RIGIDITY THEOREMS OF HYPERSURFACES IN A SPHERE

Li Haizhong

Communicated by Mileva Prvanović

ABSTRACT. By the study of Cheng-Yau's self-adjoint operator \square , we prove two rigidity theorems for a class of n-dimensional hypersurfaces in the (n+1)-dimensional unit sphere S^{n+1} .

1. Introduction and Theorems

Let S^{n+1} be an (n+1)-dimensional unit sphere with constant sectional curvature 1, let M be an n-dimensional compact hypersurface in S^{n+1} , and e_1, \ldots, e_n a local orthonormal frame field on $M, \omega_1, \ldots, \omega_n$ its dual coframe field. Then the second fundamental form of M is

$$B = \sum_{i,j} h_{ij} \omega_i \otimes \omega_j.$$

Further, near any given point $p \in M$, we can choose a local frame field e_1, \ldots, e_n so that at $p, \sum_{ij} h_{ij}\omega_i \otimes \omega_j = \sum_i k_i\omega_i \otimes \omega_i$, then the Gauss equations say

$$R_{ijij} = 1 + k_i k_j, \qquad i \neq j, \tag{1.1}$$

$$n(n-1)(R-1) = n^2 H^2 - |B|^2, (1.2)$$

where R is the normalized scalar curvature, $H = \frac{1}{n} \sum_{i} k_i$ is the mean curvature and

 $|B|^2 = \sum_i k_i^2$ the norm square of the second fundamental form of M.

As it is well known, there are many rigidity results for minimal hypersurfaces or hypersurfaces with constant mean curvature H in S^{n+1} by use of J. Simons' method, for example, see [1], [4], [6], [7] etc. In [2], Cheng and Yau introduced a self-adjoint operator \square they proved some rigidity theorems for n-dimensional

¹⁹⁹¹ Mathematics Subject Classification. Primary 53C42; Secondary 53A10.

Supported by the NNSFC No $\dot{1}9701017$ and Basic Science Research Foundation of Tsinghua University.

hypersurfaces with constant scalar curvature in an (n+1)-dimensional unit sphere S^{n+1} . In [3], the author also established some rigidity results by the study of Cheng-Yau's operator and some new estimates. In this paper, we will prove the following results

THEOREM 0.1. Let M be an n-dimensional ($n \ge 3$) compact hypersurface in an (n+1)-dimensional unit sphere S^{n+1} . If

$$|\nabla B|^2 \ge n^2 |\nabla H|^2,\tag{1.3}$$

and

$$0 \le |B|^2 \le 2\sqrt{n-1},\tag{1.4}$$

then either $|B|^2 \equiv 0$ and M is a totally umbilical hypersurface; or $|B|^2 \equiv 2\sqrt{n-1}$ and $M = S^1(r_1) \times S^{n-1}(r_2)$, where

$$r_1^2 = \frac{1}{1 + \sqrt{n-1}}, \quad r_2^2 = \frac{\sqrt{n-1}}{1 + \sqrt{n-1}}.$$
 (1.5)

COROLLARY 0.1. Let M be an n-dimensional $(n \ge 2)$ compact hypersurface with constant mean curvature in an (n+1)-dimensional unit sphere S^{n+1} . If (1.4) holds, then either $|B|^2 \equiv 0$ and M is a totally umbilical hypersurface; or $|B|^2 \equiv 2\sqrt{n-1}$ and $M = S^1(r_1) \times S^{n-1}(r_2)$, where r_1 and r_2 are defined by (1.5).

COROLLARY 0.2. Let M be an n-dimensional $(n \ge 2)$ compact hypersurface with constant normalized scalar curvature R in an (n+1)-dimensional unit sphere S^{n+1} . If (1.4) holds and $R \ge 1$, then M is either $|B|^2 \equiv 0$ and is a totally umbilical hypersurface; or $|B|^2 \equiv 2\sqrt{n-1}$ and $M = S^1(r_1) \times S^{n-1}(r_2)$, where r_1 and r_2 are defined by (1.5).

COROLLARY 0.3. Let M be an n-dimensional ($n \ge 2$) compact hypersurface in an (n+1)-dimensional unit sphere S^{n+1} . Suppose that the normalized scalar curvature R is proportional to the mean curvature H of M, that is, there exists a constant a satisfying

$$R = aH,$$
 $a^2 > 4n/(n-1).$ (1.6)

If (1.4) holds, then either $|B|^2 \equiv 0$ and M is a totally umbilical hypersurface; or $|B|^2 \equiv 2\sqrt{n-1}$ and $M = S^1(r_1) \times S^{n-1}(r_2)$, where r_1 and r_2 are defined by (1.5).

THEOREM 0.2. Let M be an n-dimensional $(n \ge 4)$ compact hypersurface in an (n+1)-dimensional unit sphere S^{n+1} . If

$$|\nabla B|^2 \ge n^2 |\nabla H|^2,$$

and

$$Ric(M) > n - 2, (1.7)$$

then either $\operatorname{Ric}(M) = n-1$ and M is a totally umbilical hypersurface; or $\operatorname{Ric}(M) = n-2$ and $M = S^m(r_1) \times S^{n-m}(r_2)$ for some m with $1 \le m \le n-1$, where

$$r_1^2 = \frac{m-1}{n}, \quad r_2^2 = \frac{n-m-1}{n}.$$
 (1.8)

COROLLARY 0.4. Let M be an n-dimensional $(n \ge 4)$ compact hypersurface with constant mean curvature in an (n+1)-dimensional unit sphere S^{n+1} . If (1.7) holds, then either $\mathrm{Ric}(M) = n-1$ and M is a totally umbilical hypersurface; or $\mathrm{Ric}(M) = n-2$ and $M = S^m(r_1) \times S^{n-m}(r_2)$ for some m with $1 \le m \le n-1$, where r_1 and r_2 are defined by (1.8).

COROLLARY 0.5. Let M be an n-dimensional $(n \ge 4)$ compact hypersurface with constant normalized scalar curvature R in an (n+1)-dimensional unit sphere S^{n+1} . If (1.7) holds and $R \ge 1$, then either $\mathrm{Ric}(M) = n-1$ and M is a totally umbilical hypersurface; or $\mathrm{Ric}(M) = n-2$ and $M = S^m(r_1) \times S^{n-m}(r_2)$ for some m with $1 \le m \le n-1$, where r_1 and r_2 are defined by (1.8).

COROLLARY 0.6. Let M be an n-dimensional ($n \geq 4$) compact hypersurface in (n+1)-dimensional unit sphere S^{n+1} . Suppose that the normalized scalar curvature R is proportional to the mean curvature H of M, that is, there exists a constant a satisfying

$$R = aH$$
, $a^2 > 4n/(n-1)$.

If (1.7) holds, then either $\operatorname{Ric}(M) = n-1$ and M is a totally umbilical hypersurface; or $\operatorname{Ric}(M) = n-2$ and $M = S^m(r_1) \times S^{n-m}(r_2)$ for some m with $1 \le m \le n-1$, where r_1 and r_2 are defined by (1.8).

2. Preliminaries

Let M be an n-dimensional compact hypersurface in an (n+1)-dimensional unit sphere S^{n+1} . For any $p \in M$, we choose a local orthonormal frame e_1, \ldots, e_n , e_{n+1} in S^{n+1} around p, so that e_1, \ldots, e_n are tangent to M. Take the corresponding dual coframe $\{\omega_1, \ldots, \omega_n, \omega_{n+1}\}$. In this paper, we make the following convention on the range of indices:

$$1 \le A, B, C \le n + 1;$$
 $1 \le i, j, k \le n.$

The structure equations of S^{n+1} are

$$d\omega_A = \sum_B \omega_{AB} \wedge \omega_B, \qquad \omega_{AB} = -\omega_{BA},$$

$$d\omega_{AB} = \sum_{C} \omega_{AC} \wedge \omega_{CB} - \omega_{A} \wedge \omega_{B}.$$

If we denote by the same letters the restrictions of ω_A , ω_{AB} to M, then we have

$$d\omega_i = \sum_j \omega_{ij} \wedge \omega_j, \qquad \omega_{ij} = -\omega_{ji}, \tag{2.1}$$

$$d\omega_{ij} = \sum_{k} \omega_{ik} \wedge \omega_{kj} - \frac{1}{2} \sum_{k,l} R_{ijkl} \omega_k \wedge \omega_l, \qquad (2.2)$$

where R_{ijkl} is the curvature tensor of the induced metric on M.

Restricted to M, we have $\omega_{n+1} = 0$, thus

$$0 = d\omega_{n+1} = \sum_{i} \omega_{n+1i} \wedge \omega_{i}, \tag{2.3}$$

and from Cartan's lemma we can write

$$\omega_{in+1} = \sum_{j} h_{ij}\omega_{j}, \qquad h_{ij} = h_{ji}.$$

The quadratic form $B = \sum_{i,j} h_{ij}\omega_i \otimes \omega_j$ is the second fundamental form of M. The Gauss equations are

$$R_{ijkl} = (\delta_{ik}\delta_{jl} - \delta_{il}\delta_{jk}) + h_{ik}h_{jl} - h_{il}h_{jk}, \qquad (2.4)$$

$$R_{ii} = n - 1 + nHh_{ii} - \sum_{k} h_{ik}h_{ki}$$

$$n(n-1)(R-1) = n^2 H^2 - |B|^2, (2.5)$$

where R is the normalized scalar curvature, $H = \frac{1}{n} \sum_{i} h_{ii}$ the mean curvature and $|B|^2 = \sum_{i,j} h_{ij}^2$ the norm square of the second fundamental form of M, respectively.

The Codazzi equation is

$$h_{ijk} = h_{ikj}, (2.6)$$

where the covariant derivative of the second fundamental form is defined by

$$\sum_{k} h_{ijk}\omega_k = dh_{ij} + \sum_{k} h_{kj}\omega_{ki} + \sum_{k} h_{ik}\omega_{kj}.$$
 (2.7)

The second covariant derivative of h_{ij} is defined by

$$\sum_{l} h_{ijkl}\omega_{l} = dh_{ijk} + \sum_{m} h_{mjk}\omega_{mi} + \sum_{m} h_{imk}\omega_{mj} + \sum_{m} h_{ijm}\omega_{mk}.$$
 (2.8)

By exterior differentiation of (2.7), we can see that the following Ricci identities hold

$$h_{ijkl} - h_{ijlk} = \sum_{m} h_{mj} R_{mikl} + \sum_{m} h_{im} R_{mjkl}.$$
 (2.9)

For a C^2 -function f defined on M, the gradient and the Hessian (f_{ij}) are defined by

$$df = \sum_{i} f_{i}\omega_{i}, \qquad \sum_{j} f_{ij}\omega_{j} = df_{i} + \sum_{j} f_{j}\omega_{ji}. \tag{2.10}$$

The Laplacian of f is defined by $\Delta f = \sum_{i} f_{ii}$.

Let $T = \sum_{ij} T_{ij} \omega_i \otimes \omega_j$ be a symmetric tensor defined on M, where

$$T_{ij} = nH\delta_{ij} - h_{ij}. (2.11)$$

Following Cheng-Yau [2], we introduce an operator \square associated to T acting on any C^2 -function f by

$$\Box f = \sum_{i,j} T_{ij} f_{ij} = \sum_{i,j} (nH\delta_{ij} - h_{ij}) f_{ij}, \qquad (2.12)$$

since T_{ij} is divergence-free, it follows [2] that the operator \square is self-adjoint relative to the L^2 inner product of M, i.e.,

$$\int_{M} f \Box g = \int_{M} g \Box f. \tag{2.13}$$

Near a given point $p \in M$, we choose an orthonormal frame field $\{e_1, \ldots, e_n\}$ and their dual frame field $\{\omega_1, \ldots, \omega_n\}$, so that $h_{ij} = k_i \delta_{ij}$ at p, we have the following computation by use of (2.12) and (2.5)

$$\Box(nH) = nH\Delta(nH) - \sum_{i} k_{i}(nH)_{ii}$$

$$= \frac{1}{2}\Delta(nH)^{2} - \sum_{i} (nH)_{i}^{2} - \sum_{i} k_{i}(nH)_{ii}$$

$$= \frac{1}{2}n(n-1)\Delta R + \frac{1}{2}\Delta|B|^{2} - n^{2}|\nabla H|^{2} - \sum_{i} k_{i}(nH)_{ii}.$$
(2.14)

On the other hand, we have through a standard calculation by use of (2.6) and (2.9) (also see (2.8) of [2])

$$\frac{1}{2}\Delta|B|^2 = \sum_{i,j,k} h_{ijk}^2 + \sum_i k_i (nH)_{ii} + \frac{1}{2} \sum_{i,j} R_{ijij} (k_i - k_j)^2.$$
 (2.15)

Putting (2.15) into (2.14), we have

$$\Box(nH) = \frac{1}{2}n(n-1)\Delta R + |\nabla B|^2 - n^2|\nabla H|^2 + \frac{1}{2}\sum_{i,j}R_{ijij}(k_i - k_j)^2.$$
 (2.16)

Now we assume that M is compact (without boundary) and we obtain the following key formula by integrating (2.16) and by noting $\int_{M} \Delta R \, dv = 0$ and $\int_{M} \Box (nH) \, dv = 0$

$$0 = \int_{M} \left[|\nabla B|^{2} - n^{2} |\nabla H|^{2} + \frac{1}{2} \sum_{i,j} R_{ijij} (k_{i} - k_{j})^{2} \right] dv.$$
 (2.17)

3. An algebraic Lemma

From (2.4), we have $R_{ijij} = 1 + k_i k_j$, $i \neq j$, and by putting this into (2.17), we obtain

$$0 = \int_{M} \left[|\nabla B|^{2} - n^{2} |\nabla H|^{2} + n|B|^{2} - n^{2} H^{2} - |B|^{4} + nH \sum_{i} k_{i}^{3} \right] dv.$$
 (3.1)

Let $\mu_i = k_i - H$ and $|Z|^2 = \sum_i \mu_i^2$, we have

$$\sum_{i} \mu_{i} = 0, \qquad |Z|^{2} = |B|^{2} - nH^{2}, \tag{3.2}$$

$$\sum_{i} k_i^3 = \sum_{i} \mu_i^3 + 3H|Z|^2 + nH^3. \tag{3.3}$$

From (3.1)–(3.3), we get

$$0 = \int_{M} \left[|\nabla B|^{2} - n^{2} |\nabla H|^{2} + |Z|^{2} (n + nH^{2} - |Z|^{2}) + nH \sum_{i} \mu_{i}^{3} \right] dv.$$
 (3.4)

We need the following algebraic lemma due to Okumura (see [5])

LEMMA 0.1. [5]. With the same notations as above, for $n \geq 3$, we have

$$-\frac{n-2}{\sqrt{n(n-1)}}|Z|^3 \le \sum_i \mu_i^3 \le \frac{n-2}{\sqrt{n(n-1)}}|Z|^3,\tag{3.5}$$

and equality holds in (3.5) if and only if at least (n-1) of the μ_i are equal.

PROOF. We can get Lemma 3.1 by using the method of Lagrange's multipliers to find the critical points of $\sum_i \mu_i^3$ subject to the conditions: $\sum_i \mu_i = 0$, $\sum_i \mu_i^2 = |Z|^2$. We omit it here.

Combining (3.4) with (3.5), we obtain

$$0 \ge \int_{M} \left[|\nabla B|^{2} - n^{2} |\nabla H|^{2} + |Z|^{2} (n + nH^{2} - |Z|^{2} - \frac{n(n-2)}{\sqrt{n(n-1)}} |H||Z|) \right] dv. \quad (3.6)$$

4. Proof of Theorem 1

By a well-known inequality, we have for an arbitrary real number a > 0

$$2|H||Z| \le aH^2 + \frac{1}{a}|Z|^2. \tag{4.1}$$

Combining (4.1) with (3.6), we get

$$0 \ge \int_{M} \left\{ |\nabla B|^{2} - n^{2} |\nabla H|^{2} + |Z|^{2} \left[n + nH^{2} \left(2 - \frac{(n-2)a}{2\sqrt{n(n-1)}} + \frac{n(n-2)}{2\sqrt{n(n-1)}a} \right) - |B|^{2} \left(1 + \frac{n(n-2)}{2\sqrt{n(n-1)}a} \right) \right] \right\} dv.$$

$$(4.2)$$

Now, we choose a satisfying the following equation

$$2 - \frac{(n-2)a}{2\sqrt{n(n-1)}} + \frac{n(n-2)}{2\sqrt{n(n-1)}a} = 0,$$

that is,

$$a = \frac{n + 2\sqrt{n-1}}{n-2}\sqrt{n}. (4.3)$$

Substituting (4.3) into (4.2), we obtain

$$0 \ge \int_{M} \left\{ |\nabla B|^{2} - n^{2} |\nabla H|^{2} + |Z|^{2} \left[n - \frac{n}{2\sqrt{n-1}} |B|^{2} \right] \right\} dv. \tag{4.4}$$

By the assumption of Theorem 1, the right hand side of (4.4) is non-negative. Thus, either $|Z|^2 \equiv 0$, that is, M is totally umbilical; or

$$|B|^2 = 2\sqrt{n-1}. (4.5)$$

In the latter case, equality holds in Lemma 3.1, and it follows that (n-1) of k_i are equal. After re-enumeration if necessary, we can assume that

$$k_1 = k_2 = \dots = k_{n-1}, \quad k_1 \neq k_n.$$
 (4.6)

In this case, we have from (2.17)

$$\frac{1}{2} \sum_{i,j} R_{ijij} (k_i - k_j)^2 = 0. (4.7)$$

Combining (4.6) with (4.7), we have $R_{1n1n} = 1 + k_1k_n = 0$. Thus we conclude by (4.5)

$$k_1 = \frac{1}{\sqrt[4]{n-1}}, \qquad k_n = -\sqrt[4]{n-1}.$$

Therefore $M = S^1(r_1) \times S^{n-1}(r_2)$, where r_1 and r_2 are given by (1.5). This completes the proof of Theorem 1.

5. Proofs of Corollaries 1-3

The proof of Corollary 1 is obvious. The proof of Corollary 2 follows from Theorem 1 and the following lemma.

LEMMA 0.2. Let M be an n-dimensional compact hypersurface in an (n+1)-dimensional unit sphere S^{n+1} . If the normalized scalar curvature R = constant and $R-1 \ge 0$, then (1.3) holds.

PROOF. From (2.5),

$$n^{2}H^{2} - \sum_{i,j} h_{ij}^{2} = n(n-1)(R-1).$$

Taking the covariant derivative of the above expression, and using the fact R = constant, we get

$$n^2 H H_k = \sum_{i,j} h_{ij} h_{ijk}.$$

It follows that

$$\sum_{k} n^{4} H^{2}(H_{k})^{2} = \sum_{k} \left(\sum_{i,j} h_{ij} h_{ijk} \right)^{2} \le \left(\sum_{i,j} h_{ij}^{2} \right) \sum_{i,j,k} h_{ijk}^{2}, \tag{5.1}$$

that is

$$n^4 H^2 |\nabla H|^2 \le |B|^2 |\nabla B|^2. \tag{5.2}$$

On the other hand, from $R-1 \ge 0$, we have $n^2H^2 - |B|^2 \ge 0$. Thus

$$n^2 H^2 |\nabla H|^2 \le H^2 |\nabla B|^2$$

and Lemma 5.1 follows.

The proof of Corollary 3 comes out from Theorem 1 and the following lemma.

Lemma 0.3. Let M be an n-dimensional compact hypersurface in an (n+1)-dimensional unit sphere S^{n+1} . Suppose that the normalized scalar curvature R is proportional to the mean curvature H of M, that is,

$$R = aH, a^2 > \frac{4n}{n-1},$$
 (5.3)

where a is a constant. Then (1.3) holds.

PROOF. By use of Gauss equations (2.5) and the assumption (5.3), we have

$$|B|^2 = n^2 H^2 + n(n-1)(1-aH). (5.4)$$

It follows that

$$4|B|^{2}|\nabla h|^{2} \ge 4\sum_{k} \left(\sum_{i,j} h_{ij}h_{ijk}\right)^{2} = (2n^{2}H - n(n-1)a)^{2}|\nabla H|^{2}.$$
 (5.5)

By (5.3) and (5.4) we have

$$(2n^{2}H - n(n-1)a)^{2} - 4n^{2}|B|^{2}$$

$$= (4n^{4}H^{2} + n^{2}(n-1)^{2}a^{2} - 4n^{3}(n-1)Ha) - 4n^{3}(nH^{2} + (n-1)(1-aH))$$

$$= n^{2}(n-1)((n-1)a^{2} - 4n) > 0.$$
(5.6)

Combining (5.5) with (5.6), we conclude that (1.3) holds.

1. Proof of Theorem 2

Now we assume

$$Ric(e_i) = R_{ii} = n - 1 + nHk_i - k_i^2 \ge n - 2, \quad 1 \le i \le n,$$
 (6.1)

that is,

$$nHk_i - k_i^2 + 1 \ge 0. (6.2)$$

We have from (6.2)

$$\frac{nH}{2} - \frac{1}{2}\sqrt{n^2H^2 + 4} \le k_i \le \frac{nH}{2} + \frac{1}{2}\sqrt{n^2H^2 + 4}, \qquad 1 \le i \le n.$$
 (6.3)

Therefore we get from (6.3)

$$R_{ijij} = 1 + k_i k_j \ge 0, \quad i \ne j.$$
 (6.4)

The assumptions of Theorem 2 imply that the right hand side of (2.17) is non-negative, thus we have

$$\frac{1}{2} \sum_{i,j} R_{ijij} (k_i - k_j)^2 = 0. (6.5)$$

In the same way as that of Nomizu-Smyth's in [4], it follows that either M is totally umbilical (that is $k_1 = \cdots = k_n$); or M has two different principal curvatures

$$k_1 = \dots = k_m \neq k_{m+1} = \dots = k_n, \qquad R_{1n1n} = 1 + k_1 k_n = 0,$$
 (6.6)

where 1 < m < n. By the assumptions, we have

$$R_{aa} = (m-1)(1+k_1^2) \ge (n-2), \qquad 1 \le a \le m,$$

$$R_{\alpha\alpha} = (n-m-1)(1+k_n^2) = (n-m-1)(1+1/k_1^2) \ge (n-2), \quad m+1 \le \alpha \le n,$$

that is,

$$k_1^2 = \frac{n-m-1}{m-1}, \qquad k_n^2 = \frac{m-1}{n-m-1},$$

and $M = S^m(r_1) \times S^{n-m}(r_2)$, where r_1 and r_2 are given by (1.8). This completes the proof of Theorem 2.

7. Proofs of Corollaries 4-6

The proof of Corollary 4 is obvious. The proof of Corollary 5 follows from Theorem 2 and Lemma 5.1. The proof of Corollary 6 follows from Theorem 2 and Lemma 5.2.

References

- H. Alencar and M. Do Carmo, Hypersurfaces with constant mean curvature in spheres, Proc. Amer. Math. Soc. 120 (1994), 1223-1229.
- [2] S.Y. Cheng and S.T. Yau, Hypersurfaces with constant scalar curvature, Math. Ann. 225 (1977), 195-204.
- [3] H.Z. Li, Hypersurfaces with constant scalar curvature in space forms, Math. Ann. 305 (1996), 665-672.
- [4] K. Nomizu and B. Smyth, A formula of Simon's type and hypersurfaces, J. Differential Geom. 3 (1969), 367-377.
- [5] M. Okumura, Hypersurfaces and a pinching problem on the second fundamental tensor, Amer.
 J. Math. 96 (1974), 207-213.
- [6] J. Simons, Minimal varieties in Riemannian manifolds, Ann. of Math. (2) 88 (1968), 62-105.
- [7] Z.Q. Sun, Compact hypersurfaces with constant scalar curvature in S⁴, Chinese Ann. of Math. Ser. A 8:3(1987), 273-286.

Department of Mathematical Science Tsinghua University Beijing, 100084 People's Republic of China

hli@math.tsinghua.edu.cn

(Received 14 09 1998)