li(G). (This extension is defined by the corre-
sponding self-adjoint boundary conditions (5); its spectrum is discrete. Recall
that the operator L is defined in the following way. Let D(L) be the set of func-
tions g(x) € L2(G) such that functions g(z), g'(x) are absolutely continuous on

G, L(g)(z) € L2(G), and g(z) satisfies the boundary conditions (5). If g(x) € D(L),

then L(g)(z) def L(g)(z).) Denote by {v,(z)}$° the orthonormal (and complete in

L1 (Q)) system of eigenfunctions corresponding to this extension, and by {A,,}{° the
corresponding system of non-negative eigenvalues enumerated in non-decreasing or-
der. (By definition, v,(x) € D(L), and v, (z) satisfies the differential equation

(7) ~0p(2) + ¢(2)vn(2) = Anvn(z)
almost everywhere on G.) Then, the following propositions are true.

PROPOSITION 1. [4]. If ¢(z) € L1(G), then there exists a constant Cy > 0,
independent of n € N, such that

(8) max |v,(z)| < Cy, n €N
zeG

ProposITION 2. [4]. If g(z) € Ly(G) (p > 1), then there exists a constant
A > 0 such that

(9) Y o1<4
t<VAL<t+1

for each t > 0, where A does not depend on t.
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PROPOSITION 3. [6]. Suppose q(z) € C(G). Then the eigenfunctions v, ()
have continuous second derivative on G, satisfy the equation (7) everywhere on G
and there exist constants po(G) > 0, C; > 0 (j = 1,2), independent of n € N, such
that

CiN/* it A > po(G),

Cj if 0< A < po(G).

(10) max [0} ()| < {
zelG

PROPOSITION 4. [9]-{10]. (a) Suppose ¢(z) € L,(G) (1 <p<2), and h(z) €

T/(E/'gl)(G). If h'(x) is a bounded, piecewise monotone function on its domain, or
h'(z) € BV(G), then for x € G the equality

oo b
h(x) ZZhnvn(w), where h, z/ h(z)v,(x) dz,

holds, and the series are absolutely and uniformly convergent on G.
(b) Let q(z) € Lp(G)(1 < p < 2), and h(z) € D(L). Then for x € G the
equalities

hz) = hnvn(z),  W(@) =) havp(2)

hold, and the series are absolutely and uniformly convergent on G.

(¢) Let q(x) € AC(G), h(x) € WI(S) (@) and h(x) satisfies the boundary condi-
tions (5). If L(h)(a) = 0 = L(h)(b), and L(h)'(z) is a bounded, piecewise monotone
function on its domain, or L(h)'(z) belongs to BV (G), then for x € G the equalities

h)(z) =" hyo@ (),  §=0,1,2,
n=1

hold, and the series converge absolutely and uniformly on G.

We should give here some comments on the above propositions. First, Propo-
sitions 1-3 and Proposition 4(a) are also valid when the functions v, (z) (n € N) do
not (necessarily) satisfy any boundary conditions. (In that case, {v,(x)}{° is called
a fundamental system of functions of the operator (4), in the sense of I’in [4]). Sec-
ond, Propositions 1-4 are also valid in the general case of an arbitrary self-adjoint
extension L of the operator (4). (Then, only a finite number of negative eigenvalues
of L can exist; some obvious minor changes in formulation of Propositions 1-3 are
needed.)

For the sake of simplicity we will work with a non-negative operator L, and
estimates (10) will be used supposing that po(G) = 1.
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1. Proof of Theorem 1

1. The Fourier scheme.. Let {v,(z)}{° be the orthonormal and complete
in Ly(G) system of eigenfunctions corresponding to a non-negative self-adjoint ex-
tension L of the operator (4), and let {A, > 0}$° be the corresponding system of
eigenvalues. (It is known that A, = +00 as n — 00.) If we denote

b b
on = / o(2)on (@) dz,  fult) = / F(@, on(z) dz, t€[0,T],

then, by Proposition 4(a)—(b), the equalities

(11) (P(x) = Z‘ann(m)a f(éL',t) = an(t)vn(m)a te [O,T],
n=1 n=1

hold uniformly on the closed interval G, and the series are absolutely convergent.
Let us look for the solution of (1)—(3) in the form

t) = Zvn(m)wn t

where w, = wy(t) are unknown functions to be defined. Applying to the problem
the formal scheme of the Fourier method, and using decompositions (11) we obtain,
as it is known, the following representation of the solution:

(12) (@, 1) Z“n [% W /f |

The sum of this series formally satisfies the differential equation (1), the initial
condition (2) and the boundary conditions (3).

The proof that formally defined function (12) is the s-classical solution will be
based on uniform convergence on 2 of the series appearing in the equalities

(13) i [sone Ant 4 / falT ‘*"“‘T)df],

g 2% Zvn )[Frae = [ e+ 100,
0

which are just formal at the moment. The precise meaning of the previous sentence
is as follows. _
For all A\, > 1 and (z,t) € Q we have the inequality

t
‘Pne_)\"t+/ fn(T)e_)\"(t_T)dT
0

t
< Anlgnle™ + A / Fa()e D] 4| £4(8)].
0
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Hence, from the (supposed) absolute and uniform convergence (on Q) of the series

Z /\nvn(x)QOne_)\"t: Z fn (t)vn (x)a
(15) i 0 ¢ =
A —)\n(t—'r)d,r
3 @) | e

it will follow that the series (12) and (14) converge absolutely and uniformly on
Q. So, u(z,t) € C(Q). Now, by equality (12) and the uniform convergence of
series (14), we get equality (14), and the continuity of u}(z,t) on Q. Also, the first
decomposition (11) and equality (12) give us equality u(z,0) = ¢(z), z € G.
Further, by virtue of equality (12) and the (supposed) uniform convergence of
series (13), we can conclude that equality (13) holds on Q, and u/,(z,t) € C(9).
Then from (12)—(13) it follows that u(z,t) satisfies the boundary conditions (3).

Finally, the convergence of series (15) and the inequality

t
R P
0

t
< 1+ |g(@))|vn(2)] - (Anl‘pn|€_)\"t + An /0 fn(T)e_A"(t_T)dT

#1600

(holding, by equation (7), for all A, > 1 and (z,t) € Q) imply that the series
appearing in the (formal) equality

2 & t
a6 San =Y @) e+ [ e ]
n=1 0

converges absolutely and uniformly on Q. As a consequence, by equality (13), we
have that equality (16) is not just formal, and u”:(z,t) € C(Q). Now, using (12)-
(14), (16) and the second decomposition (11), we can prove that u(z,t) satisfies
the equation (1) at every point (z,t) € Q.

In the next two subsections the convergence of series (13) and (14) will be
established.

2. The convergence of series (13).. It suffices to show that the series

o0 oo t
(17) S s @ene ™Y vh(@) / fa(r)e 0y
n=1 n=1 0

converge absolutely and uniformly on Q.
Since for all n € N and (z,t) € Q we have

[0 (@) pne™ | < o (@)l pnl,
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the convergence of the first series (17) follows, by Proposition 4(b), from the absolute
and uniform convergence on G of the series

)
Z Pntp ()
n=1

In the case of the second series (17) we will use the following arguments. The
conditions imposed on function f(z,7) imply the estimate

(18) |fn(7')| < K(G;f;:aQ) : 1/)‘na An #0,

where K (G, f1,q) depends on neither 7 € [0, 7], nor n € N (see the proof of estimate
(13) in [9]; there we only need g(x) € L1(G)). Note that the proof of Proposition
4(a) is based on the estimate mentioned. Now, we have on 2, by estimates (8) and
(10):

¢ b—a)CoCiT\|fllom i An €]0,1],
@) [ e < S
K(G, f10) - 2% if A > 1,

where || f[lo(q) ef max, »cq |f(z,t)|- Hence, according to estimate (9), for every

(z,t) € Q the following holds:
- Y 0+ X0

t
' (2) / fu(r)e " dr
0 0<VAR <1 VAR >1

1
< 0= @ACOTIflo@ + CKC f10) Y 3
Van>1

But using estimate (9) again, we obtain
1 oo
(19) Z 32 Z( Z )\3/2) = Z L3
VA >1 77 k=1 “k<v/X <k+1

Therefore, the second series (17) and, consequently, the series (13) converge
absolutely and uniformly on the closed rectangle €.

3. The convergence of series (14).. It suffices to prove that the three series
(15) converge absolutely and uniformly on ().

In the case of the first series (15) the proof is based on an appropriate estimate
for ,. Using the integration by parts and the fact that functions ¢(z), v,(z)
belong to the domain of the self-adjoint operator L considered, we first obtain the
equalities

b
- ou= [ v@ra@ o= [ o) (i) + alaen(e)
b
-5 / L@)@)vn(@)dz, An 0.
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Then we use the differential equation (7), the integration by parts again and equal-
ities L(p)(a) = 0= L(¢)(b). So we can get the equality

oo = A2/ e )dm+A2/ £(0)(@)a(w)vn (@) da, Ay £0,

wherefrom, by conditions imposed on function L£(p)'(x), the necessary estimate
results:

lon] < K(G,L(9)',0) - 1/X3,

where K (G, L(¢)',q) is independent of n € N (see the proof of estimate (20) in [9];
there we need q(z) € AC(G)). Note that the proof of Proposition 4(c) is based on
the estimate mentioned. Now, for any (z,t) € Q the following holds:

Z |)\nvn (Pne /\"t| = Z () + Z ()

0<VX, <1 VAn>1
1
< AC§||g0||L1(G) + CoK (G, L(v)',q) - Z 3

1
SD1+D2'ZE’
k=1

(see (19); the constants D, D2 have the obvious meaning). Thus, the first series

(15) converges absolutely and uniformly on €.

By Proposition 4(a), the second series (15) converges absolutely and uniformly
on G for every ¢t € [0,T]. But using estimates (8)—(10) and (18), we can obtain the
absolute and uniform convergence on {2 of the series. This follows from

Yo faltua@l = Y O+ D ()
n=1 0<VAn<1 VAin>1

1
< (0~ )AC}flleq) + CoK (G, fld) - Y,
Vst "

We prove the convergence of the third series (15) in the following way:

00 t
)‘nvn(x)/ f"(T)ei)\n(tiT)dT = Z () + Z ()
n=1 0 0<VAL<1 VAn>1

1
< (b= QAT fllcm) + CoK (G frd) - D
Vaa>1

(The estimates (8)—(9) and (18) are used here.) This ensures the absolute and
uniform convergence on ) of the series considered.
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4. Uniqueness of the solution.. As we already mentioned in Introduction,
the uniqueness of the s-solution will be proved by a method used in [5].

Suppose that there exist two s-classical solutions u1 (z, t), ua(z,t) of the problem
(1)—(3). Then the function

def
u(xat) = ul(xat) - u2(x7t)
is a s-classical solution of the problem

ou 0%u
e - = Q
at (x7 t) 8.772 (.CU, t) + q(x)'u/(.'lf, t) 07 (.’L', t) 6 ’

u(z,0)=0, a<z<b,

u(z,t) satisfies the boundary conditions (3).

(21)

Also, for every t € [0,T] the function u(z) ef u(z, t) satisfies conditions of Propo-
sition 4(b). Hence, for every (z,t) € Q the equality

o
'LL(.’L', t) = Z cn(t)vn(x),
n=1
holds, where the series is uniformly convergent on G and

cn(t) = /b u(z, t)v, () dz, n €N

From u(z,t),u}(x,t) € C(Q) it follows that ¢, (t) € CV[0,T] and

b
ou
& (t) = / 2 o o (o) da
The function ¢, (t) satisfies on (0,7T) the differential equation
e () + Anen(t) = 0.

This follows from

/ab %(m,t)vn(m) dz = /ab [%(m,t) - q(m)u(m’t)] () dz
b

= /b u(z, t) [v)(z) — q(@)vn(z)] dz = =\, - / w(z, t)v,(z) dz.

a

(The first equality is a consequence of the differential equation (21); the second
one holds because the functions u;(z), v, (z) belong to the domain of the operator
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L, and the third equality follows from the differential equation (7).) Therefore, we
have

cn(t) = Bpe ™™, t€(0,T),
where B, is an arbitrary real constant.
Now, using the initial condition (21) and continuity of ¢, (¢) on [0,T], for any

n € N we can obtain the equalities

b
B, = %gr(l) cn(t) = / uw(z,0)v,(z) dz = 0,

a

and conclude that ¢, (t) = 0 for all ¢ € [0,T],n € N. But this means that u(z,t) =0
for all (z,t) € Q.

5. The a priori estimate.. Let u(z,t) be the s-classical solution of the
problem (1)—(3). Then we can write u(z,t) = u(z,t) + u2(z,t), where

uy (z,t) = Zvn(w)gone_)‘"t7
(22) ":)1 .
u2($7t) = Z Un(:c) / fn('r)e_)‘n (t_T)dT.

For the initial function ¢(z) the equalities (20) hold. Hence, using those equal-
ities and the estimates (8)—(9), for every (z,t) € Q we have

u@, )] < S Jon@ene ™ = 3 O+ 3 0)

0<VAR<1 VAn>1

SACg'/ab|90(x)|dx+CO' Z %
VAn>1
< 4G ol + 400~ (3 15 ) (111001 + oy Iellace)
k=1
wherefrom it follows that the estimate
(23) max_|u(z,t)| < D1 (llellz, ) + 19" |z, ()

(z,t)eQ
holds, with the constant D; > 0 defined by

D1 % max { ACE + ACollgll o 7 /6, ACom? /6 }
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In the case of function us(z,t) we can write

|ug (z,t)] < vn / fn(m)e 2 "dr| = Z ()+
n=1 0<VAR<1
+ D ()< AGTO = a)llfllo@ + C50 - a)llfllo@ - D A
VAn>1 Van>1
for every (z,t) € Q. Having in mind estimate (9), we see that the estimate
(24) max_|uz(z, )] < Daflfllo

(z,t)eQ
def

holds if we put Dy = ACZ(b—a) (T + 72/6).
Now, from (23)—(24) we obtain the final a priori estimate

max_[u(z,)] < D (Ilellaor + 10" ey + 1l o)
(z,t)eQ

where D % max{D1,Ds}.

Proof of Theorem 1 is completed.

2. Proof of Theorem 2
1. Two lemmas.. Let us rewrite the formal solution (12) in the form
U(.Z, t) = Ul(ZU,t) + u2($7 t);

where uq(z,t) and uz(z,t) are defined formally by equalities (22). Then the asser-
tions of Theorem 2 concerning the existence and properties of the classical solution
will result from the following two lemmas.

LEMMA 1. Let us assume: 1) q(z) € C(G);

2) p(z) € V%/'(l)(G), and (z) satisfies the boundary conditions (5); ¢'(z) is
a bounded, piecewise monotone function on its domain, or ¢'(z) belongs to
BV (QG).

Then the equality

(25) U1 (SL’, t) = Z 'Un(x)(pnei)\"t
n=1
holds uniformly on Q, and the equalities
0
ul Z Anvn TL nt’
6u =
(26) = ( Z z)pne ",
"
x,t Z T)pne ~Ant

n=1
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hold uniformly on Q. = [a,b] x [¢, T, where € € (0, T) is an arbitrary number. Also,
series (25)—(26) are absolutely convergent.

LEMMA 2. Let the following conditions be satisfied: 1) q(x) € C(G);

2) f(z,1) € CO); f(z,t) € W(G) for every t € [0,T); f.(z,t) is bounded on
D(f.) and possesses the property (A), or f.(z,t) possesses the property (B).
Then the equalities

uz(z,t) = f: Un () /Ot Fa(r)e 2= gr
n=1

(27)
9 o0 :
22 (2,1) :n;u'n(x) /0 Fo(F)e =gy,
8"2 Zvn [ /fn e M dr — f.(1)],
e
Wuj(x t) v ( /f ye A= dr

hold uniformly on Q, and the series are absolutely convergent.

Indeed, having Lemma 1 proved, we see that equalities (26) hold on 2, so one
can immediately check that the function u(z,t) belongs to the classes described in
1%), satisfies the equation (1) (with f = 0) on  in the ordinary sense and satisfies
the boundary conditions (3) for any ¢t € (0,7]. Also, equality (25) and the first
decomposition (11) give us equality u1(x,0) = ¢(2) on G, wherefrom it follows that
uy(z,t) satisfies the conditions (3) for ¢t = 0. Hence, u1(z,t) is a classical solution
of the problem (1)—(3) with f = 0.

On the other hand, Lemma 2 shows us that the function us(z,t) is an s-classical
solution of the problem (1)—(3) with ¢ = 0. Therefore, u(x,t) will be the classical
solution of the problem (1)—(3) possessing the properties described in the theorem.

In next two sections we will give the proof of the lemmas. The uniqueness
of the solution and the a priori estimate will be considered in sections 4 and 5
respectively.

2. Proof of Lemma 1.. The series (25) converges absolutely and uniformly
on Q. This is implied by the inequality

Z |'Un ‘pn A t| < Z |Un ||‘pn

because of the absolute and uniform convergence on G of the majorizing series,
which follows from Proposition 4(a). Hence, equality (25) holds on Q, and u1(z,t) €
c(Q).
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The second part of Lemma 1 is based on the following proposition: For every
€ > 0 there exists a constant K > 0 such that the estimate
—Ant 3/2
(28) e Mt <KX

holds for all A, >1,¢ > € (see [1, p. 151]). Now, using estimates (8)—(10),(28) and
the Bessel inequality, we obtain on {2 that

Y daln@eale = 3T O+ Y ()

0<VA, <1 VAn>1

Pn
< AC3|l¢llLy(a) + CoK - Z |}\1/2|

VAa>1 7"

< D, +D4< ) %)/< > w)m

Va1 " Van>1

0o 1 1/2
< Ds+ A1/2D4||‘P||L2(G) ) (Z ﬁ) '
k=1

(29)

This means that the first series (26) converges absolutely and uniformly on Q.. So,
by virtue of equality (25), the first equality (26) holds on Q.; consequently, it holds
on Q. Also, (u1)}(z,t) € C(Q) N C(Q).

Differentiating formally equality (25) with respect to x, we obtain the series

> vh(z)pne~ ! which can be majorized on €1, in the following way:

D olon@eale ™ = Y O+ D ()
n=1 0<vAn<1 VAin>1

1
< ACoCil|¢llLy (@) + CoCiK lollLya) - D P

VAn>1

(The estimates (8)—(10) and (28) are used here.) Hence, the series converges ab-
solutely and uniformly on €0, wherefrom it results, by equality (25), that the
second equality (26) holds on Q.. Consequently, this equality is true on Q, and
(u1)y(@,t) € C(A)N C(Qe).

Finally, for the series Y 7, vl (z)pne”
(8), (10) and (28), that

Yo ln@eale™ =3 (+ > ()

0<VA, <1 VAR >1

< ACoChllgllLy )y + Co+ D> Anlpnle™
VAan>1

Ant we obtain, according to estimates

< D5+ (2K - Z |f72!7

Vaia>1 71
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where (z,t) € Q.. Since the convergence of the majorizing series can be proved as
n (29), by the second equality (26) we conclude that the third equality (26) holds
on ., the series being absolutely and uniformly convergent. Hence, this equality
holds on , and (uy)".(z,t) € C(Q) N C(Q).

Lemma 1 is proved.

3. Proof of Lemma 2.. The proof is completely contained in the proof of
Theorem 1. Indeed, by the estimates (8) and (10), we see that the first and the
fourth series (27) have the same majorizing series as the third series (15). Further,
the convergence of the third series (27) follows from the convergence of the second
and the third series (15). Finally, the second series (27) and the second series (17)
are the same.

REMARK 3. Conditions 2) imposed in Theorem 2 can be replaced by the

following ones: ¢(z) € W2(2)(G), and () satisfies the boundary conditions (5). In
this case it will follow from Proposition 4(b) that the second equality (26) holds on
the whole Q. Hence, then we will have

- t
%(-'L',t) - Z 'l);L(:[;) |:(pne_)\"t + / fn(’i')e_)‘" (t—"')d'r
n=1 0

uniformly on €, and the series will converge absolutely on this set.

4. Uniqueness of the solution.. Proof is the same as in the case of s-
classical solutions. Namely, the only difference is that now ¢, (t) belongs to the
class C[0,T) N C™M(0,T), but this does not interfere the proof.

5. The a priori estimate.. Let u(x,t) be the classical solution of the problem
(1)—(3), and let uq(z,t), ua(z,t) be defined by equalities (22). Denote by D(¢') the
domain of ¢'(z). Then the estimate

M) + llllz, @)

| <D
(30) o] < Dy

An # 0,
holds, where D3 > 0 does not depend on ¢(z), and either

def
M(¢') = n(@,D(¢) - sup ¢/ ()]
z€D(y')

if ¢'(x) is bounded and piecewise monotone on D(¢'), or M (') def Vi) if ¢ (z) €

BV () (see the proof of Proposition 4 in [9]).
Using estimate (30), one can obtain the estimate

(31) max_|ui(2,t)| < Da ([l¢llz, @) + M(#)) 5
(z,t)EQ

where D; &' max{AC2 + D3 ACyn? /6, D3 ACon2/6}. Proof of this estimate has the
same “structure” as the proof of estimate (23).
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In the case of function us(z,t) the estimate (24) holds, with the same constant
D,. Hence, from (24) and (31) the following a priori estimate

max_|u(z,t)| < D M) + 3
s fu(@, 01 < D (Il + M@ + 1 o)

results, with D ' max{Dy,D4}.

Proof of Theorem 2 is completed.

3. Proof of Theorem 3

1. Auxiliary propositions.. Let us start again from the decomposition
u(z,t) = ui(x,t) + us(z,t) of the formal solution (12), the functions u;(z,t) and
ua(z,t) being defined by (22).

Assumptions 1) and 2) of Theorem 3 imply that for u;(x,t) Lemma 1 is valid.
That is why this function is a classical solution of (1)—(3) with f = 0. Hence, the
other assertions of Theorem 3, except the uniqueness and the a priori estimate, will
follow from

LEMMA 3. Let us assume: 1) g(z) € C(G);

2) f(z,t) € C(Q), and f(x,t) satisfies the Hélder condition on [0,T], with an
exponent a € (1/2,1], uniformly with respect to = € G.
Then the equality

0 t
(32) us(z,t) = Zyn(x)/o Fo(r)e 2 =" gr

holds uniformly on (1, and the equalities

aUQ j— = d ! _An (t_T)
T @0 =S @ g [ e ar
6“2

5 &1 = g:l”;z(w) /Ot fa(m)e Mgy

hold uniformly on €, for every € € (0,T). The series are absolutely convergent.
Also, (u2)!»(z,t) € C(2), and us(x,t) satisfies the equation (1) on Q in the
ordinary sense.

This lemma will be proved by a generalization of the Chernyatin method. The
major characteristic of the method is the following: Differing from the classical
procedure for justification of the Fourier method, proof of existence and continuity
of (u2)!>(z,t) is not based on the direct differentiation of the second series (33)
(because f is not sufficiently smooth), but on the following
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PROPOSITION 5. [7, Lemma], [2, p. 347]. If for every t € [e,T] the series
o0 t
S vi@) [ fulr)e 2 ar
n=1 Y

converges in Ly(G) to the function v(z,t) € C(Q.), then us(z,t) has the partial
derivative (us)"s(z,t) on Q., and (u)"s(z,t) = v(z, t).

2. An asymptotic formula.. We prove Lemma 3 by applying an appropri-
ate modification of the Chernyatin method: it turns out that in the general case
considered it is possible to use successfully estimates (8)—(10) instead of specific
asymptotics for eigenfunctions and eigenvalues of the operator generated by (4)
and the zero boundary conditions, which were originally applied in [7].

To keep the paper self-contained, in this section we will completely expose
the first step of the proof, as it was done in [7]: it is necessary to establish an
asymptotic formula for the functions

t
(34) P ()% / faPe M EDdr e T,
0

where € € (0,7 is an arbitrary number. In order to do that, we will approximate
fn(7) by a piecewise linear function 4, (7) € C[0,t] on every closed interval [0,¢] C
[0, 7).

Let us fix n € N and ¢ € (0,7]. Suppose A, # 0, and define points 7* € [0, t]
(i=0,1,...,my) by

=0, Th =t T =7"140n, Op = t/my,
where m,, € N will be defined below. Then define

Yn(10) = fal(70),  ¥n(7) = ful(7)),
o = ¢n(7—zn) _¢n(7—z’n—1)

(35) : 5 |
(VTE [Tz?ilaTzﬂ]) wn(T) :wn(Tﬁﬂ‘FG?(T—TZ‘,l),
(36) (vrelo,t]) . (r) = { al %f T €[]y,
am,. if 7= T -

The number m,, will be defined by demanding that

37) (V7 €[0,t]) |¢bn(7) — fu(T)| < 1/A7.
Using condition (6) and estimates (8), we obtain

(38) (Vt,t' € [0,T]) |fn(t) = fu(t))| < DIt — |7,
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where D = BCy(b — a). Now, by virtue of (38) and the corresponding equalities
(35), for every 7 € [0,t] we have the inequlities

() = fu(7)] < |bn(7i1) = Fa(7)| + [¥n(7) — ¥n(7is1)| < 2D67,

supposing that 7 € [1772;,7*]. So we see that condition (37) will be satisfied if we
put

(39) my [H(2D)N,] + 1,

where [p] denotes the entire part of a number p. It is convenient to write (37) in
the following form

(40) fa(T) = Pu(7) +7a(7) - 1/27,

where 7, (7) is continuous, and |r,(7)| <1 on [0,¢] for all ¢t € (0,7] and n € N.
Let us estimate the coefficients af’. By (35), (38)—(39) we have

1/ -« 1-a
la?| < D&t = D([t(w) - An] + 1) < DAL ((2D)1/°‘ + %) )

Since the number € € (0,T) is arbitrarily fixed, the above inequalities imply that
there exists a constant K(a,€) > 0, not depending on ¢ and n, such that the
estimate

(41) |a?| < K(a€) - A

holds for every t € [¢,T].

Return now to the integral (34). Using (40), the integration by parts and the
first mean-value formula for integrals, we obtain

t w(n) [1
Fo(t) =/0 Yn(r)e M 4 ;a )/ o An(t-7) g
n 0

(42)

t t
= LD o) L [yt e 0+ 0(at),
0 n Jo

n

where 6,, € [0,], and |O(AE(1+O‘))| < 22X, 1Y) By virtue of (36) and (41), we can
estimate the last integral in (42):

n

Mn 7]
E ay / e M t=T)qr
i=1 i

-1

1
SK(a,G))\—a

t
[ meear
0

From this estimate and equalities (42) the final asymptotic formula for the integrals
(34) follows:

(43) (Vtele,T]) Fo(t) = f;(t) _ frs\(o) et 4 O(A’I’_L(l-‘ra))a

where [0 (A "F)| < (24 K (@, €)) A",
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3. Proof of Lemma 3.. The series (32) converges absolutely and uniformly
on ). By estimates (8)—(9), this follows from

Y iEOn@ = Y 0+ X 0
n=1 0<vA, <1 VAn>1
< (0= )ACT Sl +20 - OEflo@ - X 1

ot

Hence the sum us(2,t) of the series belongs to the class C ().

Consider the existence and continuity of the derivative (u2),(z,t). Let € be
an arbitrary number from the interval (0,7). Differentiating formally equality (32)
with respect to z, by virtue of (10), (34) and (43), we obtain the following equalities
on Q:

(wa)p(z,t) = Y Fa®)v'(@)+ Y Falt)v,(2)

0<VA,<1 VAn>1
) = Y Roue+ Y 20y
0<vAn <1 Nove SR
Z fn et 4 Z O A~ (1+a)) ! ().
VAn>1 VAn>1

The finite series Y o< /5 <1 |[Fn(t)vy,(2)] can be bounded by (b—a)ACoC1T|| f |l -

The other series converge absolutely and uniformly on Q.. Indeed, according to
estimates (10), for every (z,t) € {2, the estimates

), fa(®)

A2

0\ 9! ()] < (24 K(ae)) —)\1/2l+a

are true. Therefore,

> fz_ff)v;(m)‘scl(g:lfn(t)lzym-( > %)1/2’

n

VAn>1 VA1

) 1
Y 0z @)] < 2+ K(a,0)Cr- S e
St VAn>1 71

1

0o
S DGAZ k1+2a7
k=1
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where Dg has the obvious meaning. Having in mind the uniform convergence of the
series Yo7 | fa(t)|? on [0,T], we can conclude that the first and the third series
converge absolutely and uniformly on Q.. Then the convergence of the second series
follows immediately from the convergence of the first one. Therefore, it is proved
that "7 | F,,(t)v},(z) converges absolutely and uniformly on Q.. This and equality
(32) imply that (uz)’(x,t) exists on Q, and the second equality (33) holds on this
closed rectangle. As a consequence, we have (u2),(z,t) € C(Q) N C(Q.).

Let us establish now the existence and continuity of the partial derivative
(u2)}(x,t) on Q.. From (34) it follows F..(t) = fn(t) — AnF,(t). Using this and
(43), we write the formal equalities on €,

(45) (u2)i(z,8) =Y Fp(t)on(2)
n=1

= Y (fal®) = MFu®) vn(@)+ Y fal0)e Mon(@)= Y O, *)vn(@).
0V, <1 VaAn>1 Vaa>1

The finite sum » o< /x-<1 [fn(t) = AnFu(t)|vn(2)| can be bounded by the number
(b—a)(1+T)ACE| f|] c(@)- The first series following this summ converges absolutely

and uniformly on Q.. This can be easily proved by using estimates (8)—(9) and (28).
For the second series we have

> 0% un(@)| < 2+ K(e€)Co- Y /\La

ViR >1 VAn>1
1
< A2+ K(a,€))Co Z T2
k=1

where the majorizing numerical series converges because a € (1/2,1]. Hence, we
proved that the series Y - | F! (t)v,(z) converges (absolutely and) uniformly on
2e, wherefrom the existence of (u2);(«,t) and the first equality (33) on Q. follow.
Also, (u2)i(z,t) € C(Q) NC(Qe).

It remains to consider the existence and continuity of the partial derivative
(uz)"2(x,t). We will start from the series > ° | Fy,(t)v)i(x). By equation (7), we
can first write the equalities

F(t)v!(z)

n

q(@) F (t)vn () — AnFy(t)vn(z)
Q(m)Fn (t)vn (.’L‘) + Frlz (t)vn (.’L‘) - fn(t)vn(m)a

where (z,t) € Q, and then the formal equality

oo o

(46) Y Fa(t)vj(z) = g(2) - Y Fa(tyon(z) + Y Fr(tyva(z) = Y fa(t)vn(@).
n=1 n=1

n=1 n=1



74 LAZETIC

Now, for every t € [e, T] the three series on the right-hand in (46) converge in Ly (G)
to the functions g(z)us(z,t), (u2)i(2,1), f(x,t) respectively. Since the function

U(.’L‘,t) = Q(x)u2($7t) + (u2)2(m,t) - f(mat)

is continuous on ), we see that the first series (46) satisfies the condition imposed
in Proposition 5. That is why there exists the partial derivative (us2),(x,t) on €,
and the equality

82U2 aUQ

W('xat) = q(m‘)UQ(.’E,t) + —('Z'at) - f(.Z',t)

(47) 5

holds on this closed rectangle. Since the number € € (0,7 is arbitrary, we have
(u2)2(x,t) € C(2), and equality (47) shows that uz(x,t) satisfies the equation (1)
on Q (in the ordinary sense).

Proof of Lemma 3 is completed.

Note that Remark 3 remains to be valid in the case considered too.

4. On uniqueness and a priori estimate.. In previous sections we have
established the existence (and some properties) of a classical solution u(z,t). But
this solution is unique, and for it the a priori estimate (x) holds. Proof of these
assertions is given in sections 4-5 §2.

Theorem 3 is proved.

5. On Remarks 1-2.. Remark 1 is obvious: the boundary conditions im-
posed on ¢(z) are, in fact, the compatibility conditions with the boundary condi-
tions imposed on u(z,0).

Remark 2 is based on the following: If we suppose that aji 821 — a21611 # 0,
then Proposition 4 and all the estimates of the Fourier coefficients, used in our
proofs, remain to be valid (see Remark 4 in [10]).

REMARK 4. The part of results presented in this paper, contained in Theorems
1 and 2, was reported on the Voronezh Spring Mathematical Seminar devoted
to “Contemporary Methods in Theory of Boundary Problems”, held in Voronezh
(Russia), May 3rd-9th, 1998.
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