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ABSTRACT. By the study of Cheng-Yau’s self-adjoint operator 1, we prove
two rigidity theorems for a class of n-dimensional hypersurfaces in the (n+1)-
dimensional unit sphere S%+1.

1. Introduction and Theorems

Let S™*! be an (n + 1)-dimensional unit sphere with constant sectional curva-
ture 1, let M be an n-dimensional compact hypersurface in S™*1, and ey,... ,e,
a local orthonormal frame field on M, wy,... ,w, its dual coframe field. Then the
second fundamental form of M is

B = th’jwi Q wj.
3,
Further, near any given point p € M, we can choose a local frame field eq,... e,
so that at p, > hijw; ® wj= > kjw; ® w;, then the Gauss equations say
i i

Rijij = 1 + kikj, i # 7, (L.1)
n(n —1)(R—-1) =n>H? - |B|?, (1.2)
where R is the normalized scalar curvature, H = % >~ k; is the mean curvature and

K]
|B|?> = " k? the norm square of the second fundamental form of M.

K3
As it is well known, there are many rigidity results for minimal hypersurfaces
or hypersurfaces with constant mean curvature H in S™*' by use of J. Simons’
method, for example, see [1], [4], [6], [7] etc. In [2], Cheng and Yau introduced
a self-adjoint operator O they proved some rigidity theorems for n-dimensional
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hypersurfaces with constant scalar curvature in an (n + 1)-dimensional unit sphere
S7+l. In [3], the author also established some rigidity results by the study of
Cheng-Yau’s operator and some new estimates. In this paper, we will prove the
following results

THEOREM 0.1. Let M be an n-dimensional (n > 3) compact hypersurface in
an (n + 1)-dimensional unit sphere S™*!. If

VBJ > n?|VHP, (1.3)

and
0<|B?*<2vVn -1, (1.4)

then either |B|?> = 0 and M is a totally umbilical hypersurface; or |B|?> = 2y/n — 1
and M = S*(r1) x S"~1(ry), where

i SN S N L
1+vn—-1’ 1++vn—-1

COROLLARY 0.1. Let M be an n-dimensional (n > 2) compact hypersurface
with constant mean curvature in an (n + 1)-dimensional unit sphere S™t!. If
(1.4) holds, then either |B|> = 0 and M is a totally umbilical hypersurface; or
|B]? =2vn—1and M = S'(r1) x S"~1(ry), where r; and ry are defined by (1.5).

COROLLARY 0.2. Let M be an n-dimensional (n > 2) compact hypersurface
with constant normalized scalar curvature R in an (n + 1)-dimensional unit sphere
S+l If (1.4) holds and R > 1, then M is either |B|? = 0 and is a totally umbilical
hypersurface; or |B|> = 2y/n — 1 and M = S1(r1) x S~ 1(ry), where r1 and r» are
defined by (1.5).

COROLLARY 0.3. Let M be an n-dimensional (n > 2) compact hypersurface
in an (n + 1)-dimensional unit sphere S"*'. Suppose that the normalized scalar
curvature R is proportional to the mean curvature H of M, that is, there exists a
constant a satisfying

(1.5)

R=aH, a®> > 4n/(n —1). (1.6)
If (1.4) holds, then either |B|*> = 0 and M is a totally umbilical hypersurface; or
|B|? =2v/n —1 and M = S*(r1) x S" *(rs), where r1 and ry are defined by (1.5).
THEOREM 0.2. Let M be an n-dimensional (n > 4) compact hypersurface in
an (n + 1)-dimensional unit sphere S™*!. If
VB> > n®|VH|?,
and
Ric(M) > n -2, (1.7
then either Ric(M) = n—1 and M is a totally umbilical hypersurface; or Ric(M) =
n—2 and M = 8™(r1) x S?""™(ry) for some m with 1 < m < n — 1, where
s m—1

2
’,‘ == ’r ==
1 2

n ’ n

n—m-—1

(1.8)
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COROLLARY 0.4. Let M be an n-dimensional (n > 4) compact hypersurface
with constant mean curvature in an (n + 1)-dimensional unit sphere S"*1. If (1.7)
holds, then either Ric(M) = n — 1 and M is a totally umbilical hypersurface; or
Ric(M) =n —2 and M = S™(r1) x S" ™ (ry) for some m with1 <m <n —1,
where r1 and ro are defined by (1.8).

COROLLARY 0.5. Let M be an n-dimensional (n > 4) compact hypersurface
with constant normalized scalar curvature R in an (n + 1)-dimensional unit sphere
Sntl. If (1.7) holds and R > 1, then either Ric(M) = n — 1 and M is a totally
umbilical hypersurface; or Ric(M) =n — 2 and M = S™(ry) x S"~™(ry) for some
m with 1 <m <n — 1, where r;, and ry are defined by (1.8).

COROLLARY 0.6. Let M be an n-dimensional (n > 4) compact hypersurface in
(n+1)-dimensional unit sphere S™*1. Suppose that the normalized scalar curvature
R is proportional to the mean curvature H of M, that is, there exists a constant a
satisfying

R =aH, a®> > 4n/(n —1).
If (1.7) holds, then either Ric(M) = n—1 and M is a totally umbilical hypersurface;
or Ric(M) =n—2 and M = S™(r1) x S" ™ (ry) for some m with1 <m <n-—1,
where r; and ro are defined by (1.8).

2. Preliminaries

Let M be an n-dimensional compact hypersurface in an (n + 1)-dimensional

unit sphere S™*1. For any p € M, we choose a local orthonormal frame e1, ... , ey,
eny1 in S™! around p, so that ey, ... , e, are tangent to M. Take the corresponding
dual coframe {wy, ... ,wn,wn+1}. In this paper, we make the following convention
on the range of indices:

1<AB,C<n+1; 1<4,j,k<n.

The structure equations of S™t! are
dwa = ZUJAB Awsg, WAB = —WBA,
B

dwap = ZwAC AweB — w4 N\ wWgB.
c
If we denote by the same letters the restrictions of w4, wap to M, then we
have

dw; = Zwij A wj, Wij = —Wji, (2.1)
J
1
dwij = Zwik Nwirj — B} Z Rijriwr A wi, (2.2)
& ko

where R;jr; is the curvature tensor of the induced metric on M.
Restricted to M, we have w1 = 0, thus

0=dwpt1 = an_:,_h' N wj, (2.3)

2
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and from Cartan’s lemma we can write

Wint1 = »_ hijwj, hij = hy;.
J

The quadratic form B = )" h;jw; ® w; is the second fundamental form of M. The
Gauss equations are gy

Rijkt = (0irdj1 — 0i0jx) + hirhji — hahjg, (2.4)
Ri;=n—1+nHh;; — z hikhri
k
n(n —1)(R—1) =n’H? — |BJ?, (2.5)

where R is the normalized scalar curvature, H = % >~; hii the mean curvature and
|B|> = 3~ hi; the norm square of the second fundamental form of M, respectively.
4,

The Codazzi equation is

hijk = hirj, (2.6)
where the covariant derivative of the second fundamental form is defined by
Z hijrwr = dhi; + Z hrjwri + Z hirwe;- (2.7)
k k k

The second covariant derivative of h;; is defined by

> hijiwr = dhijk + > hmjkwmi + Y himkwms + > BijmWmk- (2.8)
l m m m

By exterior differentiation of (2.7), we can see that the following Ricci identities
hold

hijer — hijik = Z e A Z himBmjr - (2.9)

For a C?-function f defined on M, the gradient and the Hessian (f;;) are
defined by

df = Zfiwi’ Zfijwj =dfi + ijwji- (2.10)
% 7 j

The Laplacian of f is defined by Af = E fii-

K2
Let T = ) T;;w; ® w; be a symmetric tensor defined on M, where
ij
Tij = TLH(S»U — ]’Lz] (211)
Following Cheng-Yau [2], we introduce an operator O associated to T acting on
any C?-function f by

Of =) Tijfiy = ) (nHd; — hij) fij, (2.12)

i,J i,J
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since T;; is divergence-free, it follows [2] that the operator O is self-adjoint relative
to the L? inner product of M, i.e.,

/M fOg = /M gOof. (2.13)

Near a given point p € M, we choose an orthonormal frame field {e;,... ,e,} and
their dual frame field {w1,... ,wy}, so that h;; = k;d;; at p, we have the following
computation by use of (2.12) and (2.5)

OnH)=nHA(nH) — Zk (nH);;

%A(nHP - (nH)} - Z ki(nH);; (2.14)

i

_ 1 1 2 2 2
= on(n —DAR+ S A|B* - n*|VH|* - Xi:ki(nH)M,

On the other hand, we have through a standard calculation by use of (2.6) and
(2.9) (also see (2.8) of [2])

%A|B|2 Zh“k+2k (nH) ZRW ). (215)

4,5,k

Putting (2.15) into (2.14), we have

1 1
O(nH) = 5n(n —1)AR + |VB]* — n?|VH|* + 3 ZRijz-,- (ki — k)% (2.16)

Now we assume that M is compact (without boundary) and we obtain the following
key formula by integrating (2.16) and by noting f ARdv=0and [ O(nH)dv =0
M

0 :/ [|VB|2 —R2|VHP + ZRW ]dv (2.17)
M

3. An algebraic Lemma

From (2.4), we have R;j;; = 1+ k;k;, ¢ # j, and by putting this into (2.17), we
obtain

0= / [|VB|2 —n?|VH|? + n|B|*> —n*H? — |B|* + +nHZk$]du. (3.1)
M i
Let p; = k; — H and |Z|> = }_ i, we have
2
Sui=0,  |Z]=|B]? —nH?, (3.2)
i

Zk3 Z/‘z +3H|Z|? + nH?®. (3.3)
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From (3.1)—(3.3), we get

0= / [|VB|2 —n?|VH> +|Z*(n + nH? — |Z|*) + nHpr] dv. (3.4)
M i

We need the following algebraic lemma due to Okumura (see [5])
LeEMMA 0.1. [5]. With the same notations as above, for n > 3, we have

-2
= 122, (3.5)

n—2
= _1Z]P< 3o — _Z
Vvn(n — 1)| "< ;H’z ~ n(n—1)
and equality holds in (3.5) if and only if at least (n — 1) of the u; are equal.

ProOOF. We can get Lemma 3.1 by using the method of Lagrange’s multipliers
to find the critical points of Z 2 subject to the conditions: Z wi =0, Z wi =22
We omit it here. |

Combining (3.4) with (3.5), we obtain

0> / [|VB|2 —n?|VH? +|Z*(n +nH? — |Z|? - |H||Z|)| dv. (3.6)
M

4. Proof of Theorem 1
By a well-known inequality, we have for an arbitrary real number a > 0
2|H||Z| < aH?* + 2|Z|2. (4.1)
Combining (4.1) with (3.6), we get

0> /M {IVBI2 —n’|VH” +|Z? [” +nH’ (2 - 2\(}2?”21(11) * 2\1/17(17(17:—21)&)

— |B|2(1 + %)] }dv.

(4.2)
Now, we choose a satisfying the following equation
__(n—=2)a n(n — 2) _0
2y/n(n—1) 2¢y/n(n—1)a ’
that is,
_n+2yn—
nrR sl (4.3)
Substituting (4.3) into (4.2), we obtain
0> [ {|VBP2—n?VH + |2 —LBQ]}CZ. 44
> [ {ivse —wvmp +jzp o - s 2 pp| b @

By the assumption of Theorem 1, the right hand side of (4.4) is non-negative.
Thus, either |Z|? = 0, that is, M is totally umbilical; or

|B|? =2vn — 1. (4.5)
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In the latter case, equality holds in Lemma 3.1, and it follows that (n — 1) of k; are
equal. After re-enumeration if necessary, we can assume that
ki=ke=---=ky1, ki#kn. (4.6)

In this case, we have from (2.17)
1
> Z Rijij (ki — kj)? = 0. (4.7)
i,J

Combining (4.6) with (4.7), we have Ryp1n, = 1 + k1k, = 0. Thus we conclude by
(4.5)

1
” , kn=—vn-—1.
n—1

Therefore M = S1(r;) x S""!(ry), where r; and 7y are given by (1.5). This
completes the proof of Theorem 1.

ky =

5. Proofs of Corollaries 1-3

The proof of Corollary 1 is obvious. The proof of Corollary 2 follows from
Theorem 1 and the following lemma.

LEMMA 0.2. Let M be an n-dimensional compact hypersurface in an (n + 1)-
dimensional unit sphere S™t1. If the normalized scalar curvature R = constant
and R—1 >0, then (1.3) holds.

ProoOF. From (2.5),

n’H? — thj =nn-1)(R-1).
12

Taking the covariant derivative of the above expression, and using the fact R =
constant, we get

TLQHHk = Z hijh,'jk.
i,J
It follows that
2
Z”4H2(Hk)2 = Z(Zhijhijk> < (Zh;z]) thjka (5.1)
Kk ko~ 2% i3,k

that is

n*H?|VH|* < |B*|VBJ>. (5.2)
On the other hand, from R — 1 > 0, we have n?H? — |B|? > 0. Thus

n*H?|\VH|> < H*|VB|?
and Lemma 5.1 follows. O

The proof of Corollary 3 comes out from Theorem 1 and the following lemma.
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LEMMA 0.3. Let M be an n-dimensional compact hypersurface in an (n + 1)-
dimensional unit sphere S"*!. Suppose that the normalized scalar curvature R is
proportional to the mean curvature H of M, that is,
4n

R =aH, a’ > ,
n—1

(5.3)

where a is a constant. Then (1.3) holds.
PROOF. By use of Gauss equations (2.5) and the assumption (5.3), we have
|B|> =n*H? + n(n —1)(1 — aH). (5.4)
It follows that

2
4BV >4 (Z hijhijk> = (2n2H —n(n —1)a)?|VH|%. (5.5)
k 4,

By (5.3) and (5.4) we have
(2n’H — n(n — 1)a)? — 4n?|B|?
= (4n*H? + n%(n — 1)2a® — 4n3(n — 1)Ha) — 4n®*(nH? + (n — 1)(1 — aH))
=n2(n—1)((n —1)a® — 4n) > 0.

Combining (5.5) with (5.6), we conclude that (1.3) holds. (56E)I
1. Proof of Theorem 2
Now we assume
Ric(e;) = Ry =n—1+nHk; — ki >n—2, 1<i<n, (6.1)
that is,
nHk; —k +1>0. (6.2)

We have from (6.2)

1 H 1

2
Therefore we get from (6.3)

Rijij =1+ kik; >0, i#j. (6.4)

The assumptions of Theorem 2 imply that the right hand side of (2.17) is non-
negative, thus we have

% > Rijij(ki — k;)* = 0. (6.5)
In the same way as that of Nomi;u—Smyth’s in [4], it follows that either M is totally
umbilical (that is k4 = --- = k,,); or M has two different principal curvatures
ki=-=kn#kny1=---=kn, Rinin=1+kk, =0, (6.6)
where 1 < m < n. By the assumptions, we have
Ryo=(m—-1)(1+k)>(n-2), 1<a<m,
Roa=(n—-m-1)1+k)=n-m-1)1+1/k)>n-2), m+1<a<n,
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that is,

n—m-—1 m—1

B = R

m—1 " pn—-m-1

and M = S™(r1) x S ™(rz), where r; and ry are given by (1.8). This completes
the proof of Theorem 2.

7. Proofs of Corollaries 4-6

The proof of Corollary 4 is obvious. The proof of Corollary 5 follows from
Theorem 2 and Lemma, 5.1. The proof of Corollary 6 follows from Theorem 2 and
Lemma 5.2.
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