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ABSTRACT. We discuss the conditions under which the “Lo$ theorem” holds
for ultraproducts of forcing systems.

1. Preliminaries

The notion of reduced product of forcing systems was introduced in [6]. The
aim of this paper is to contribute a bit to the examination of the properties of
such products (more precisely of ultraproducts). Since the results are mostly either
of “negative” or illustrative character, we will have (counter)examples instead of
lemmas and theorems.

Throughout the article L is a first order finitary language. The basic logical
symbols are — (negation), A (conjunction) and 3 (existential quantifier) (the others
are defined by these basic ones). By a theory of the language L we mean a con-
sistent, deductively closed set of sentences. The notation is more or less standard
and the notions are more or less well known. However, for the reader’s convenience
we will repeat some of the basic facts.

AT (L) and SENT(L) are the set of atomic and of all sentences of the language
L respectively. The notion of forcing relation and forcing system has been taken
from [8].

DEFINITION 1.1. Let (C, <, 0) be a partial order with the least element 0 and let
L be alanguage with at least one constant. The (unary) relation IF on CxSENT(L)
is a forcing relation iff the following conditions are fulfilled:

(1) Compatibility condition(s)

for all p,q € C and for each ¢ € AT(L) holds: if p I+ ¢ and p < g, then ¢ I+ ¢;

The next two compatibility conditions are included if L is a language with
equality:
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(la) for any p € C and any closed term ¢ of the language L there exists a
condition ¢ (an element from C') satisfying p < ¢ IFt =t;

(1d) for any closed terms t1, t2, and for any atomic formula ¢(v) (of the language
L) with at most one free variable and for any condition p there exists a condition
g > p such that either p IF t; = ¢ or p IF ¢(¢1) is not true or ¢ Ik @(t2).

2)plFoAyYiff plk ¢ and p Ik

(3) p Ik —¢ iff no condition greater than p forces ¢ (Vg > p —(q IF ¢));

(4) p Ik Jv ¢(v) iff there exists a closed term ¢ (of L) such that p IF ¢(t).

DEFINITION 1.2. A forcing system is a triple (C, I, L), where C is a partial
ordering (<) with the least element, L a language with at least one constant and
I is a forcing relation on C' x SENT(L).

DEFINITION 1.3. [6] The standard reduced product of the family of forcing
systems {F; (= (Cy,lk;, L)) | i € I} for a given filter U over I is the forcing system
F = (IIy Ci,Fu, L), where the relation Ik (C [, Ci x SENT(L)) is defined for
pu € [1;Ci and ¢ € AT(L) by: py Iy ¢ iff {i € I'| p(i) IF; ¢} € U (and like any
forcing relation in other cases). We will write F' = [, F;.

The language extended reduced product of the given family of forcing systems
{F; | i € I}, in notation F' = ([[, Cs,IF,;;, L"), is defined in a similar way. The
difference is that in this product instead of the language L we have the language L’
having in common with the language L the sets of function and relation symbols
but with the set of constants [, T, where T is the set of closed terms of the
language L; consequently, for a condition py and an atomic sentence ¢ (¢ AT (L))
we define: py Ik, ¢ iff {i € I | p(i) IF; ¢;} € U, where ¢; is a formula of the
language L obtained by replacing each constant dyy of L' by d(i) (d € [, T).

This time we will be particularly interested in standard (nonprincipal) ultra-
products of forcing systems (as it was shown that an ultraproduct of forcing systems
for a principal ultrafilter does not offer anything new). In order to simplify nota-
tion we will denote the set {i € I | p(i) <; q(i)} by Xpy,qv (hence py < qu iff
Xpu.qv € U). Analogously, for a sentence ¢ of the language L, X, 4 will be the
set {i € I | p(i) IF; ¢}. In [6] it was proved that

If the set of closed terms T of the language L is of infinite cardinality A and
if the ultrafilter U is AT - complete (that is if it is closed under intersection of any
family of its elements of cardinality < ), then the “Lo$ theorem” holds: py IFy ¢
iff Xpu,6 €U.

In particular, the forcing companion of the forcing system F, in notation
T¢ (déf {¢p € SENT(L) | Oy IFy ——@}) is the “ultraproduct” of the forcing com-
panions TV, i € I: TY = {¢ € SENT(L) | {i € I | ¢ € T} € U} — we write
TC — HU TC,"

In general, for a family of theories of the same language L, {T; | i € I}, and
a filter U over I we put [[,T; = {¢ € SENT(L) | {i € I | ¢ € T;} € U} and
call it the reduced product (of the theories T;). It is obvious that [],, T; is itself a
theory (in the sense given above). If U is an ultrafilter and if all theories T3, i € I,
are complete, then [],, T; is a complete theory too; certainly, this does not hold
in general for any filter. On the other hand, the reduced product of incomplete
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theories can be a complete theory. It is clear as well that if for each i € I M; is a
model of a theory T; and if U is an ultrafilter, then [, M; = [[, Ts.

2. A word on “Los theorem?”

The very strong condition of A*-completeness set on the ultrafilter U in the
case when the set of closed terms is of infinite cardinality A in order to provide the
“Lo$ theorem” cannot in general be omitted (that is one of the reasons why we
introduced the language extended reduced products). For instance, if the index set
I and the set of closed terms T are of the same infinite cardinality in some cases
there is no help; no matter what nonprincipal ultrafilter is chosen the Lo§ theorem
will not hold. The following example illustrates this.

EXAMPLE 2.1. Let A be an (arbitrary) infinite cardinal and let L be a language
with equality, binary relation R and the set of constants {d, | & < A}. For each
a € X let M, be a model of the language L whose domain is just the set of
constants and which satisfies the sentences dg # d, for 0 < 8 < v < X and
RMa(dy,d,) (that is RMe = {(do,ds)}). Let {¢s | 1 < < A} be a well-ordering
of the diagram of M, D(M,), and let C,, be the partial order ({p, | v < A}, Q),
where p, = {¢g | 1 < 8 <~} (po is supposed to be the empty set though we can do
without it). The forcing relation Ik, is defined for p, and ¢ € AT (L) by: p, ko ¢
iff ¢ € p,. Finally, let F,, = (Cy, ko, L) be the corresponding forcing system. If
U is a nonprincipal ultrafilter over A and F' = [[,; F,, then clearly for each « the
following holds: @ Ik, Fv—-=R(do,v) (as well as § I, ——Jv R(dp,v)) while §y does
not force either of the given sentences.

This example shows also that it would not do if we replaced the forcing relation
by the weak forcing relation. By the way (and in connection with the example)
let us just note that it holds trivially for any forcing system: if a condition forces
the sentence of the form Jv——¢(v), then it forces the sentence ——3v ¢(v) too.
Certainly, we do not have always the inverse of this assertion. The next simple
example illustrate this.

ExAMPLE 2.2. Let L be a language with equality, a binary relation symbol R
and a constant d. If T is a theory of the language L which “says” that R is an
irreflexive relation and that at least one element is in relation R with d and if A
is an infinite set of new constants and |- Robinson’s finite forcing relation, then
0 IF ==3v R(d, v), while ) does not force the sentence Jv——R(d,v).

In the previous example we use the fact that we have at disposal infinitely many
new constants “independent (enough)” of T' and that’s (generally) one of the main
properties and advantages of Robinson’s finite forcing (compare with the example
2.1). Another “nice” thing about Robinson’s finite forcing (and its generalization
— n-finite forcing, [4], [5]) is that the forcing companion is independent of the
cardinality of the new set of constants. It is used in the next lemma which is
mostly the reformulation of lemma 2.2 in [6].

LEMMA 2.3. Let X\ be an infinite cardinal, L a language with equality and let
for each a < X T, be a theory of the language L. Further, let A be a set of
new constants (LN A = () of cardinality greater than X and let for each a < A
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b, (ng € w) be Robinson’s ny-finite forcing (to be quite precise let us say that
Robinson’s finite forcing is “up to the forcing companion” what we call IFo-forcing
— see Theorem 2.10 in [4] and the comment following it). If U is an wultrafilter
over X and F = (C,lty, L(A)) the standard reduced product of the forcing systems
(CaslFn,, L(A)) (where C, is the corresponding set of conditions, that is the set of
finite sets of X, UIL,_ sentences of the language L(A) consistent with T, ), then
for any py € C (= [[; Ca) and any sentence ¢ of the language L(A) we have:

pu by ¢ iff Xpy,—-¢ €U

PrOOF. The proof is by induction on the complexity of the formula ¢. We will
consider just the key step (which does not pass in general). Let X, —3,4() € U
and let us suppose that the proposition holds for all formulas of the complexity
less than the complexity of the formula v (v). For given ¢y > py and for each
B € Xpy g0 NXpy ——3vp(v) let 7 and tg be, respectively, a condition (from Cs) and
a closed term of the language L(A) such that ¢(3) C rg IFn, 9 (tg). If a is a constant
from A which appears neither in the sentences of any rg nor in any of the terms
tg, then (for each § from the chosen subset of A) sg = rg U {tg = a} is a condition
and sg IFn, ——(a) (according to 2.11 from [8]; see also [4] and 2.12 in [1]).
Therefore, if s € [], Cy is defined by s(a) = ;a zt}fefifﬁéw N Xpy, 30 o() ,
then sy > qu > py and sy Iky =1 (a), whence py IFy =—Fv 3 (v).

If we put (in accordance with the notation from [8]) T¢ o {¢p € SENT(L(A)) |

bu IFy ——¢} and TC= ¥ {6 € SENT(L(A)) | 0 Ik, ——¢} (thus the forcing com-
panion T7= is the set T9NSENT(L)), we have: T¢ =[], T%, T°NSENT(L) =
[Iy T7. O

Again, the condition |A| > A cannot in general be omitted. The next example
(which is similar to 2.1) shows it.

ExAMPLE 2.4. Let A be an infinite cardinal and let L be a language with
equality, binary relation R and a set of constants {d, | @ < A}. For each a < A
let Ty, be the theory of the language L with the set of axioms: {Vv (R(dp,v) <
v=do)}U{dg #dy | 0< B <y (< AN)}U{VuVv(u # do = —R(u,v)}. Finally,
let A= {aq | @ < A} be the set of new constants and let U be a regular ultrafilter
over \. If F, = (C,, ko, L(A)) is the Robinson’s forcing system relative to the
theory T, and the set of constants A and if F = [[,; Fo (= ([[y Ca,Fv, L(A)),
then Xg, 3, R(do,v) € U but @y does not force ~—3v R(dy,v).

PROOF. Let S, (\) be the set of all finite subsets of A and let f be a bijective

mapping of A onto S, (A\) such that for each a < A X, & {B<A|aef(P)}el.

For each a < A let p, = {~R(dy,a,) | v € f(a)} and let p € [[, Cs be given
by: p(a) = ps- Let us suppose that there is some condition gy > py which forces
Jv R(dp,v). In that case there exists also some constant a, from A such that
qu I+ R(do, a). But then Xy, o, N Xy, R(d,a,) N Xy =0 € U, a contradiction (§ €
X N Xy, R(do,ay) N Xy would give ~R(do,ay) € p(d) C q(d) Iks R(do,ay)). O

pu.qu qu,
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Let us remark that just the wT-incompleteness of an ultrafilter U does not
allow that A be a countable set if we want the “Lo§ theorem” for weak forcing.
Namely, we have

ExAMPLE 2.5. Let the language L and the theories T,, @ < A, be as in
the previous example and let A be a countable set {a, | n € w} and U an w™-
incomplete ultrafilter over A\. Then again Xp, -3, R(do,v) € U while 0y does not
force ——3v R(dp, v).

PROOF. Let (X, | n € w) be a sequence of elements of U such that X3 O X,
for m > k and N,,c,, Xn = 0. Let us put

_{ 0 a g X
Pa =\ {-R(do, ), ... ,~R(do,an)} @€ Xn\ Xnp1

Now @y does not force =——3v R(dp, v) for there are no condition gy > py and a
constant ap from A such that gy IFy R(do,ar). Really, if such condition (gy)
and constant (a) existed, we would obtain for a € Xy, ¢ N Xgy R(do,ar) N Xa:
- R(dp,ar) € p(a) C q(a) k4 R(do,ag)-

Let L be a language with equality, {T | @ < A} a family of theories of the
language L, A a set of new constants of cardinality large enough and let for each
a < A Ik, be the Robinson’s finite forcing relative to the theory T, and the set
of constants A. We have just shown that for ([],, Ca,IFv,L(A)), the standard
ultraproduct of the forcing systems (Cq,IFo, L(A4)), a < A, for a given ultrafilter U,
holds: T N SENT(L) = [[; TS. However, the standard ultraproduct generally
does not “close the circle”; by this we mean: the following need not hold [],, T! =
(ITy Ta)?. Let us give examples for both possibilities.

ExAMPLE 2.6. Let L be a language with equality and a binary relation symbol

R. Forn € N (= w\ {0}) let C,, be a chain of n elements (in particular, each C,,

is a model of the language L). If T, = Th(C,) (¥ {¢ € SENT(L) | C, E ¢})

and if U is a nonprincipal ultrafilter over N, then ([T, Tn)? # [1y T4

ProoF. Each T, being a complete, forcing complete theory (T,, = TS — see
4.10 in [1]) we have [[,; T} = [y Tn, while [[;; T, is a complete theory — we
deal with the theory of infinite linear ordering with the minimal and maximal
element satisfying Vo(Ju(v < u) = Jwlv < w A Vz(v < z = w < 2)) and
Vo(Fu(v > u) = Jw(v >w AVz(v> 2z = w > z)) — which is not forcing complete
(no model of this theory is existentially complete). O

EXAMPLE 2.7. Let P = {p,, | n € w} be the set of all primes (pp = 2, py = 3
and so on) and for each n € w let A,, be the cyclic group of order 1+ [];_, -
If for each n € w, T,, = Th(A,,) and if U is a nonprincipal ultrafilter over w, then

HU Tr{ = (HU Tn)f-

PROOF. Again T,, = T for each n and so [[;; T = [[;; Tn- On the other hand
[I, T is the complete theory of torsion-free divisible Abelian groups; in the group
A, for all a € A, the equations a = p;z, ¢ = 0,...,n, (we use additive notation)
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have the unique solutions and if (b,)y # (0)y, then for any px px(bn)v # (O)u-
Hence [];; T is a model complete theory and ([1,; Tn) =1, TS (= 1y Tn). O

3. A word on generic models

In the sequel we show that in the case of ultraproducts of finite forcing systems
we cannot in general expect the ultraproducts of generic models (when they exist)
to satisfy the conditions of the definition of generic models (see 3.1 and 3.2 in [1])
with respect to the ultraproduct of corresponding theories and ultraproduct forcing
relations.

Let T,, a < A, be a family of theories of a language L and let for each a < A
M, be a Ty-generic model. Surely, if the language L is uncountable it can happen
that we do not have any generic model; thus we simply presume their existence.
Let U be a nonprincipal ultrafilter over A and let M = [],, M,. Now we have

LEMMA 3.1. Let A be an infinite set and let (A, G) be an assignment of con-
stants to M (we recall: G is a mapping of A into M such that the set {G(a) | a € A}
is a set of generators for M; hence, any element from M is denoted by at least one
closed term of L(A)). Let G(a) = (an)v (an € M,) and let {ay) be the fized
“representative” of G(a). We have:

(1) If we define Gq : A — M, by Gu(a) = aq, then X def {a <A | (4,Gq)
is an assignment of constants to My} € U;

(2) (3.1 in [1]) M is consistent with T =[], Ta.

PROOF. (1) If we suppose X € U and if we chose from each Mg, 8 < A, an
element bg so that if 3 € X, then bg is not in the closure of the set {ag | a € A},
then the element (bg)y would not be denoted by any term of L(A).

Let us note that in this item we did not use at all the fact that the models
M, a < A, are generic; in other words this result holds for an ultraproduct of any
family of models of the language L.

(2) We are to show that T'U D4 g)(M) is consistent (D4 gy(M) is the set of
basic sentences of L(A) true in M). Let p = {¢1,... , ¢}, ¢i = ¢i(al,... ,at)), be
any finite subset of D4 gy(M). Since we have M = ¢M[G(a}), ... ,G(a},)] (for

each ), the sets X; ef {a < X | M, = ¢} [Galad),. .. ,Go(al))]} are elements of
U. Thus {a < A | ToUp is consistent } € U and consequently T'Up is consistent. [

Unfortunately (or fortunately, it depends on how one looks at all this), but
quite expected, we do not always have the second part of the definition of generic
models, that is it does not have to hold (for sentences ¢ of L(A)):

M = ¢ iff there exists a finite subset p of D 4 gy(M) such that p Iy ¢;
of course, it is understood that p(a) = p whenever T, U p is consistent (and this
will always happen when p C D4 g.)(Ma)).

We prove the last claim indirectly. Namely, supposing that |A| > A and that
the assertion above holds, we would have as well:

M (= [, My) completes [],, T2,
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(in contradiction to, for example, 2.6). Indeed, let K be any model of []; T U
Dia,cy(M) and let M = ¢(@). If p (= p(a,b)) is a finite subset of D4 gy (M)
|

such that p IFy ¢, then Y def {a < A | plkq ¢} € U. Hence Z def {a < A
T + va,5(A\ p(@,v) = ¢(u))} € U (for Y C Z - see 2.20 in [1]) and so [, TS +
v, o(\ p(u,v) = ¢(w). It follows that K |= ¢(a@) (because of K = A p(a,b)).

In Example 2.7 we have that “the circle is closed” as well as that the ultraprod-
uct of generic models is a generic model. Certainly, the later fact is not (necessarily)
a consequence of the former.

EXAMPLE 3.2. Let T = Th(IN), where N is the (standard) model of natural
numbers in the language with equality and with the binary functions + and x
and constants 0,1. It is known that T is forcing complete and that N is, up
to isomorphism, the only T-generic model [1]. It follows: if U is a nonprincipal
ultrafilter over w, then ([[, 7)Y =T% =T (=[], T), but [], N is not a generic
model. On the other hand, if F is an wt-complete ultrafilter over some set I, then
[z N, being isomorphic to N, is a generic model.

For the last proposition we will need

LEMMA 3.3. Let T be a theory of the language L with a constant ¢ and let
C ={ca | @ < A} (X an arbitrary cardinal) be a set of constants not included in L.
IfLi=LUC,E={ca=c|ca €C} and Ty =TUE (here we do not stick to our
definition of a theory — what we mean exactly is, of course, that Ty is the deductive
closure of the “right side”; this remark will be tacitly assumed in the sequel too)
and if A is an arbitrary infinite set of constants disjoint with L1, then the following
hold:

(1) If p is a condition of L(A) relative to the theory T and if ¢ is a sentence
of the language L(A), then

p ”_T _'_'¢ fo p “_T1 _'ﬁ(ﬁa

where IFp and |Fp, are forcing relations with respect to the theories T and T and
the languages L(A) and Lq(A) respectively;
(2) T/ is the deductive closure of T U E; consequently, TY = T/ N SENT(L);
(3) If M is a T-generic model, then My = (M, M), x, where Mt = cM for
each a < A, is a T1-generic model. On the other hand, if K is a T} -generic model,
then its reduction to the language L is a T-generic model.

PrOOF. Everything is rather obvious. However, the next facts are even more
obvious. If p is a finite set of basic sentences of the language L(A), then T U

p is consistent iff T3 U p is consistent. If p(cq,,-.. ,Cq,) i a condition of T3,
then p(c,...,c¢) is a condition of both T and T; (since for any formula ¢ T F
Y(cays .- ,c8,) < Y(c, ... ,c)); let us just say that we point out only the constants

from C (the others are of no interest for the proof).

(1) The proof is by induction on the complexity of the formula ¢.

Let ¢ be atomic and let p Ik =—¢. Let us suppose that it does not hold that
p Ik, =—¢. Then, for some condition g(cq,,- - - ,Cay) of T1, p C q Ik, —¢. Because
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of Lemma 2.3 in [4] and the previous remark, p C ¢(c, ... ,¢) k1, =¢. But for some
condition r of T ¢(c, ... ,¢) Cr lkr ¢, whence also r Ik, ¢, a contradiction.

If p kg, =@ (¢ is still atomic), but p C g IFr —¢ (for some condition ¢ of T'),
then for some condition 7(cq,,- .. ,Cq,) of T1 holds: ¢ C r(cay,--- ,Ca,) I, ¢. It
follows that ¢ C r(c,... ,c) U {¢}, contradictory to ¢ IF7 —¢.

The case ¢ =1 A6 is trivial (let us just recall: p IF —=—(p A @) iff p IF =) and
plF ~—).

Let ¢ = ) and let p Ik —p. If for some condition ¢(cay,---,Ca) (Of
Ty), extending p, q(Cay,---,Cay) IFmy %, then (again by Lemma 2.3 from [4])
q(c,...,¢) Ik, =) and by inductive hypothesis (p C) q(c,...,¢) Ikr =), a
contradiction. The other direction is very trivial.

Finally, let ¢ = Fv(v) and let p IFy =—Jvp(v). Let us presume that for some
condition ¢(cqq,--- ,Ca,) of Th we have: p C q(cay,--- ,¢0,) Ik, =Fvp(v). But
for some condition 7 of T and for some closed term of the language L(A) it holds
that p C q(c,...,c) C r Ikr (t). By the inductive assumption r by, ——)(t).
But if r; = (r\ ¢lc,...,¢)) Uglcayy--- ,Cap), then Tt H A7 & A7 and hence
r1 Ik, = (t), a contradiction.

Let now p Ik, =—=Jvep(v). If a condition ¢ of T extends p and forces, with
respect to T, the sentence —3v )(v), then, for some condition r(cq,,- - - ,Cq,) and
some closed term t(cay,--- 1 €Cay)s 4 € T(Cays-- - yCap) by W (#(Cayy--- ,Ca,)). Hence
qgCr(c...,c)lkm = (t(cays--- ,Cay)), but also r(c,... ,c) Ik, =(t(c,... ,c))
for Tlf[r] F(t(cays---s€ar)) < Y(t(c,... ,c)) (surely, all sentences ¢, = ¢, a < A,
belong to Tlf) The inductive hypothesis gives (¢ C) r(c, - .. ,¢) by = (t(c, - .. ,¢)),
a contradiction again.

(2) and (3) follow directly from (1). For instance, let M be a T-generic
model and let (4,G) be an assignment of constants to M. Certainly, (A, G) is
an assignment of constants to My = (M, cM1)acn (Mt = M for each a < A)
as well. Tt is clear also that M; is consistent with 77. Still we are to prove
that for any sentence ¢ of the language L;(A) the following holds: M; | ¢
iff 3p C Dia,qy(My) p Ik, ¢ As it is known we should check only the case
M, | ¢ = Ip C Dy y(My) p Ik, =¢. Let My | =¢(cays--- ,Ca;)- Then
M = —é(c, ... ,¢), so for some condition p C Di4,qy(M) p IFr =¢(c,...c). By (1)

plkr —¢(e, ... ,c), whence also p Ik, —d(cay,s--- sCay)-
In a similar way we prove that the reduction of T3 -generic model to the language
L is a T-generic model. |

In the end using an example of S. Shelah we give a family of theories such that
each member of the family has (finitely) generic model, while the ultraproduct of
the family is without generic models.

THEOREM 3.4. Let L be a language with equality, binary operations addition
and multiplication and individual constant n for each natural number n and let
T = Th(N), where N is the standard model of natural numbers (in the language L ).
Let C = {cq | @ < N1} be the set of constants disjoint with L and let for each o < Xy
To =TUELUD,, where E, = {cg =0|B8>a}, Dy ={cg#c, |0<B<y<a}.
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If U is a uniform ultrafilter over Xy, then ([[;Ta)’ = [Iy TS and there is no
[1 Tw-generic model.

PrOOF. We are working in the language Ly = LUC. Let T = {¢(vy,... ,ux) €
FORM(L) | N = ¢[nq,... ,ng] for all distinct natural numbers ni,... ,ng}. Due
to Theorem 2.1 from [9] and the previous lemma we have (for each a < X;):

T =T U{¢(cp,,-.- ,ca,) | all indices B, ... , B are distinct and less than

a and ¢(vy,...,v) €T} U E,.

Since U is a uniform ultrafilter we obtain [[, T, =T U {cg #¢, |0 < B <7 <Ry}
and [, TS =T U {¢(cg, ;.- ,ca,) | all indices By, ... , B¢ are distinct and less than
N; and ¢(vi,...,vr) € T} = ([I,; Ta)’ (thus we have the “closed circle”).

Shelah showed in paper mentioned above that [[,, T, is without generic models,
while due to previous lemma and the well known fact that theories of countable
languages have (at least one) generic model [1], each T}, has generic model. O
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