PUBLICATIONS DE L’INSTITUT MATHEMATIQUE
Nouvelle série, tome 70(84) (2001), 26-36

ORTHOGONAL POLYNOMIALS AND
REGULARLY VARYING SEQUENCES
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ABSTRACT. We introduce a method of estimating asymptotic behaviour
of polynomials %a)(a:) = D k<n Crankz®, n — oo, related to a given
polynomial Qn(z) = >, anpz®, where (ck), k € N is any regularly
varying sequence of index « in the sense of Karamata. Then we apply our
results to classical orthogonal polynomials as relevant examples.

Preliminaries

Slowly varying functions L(z) (s.v.f.) in Karamata’s sense are defined on the
positive part of real axis, positive, measurable and satisfying: lim L(A\z)/L(z) =1
for each A > 0. Examples of s.v.f. are: ree
Inzx

In®z, In®(Inz), exp(ln®z), exp( ), a,beR, 0<c<1, etc.

Inln 2
A regularly varying function R,(z) (r.v.f.) of index « is defined as R,(z) :=
z*L(z), o € R. An excellent survey of properties, characterization, representation,
etc. connected with regular variation is given in [1] and [2]; therefore, we suppose
the reader is familiar with it.

In [3] we defined a class L* of analytic slowly varying functions, with which
we deal afterwards. Namely, for any slowly varying L(z) € Loc(L) (i.e., set of
locally bounded functions with a property L(0") = O(1)), we define another s.v.f.
L*(z) € L* by:

L*z) = o /0 Tt L1yt

satisfying L*(z) € C*°; L*(xz) ~ L(z), £ — oo. Another remarkable property is
the possibility of analytic continuation of L*(x) on the right complex half-plane
without loss of regularity mode, i.e.:

L*(z) ~ L*(|z]) ~ L(|z|), |2] = 00, Rez >0.
We need here two more propositions from [3];
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PROPOSITION L4. Ifa(s) = 00, s = 00; a(s) ~ b(s), s = 00, then R} (a(s)) ~
R} (b(s)), s— oo.

PROPOSITION L5. (smooth variation) The derivatives of analytic regularly
varying functions satisfy:

5™ (Ra(s))™
R (s)
Also, we have to introduce an operator, defined for polynomials @, (x) with

positive coefficients and z > 0, namely: Q, (z) == 2Q.,(2)/Qn(z).
A sequence (cp),n € N, of positive numbers is regularly varying if:

—ala—1){a—2)---(a—m+1), s— o0, meN.

1i_>m cpany/en = P(A) € (0,00), for each A > 0.

In 1973 Bojani¢ and Seneta unified the theory of regularly varying functions
and regularly varying sequences proving that:

(i) the above limit function ¥(A) is of the form AP for some p € R;

(ii) the function f(x) := c[,] varies regularly with index p.

Thus we can treat every regularly varying sequence as the integer values of
some regularly varying function (the property L € Loc L is obvious here). In the
sequel we consider regularly varying sequences (cx), ¥ € N of index «, generated
by an associated regularly varying function, i.e., ¢t := k*L(k), k € N, and,
alternatively ¢ := k*L*(k), k€ N, a € R

Results

Now, we are able to formulate a crucial theorem concerning asymptotic be-
haviour of Q,(z) = >4, cran,z®, related to a given polynomial: Q,(z) :=
D k<n anpz®, with positive coefficients ay.

THEOREM A. For any fixed z € RY, if
I sup@,,(z) < M < oo,
n

where the constant M does not depend on x, and

(1) lim Q(2)/$(n) = a(z) #0

then for some ¢ monotone increasing to infinity with n, then

(A) Qn(x) ~ 0’ (2)cfy(ny @n(@), 1 — o0,

for all regularly varying sequences (cy),k € N, of index 3, 3 < —1.

Then we show, under some supposition about the distribution of zeros of @, (z),
that (A) is valid for arbitrary 8 € R (Proposition B2). Finally, using a form of
Toeplitz Limits Preservance Theorem we prove that Theorem A is true for any
regularly varying sequence (cg), k € N.

For the proof of the theorem we need some more lemmas.
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LEMMA Al. Q,(z) >0 for z € Rt.

a1 @@ gy L
Proof. Since Q,,(z) = @n(w)( (@) Qn(x)> and

z(zQy,(z)) = ksznk%nkmk, Qn(z) = Zki)nn#’

— 1 N 2 k +
762”(37)@”(@5(16 Qn(z))’ankx” >0, z € RT.

LEMMA A2. Q,(z) is monotone increasing with z.

we have @n (z)

Proof. Simple consequence of Lemma Al.

LEMMA A3. Under the condition (I) of Theorem A, for any x,t € R¥,

Qn(ze™) e M1 o
T0.@) < exp (TQn(x))

Proof. Condition (I) is equivalent with:

(A3.1) M < M ds, s>0.
Qn(s) 8

Integrating (A3.1) over s € [ze “,z], u > 0, we get: In @n(x) —In @n(me’“) < Mu,
u >0, i.e.,

(A3.2) Qnlze™) > Qn(z)e™M™.

Integrating (A3.2) over u € [0, t], we come to the conclusion of the lemma.

LEMMA A4. Regularly varying sequences (cj) of index —(a + 1), a > 0, have
the following integral representation:

L*(k >
¢ = kail) :/0 e *u(a,t)dt, k€N,

i ot —w)* L1 /u) du, a >0,
L(l/t)a a = 0

Proof. Case a = 0 is valid by definition (L1). For a > 0 and the Convolution
Theorem for Laplace transform, we get:

oo 1 o0 o0
e *u(a,t)dt = —/ e ktpa—l dt-/ e ML(1/t)dt
/0 (@tit= g | (1/t)

0
1 L*k)  L*(k)

where u(a,t) is given by u(a,t) = {
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Now we are able to give

Proof of Theorem A. Using the expression for (cj) of index § < —1 from

Lemma A4, we have:
e n(ze™ 5" >
= [Tuts-ro®E da - Mo+ [0
0 n

Qu (=)
where &, = &,(2) := ¢(n) " /a().

For the estimation of expression U we shall use the following identity:

Qn(:ce
" Qul@)

which is easy to check by double partial integration. According to Lemma Al

and condition (I) from Theorem A, we have: 0 < @n(a) < M < oo, where the
constant M does not depend on a or n. Also, since a < z, from Lemma A2 follows

@n(a) < Qn(w), hence

—U+W,

~

s JIP
(A.1) In +th(x):/ wQn(a)Q, (a) dw, a:=ze¥
0

~

b2 ~ ¢ M A
< / wQn(a)Q,(a)dw < MQn(.CI?)/ wdw = EQH(.TL‘) t2.
0 0
Therefore, from (A.2) we get:

Qn(ze™)
Qul)

where the absolute constant in O does not depend on z or ¢t. Now,

&n
U= / exp ln

( )
Since e =1 + O(Be®), B > 0 with a constant in O independent of B and, for
t € (0,&n), O(Qn(2)t2) = O(1); from (A.3) we get:

In = Qn(@)(~t + 0(t?)), z€R*, t>0;

tn . oA
)) (—ﬁ—l,t)dt:/ u(—B—1,t)e @ (@) O Cn(@) gy,
0

E'n. § ~ —~
U= / - —ltfw“”ﬁ+/'ubﬂ—Lﬂ(w“WXﬂ%@»ﬁ

0

= / u(_g -1 t) *th(E) dt — / u(_ﬂ _ 1’t)67t@n(z) dt
0

n

+m@m»/t%ew4@f@wa=m+w+m.
0

Now, taking into account Proposition L4, condition (IT) of Theorem A and elemen-
tary properties of regularly varying sequences (cf. [2, pp. 49-54]), we see that:

Uy ~ aﬁ(x)cf‘¢(n)], n — 00;
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and, evidently:

0| = / e tu(=B — 1,t)e H@n@) gy

n

= O~ (@n(@)-1)) / e"tu(—B — 1,t)dt = O(e™ /2% (M),
0

for n sufficiently large.
Using Proposition we get

Us = O(Qn(z)) - %(C*(s))w:m(w)) = 0(@n(2)) - O(C*s(;) ) (s=Qn (2))
_ o (¢m)
=05 )

Therefore, we see that: U ~ Uy ~ aﬁ(x)ci‘(b(n)], n — oo. Estimating W, we consider
the polynomial P,(z) := Q,(z)/z. Since Qn(z) = 1+ P,(z), from the condition
(I) we obtain P, (z) < 2M for n sufficiently large; hence, Lemma A3 gives:

e—2Mt -1

P, (ze™?) ~
i £ Pu@).

Po(z) = exp

So

672Mt -1~

W= [Cetu(=p - 1,02 D gy o /Oz—tu(—ﬁ —1,%) exp(TPn(a:))dt

£n Py (z)

e 2Mén _ 1 b ¢ 1 1/2

s - —tu(—8 — = —3¢(n)
<exp< i Pn(w)) /0 e‘u(-B—-1t)dt =0(e ), n— oo.
Hence, we see that Q% (z)/Qn(z) = U + W ~ aﬁ(x)cf‘¢(n)], n — 00, and Theorem
A is proved.

Analysing Theorem A, we see that condition (I) is the most ambiguous one. It
happens that fulfilment of this condition essentially depends on the distribution of
the zeros of polynomial (), (z). In this article we are satisfied with the next two
propositions:

PropOSITION B1. If all zeros of Q,(x) belong to left complex half-plane (in-
cluding the imaginary axis) then, for all t € RT, the condition (I) in Theorem A
is satisfied with M = 2.

Proof. If (—znk), k < n, are the zeros of Q,(z), then

Qn(@) = ann [[ (@ + 20k), Reznk >0, 21 =0;
k<n
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~ d ~ _ TZnk
Qn(z) = Z T+ Znk Z Unks x%Qn(z) o ; (T + znp)? Z Unk-

k<n k<n

Since Im @n(x) = 0, we obtain: @n(w) = Re(Xp<p, Unk) = 2op<, Reunk and,
analogously, x%@n(m) = Ekgn Rev,. But, since for z € RT,

Revnr  Rezpi(z + Rezni)? + Im?2, (2x + Re 1)

0< =
Re uns, (z + Re znp) ((z + Re 2n1)2 + Im?2,,)

< 2

we get

ZReunk <2ZReunk—2Qn( )s

k<n k<n
i.e., Proposition B1 is proved.

Remark. Because of the nature of Laplace transform, the proof of theorem
A holds if the index 8 of regularly varying sequences (cj), k € N, satisfies the
condition 8+ 1 < 0.

But, for the special distribution of the zeros of @, (z) mentioned above, we are
able to prove that theorem A is valid for all finite values of 3, i.e.:

PROPOSITION B2. If all zeros of polynomial Qn(x) belong, as before, to the left
complex half-plane, then Theorem A is valid for any value of indexes of sequences

(€k)-
Proof. We consider the polynomial R, (z) := zQ/,(z) = >, kanrz*. The
zeros of R, () are, according to a well-known theorem of Gauss, not outside of

the convex polygon determined by the zeros of @, (x); so they are also in the left
complex half-plane and condition (I) is satisfied.

LEMMA C2. If lim, ¢(n) = +oo, then for x € R*, then the following state-
ments are equivalent

Qn(2) . Ru(z)

lim =a(x), lim = a(z),

nog(n) n o ¢(n)

Proof. Tt is easy to check that R, (z) — Qn(z) = Q (z) i.e., (Lemma Al and
Proposition B1) 0 < R, (z) — Qn(z) < 2, i.e.,

o< (G —@) = (e ) <5t

wherefrom lemma follows.
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Now we can apply Theorem A to the polynomial R, (z). Remark about zeros
of R, (z) and Lemma C2 says that conditions (I) and (II) are satisfied, so:

Z kcianpxh ~ c’f¢(n)]aﬁ(w)Rn(a:) = cf¢(n)]aﬂ(x)xQ;(x)
k<n

~ ¢(”)Cf¢(n)]aﬂ+l($)Qn($)a n — o0, < -1

ie.,

Z kaank:c’“ ~ [¢(")]Cf¢(n)]aﬁ+1(w)Qn(l‘), n — oo.
k<n

The last relation shows that Theorem A is valid for regularly varying sequences
(cj) of index B + 1. Applying the algorithm mentioned above to the polynomial
Sn(z) := 2R (2) = Y 1<, K ankz®, etc. we come to the conclusion from Proposition
B2. -

Together, Propositions B1 and B2 produce

THEOREM B. Let S denote the set of positive reals satisfying the condition (II)
of Theorem A, zo € S, and let all zeros of the polynomial Q. (z) = >, <, anka",
k € N, belong to the left complex half-plane (including the imaginary axis). Then,
for every fixed x € S, x > xg:

Q%“)(a:) = Z CranpT® ~ a®(z)Crp(n) @n(z), N — 00, a €R;
k<n

where (ci) is any regularly varying sequence of index «.

Proof. Propositions B1 and B2 say that Theorem B is valid for the class of
sequences (ck), in particular

(B1) Qr(z) = Z Chanpxt ~ a®(2)C{p(n)@n(®), n — 00, a € R.
k<n

But ¢}, ~ ¢m, m = oo (L2 and L4) so, all we have to prove is Q%(z) ~ @} (z),
n — 00, £g < ¢ € S. For this purpose we invoke an old proposition:

LemMMmA B1. (O. Toeplitz (1911)) Let the triangular matrix (pnk), k < n,
n € N, consist of non-negative elements satisfying >, ., pnk = 1, and let (sy),
n € N is an arbitrary real sequence. Then necessary and sufficient condition for
the implication lim,, s, = s = lim, ), ,, SkPnk = § is lim, ppx = 0, for every fixed
k.

We are going to use the lemma in the following way. Let

. c}';ank;ck_ __Cq
Pnk = W; Sn = P

n n

n € N.
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Then Y., Pnr =1; lim, s, =s =1, and

2k<n Czankmkg_ Q% ()
lim SgPnk = lim ——= =lim =2~ =s5=1,
n k; e Qn(@) n Qr(x)
if and only if
(Bs) hmp hm Chankat 0
2 nk — -
Qn(x)

To prove this, we recall (Lemma A2) that @n(t) is monotone increasing with t, i.e.,
Qn(t) > Qn(xo) for each t > xy, i.e.,

Q&) _ Onlao)
Qnt) -t

Integrating the last expression for ¢ € [z, z], we obtain:

t > 2.

Qn() > Qn(z0) (x/xo)@"(zo) > aniTh (33/300)@"(20)- (Bs)

Since zg,z € S; z/xo > 1, using (B;) and (B3) for fixed k and sufficiently large
n, we get:

crankzt chanpz®

ok = =0
Pk = Qn@) ~ et (@)t @n(@)

and Theorem B is proved.

) = 0(¢**!(n) (z0/z)% =) = 0(1),

Now, we shall give some examples concerning classical orthogonal polynomials
which are good illustrations for our results.

EXAMPLE 1: LAGUERRE POLYNOMIALS. Laguerre polynomials L@ (z) of in-
dex @ > —1 are given in an explicit form by

- E0)

k=0

and all their zeros are real and positive. So, we consider polynomials Lg{l)(—m),
x > 0, whose zeros are real and negative; hence, they satisfy the conditions of
Theorem B. Since

Feen =2 () = (e e

- n—14+(a+1) _ (at1)
Z( n—1—k )k' _Lnfl (—Z'),

k=0
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to obtain asymptotic behaviour of Eg{l)(—m), we use Perron’s formula [4]

L%a) (z) — 1/27r—1/2ez/2(_z)—a/2—1/4na/2—1/4e2\/—nz(1 + 0(1/\/,5)),
for any z in the complex plane cut along the positive part of the real axis. Now,

for z = —x, ¢ € RT, after some calculations, we obtain:

. aL"Y (—z) o
LY (—z) = W ~ nze2V (V2= /o /e on— o0, € RY,
n (—x

that is: lim,, Eg{l)(—x)/\/ﬁ = +/z, z > 0; so, we can apply Theorem B on Q,(z) =
ngall(—w) with ¢(n) = /n, a(z) = /z. Tt follows:

- n—1+a z* 8 .
k=1 :

i.e., putting: a—1—a,8+1— 4:

= n+ a\ z* B+1 —1 a
ZkﬂLk (n B k) ek [\/ﬁ]ﬁ L[mL;_ﬁl)(—wL n — 00
k=1 ’

As we already showed Lgfjll)(—x) ~ /sl (—2); n — co. Hence

ProPOSITION C. We have

k
(©) ch(ZjZ)Z—‘~$ﬁ/2c[mL$f)(—m), T € RT, n — oo;
k<n ’

for any regularly varying sequence (cy) of index 8 € R.

EXAMPLE 2. JACOBI POLYNOMIALS. The Jacobi polynomials P,(l“’b)(t) are
given by:

re =3 () (1) () s
k=0

All their zeros are real and belong to the segment [—1,1]. We shall consider the
associated class of polynomials Qe (x), defined as:

(a,b) . ~ (n+a) (m+b kE— (1 — g)r plab) 1—}—_%
“n -kg—:o<n—k)<k o =1-a)h <1—w)'

All their zeros are real and negative, so we can apply Theorem B. It is easy to show
that:

2 Q@) = (n+ QU (@)



ORTHOGONAL POLYNOMIALS AND REGULARLY VARYING SEQUENCES 35

Therefore,
A(a;b) (a+1,b)
lim == (=) = lim 772(1 5 (=)
" n Qe ()

For the estimation of this last expression we use the Darboux formula for the
asymptotic behaviour of Jacobi polynomials [4], valid for ¢ ¢ [—1,1]:

PO @) ~ (£ 1)72/2(¢ 4+ 1) — 1)1/2 4 (¢ 4 1)1/
C@mn) V2 — 1) VAR 4 (12 - D)YH2) o o

Putting t = (1 + z)/(1 — z), = > 0, after some simplifications we get:

1+$ (\/E_}_ 1)a+b+2n+1
(a,b) — (1 — )" plab) ~
Qn ($)—(1 .'E) Pn <].—IL') 2\/7T_TL.’EG/2+1/4 » = 00.
Hence:
Aab) (a+1 b)
lim @0 @) gy PO @)V >0,

n n n lea b) (.’L') 1 + \/E’
i.e., the limit does not depend on the type of Jacobi polynomial plav (z).

Applying Theorem B to the polynomial mQ(a+1 b (z), with: a(z) = Vz/(1 +
VZ); ¢(n) = n, we get (when n — 00)

= -1
Z(n+a> (nk_ib)k“Lkw’“~x<1+w—1/2) nL, Qi (@), = € BT,
k=1

or, since:

1/mn—14+0b 1 [n+bd 1 a+1,b
— = > 1: /2 (a+1,b) ~ (a,b)
k( k1 ) n+b( P ), E>1; z(14+2/9)Q, 7 () ~ Qy>" (x),

with « instead of a + 1,

— (n+ +b) o o _1/2\—a p(a
(D) Z (Z_Z) (nk )k‘ Lyz® ~n®L, (1+z7Y2)7 Qb (z),
k=1

for any slowly varying sequence (Ly) and any a € R. Since (D) is valid for every
z > 0, putting z = (t —1)/(t + 1), t ¢ [—1,1] and multiplying by ((t + 1)/2)", we
obtain asymptotic behavior in terms of Jacobi polynomials pLY (t):
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PRrROPOSITION E. We have for n — ¢

S n+a\/n+b\/t—1\k/t+1\nk \/m —a
T 5 ~ _— (a,b)
(E) kz—:le<n_k>< k )( 2 ) ( 2 ) C"(1+ t—l) P, (t)7
for any regularly varying sequence (c) of index a € R, and t ¢ [—1,1].

Analogous formulae for ultraspherical polynomials P,(l’\)(-), Legendre’s (P,(+))
and Hermite’s (H,(-)) polynomials can be deduced from (C), (D) and (E) by using
identities:

PO(@) = PPy Pafa) = POO()
Hop(iv/z) = (—1)"22"n! LYD (—2); Hopy1 (iv2) = (—1)"22" Pl 2L/ (— ).

For example:

n 2
n\" k ~1/2\-a np (112 +
~ cp(l 1- lqn ) R ’ ’
;ck(k)x en(l+27/%)7%(1 —2) (l—m) x € n — 0o

for every regularly varying sequence (c) of index o € R.
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