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LINEAR DIFFERENTIAL EQUATIONS
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ABSTRACT. A fixed point method is proposed for constructing regularly vary-
ing solutions, both principal and nonprincipal, of the second order linear dif-
ferential equation (A) which is nonoscillatory.

1. Introduction

As witnessed by the monograph [1], the use of the theory of regularly varying
functions in the sense of Karamata has proved to be very fruitful and productive
in the study of the asymptotic behavior of both linear and nonlinear differential
equations.

A noteworthy example of results in this connection is the fact that, for second
order linear differential equations of the form

(A) y" +q(t)y =0,

the existence of regularly varying solutions can be completely characterized; see
e.g. the papers [2, 4].

Let us now recall the definitions of regularly varying functions. A measurable
function L : [0,00) — R which is eventually positive is said to be slowly varying
(LeSV)if

lim w =1 for every A > Q.
t—00 L(t)

A function f of the form
f(t) =t*L(t), a€R, LeSV,
is said to be regularly varying of index a (f € RV(a)).
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It is known ([1]) that a function L is slowly varying if and only if it can be

expressed in the form
¢
L(t) = c(t) exp {/ ﬁds}
to S

for some ty > 0, where ¢ and ¢ are measurable functions such that lim; ,, ¢(t) =
¢ € (0,00) and lim;_,  £(¢t) = 0. If in particular ¢(t) = ¢ € (0, 00), then L is called a
normalized slowly varying function (L € n-SV). A function f is called a normalized
regularly varying function of index a (f € n-RV(a)) if it is expressed as

f(@t) =t*L(t), a€R, Len-SV.

We are interested in the following theorem regarding the existence of regularly
varying solutions for the equation (A) where ¢ : [0,00) — R is a continuous function
which is not necessarily of constant sign, but is integrable on [0, c0) in the sense
that

/ t)dt = hm / t)dt exists and is finite.
0

THEOREM A. Let ¢ € (—o0, 1/4 ) be a constant and let Ao and A1 (Ao < A1) be
the real roots of the quadratic equation
(1) M —A+c=0
The equation (A) has a fundamental set of solutions {yo,y1} such that
yo € n-RV(Xo) and y1 € n-RV(\1)

if and only if
(2) lim t/oo q(s)ds =c.

¢

t—o0

This theorem has been proved in Howard and Marié [2] (see also [4]). The proof
of the “only if” part is straightforward. To prove the “if” part, Howard and Marié
first construct, under the condition (2), a smaller solution (i.e., a principal solution)
yo € n-RV(Ag) via the method of successive approximations and then determine a
larger solution (i.e., a nonprincipal solution) y; € n-RV (A1) by the formula

Q nt) = [ =

for some tg > 0.

A question naturally arises: Is it possible to proceed in an opposite direction
to prove the “if” part of Theorem A? That is, it would be natural to ask if one can
demonstrate the truth of the “if” part by first constructing a larger solution y; and
then obtaining a smaller solution y¢ by the formula

*  ds
4 Yo(t) = 1 (t / — .
@ =00 [
The purpose of this paper is to verify that the passage from y; to yo is really

possible. Our construction of y; is based on the Banach contraction mapping
principle. The details of the proof of Theorem A in this direction will be presented in
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Section 2. It should be noted that among numerous articles on differential equations
plus regular variation there seems to be none except for Omey [5] that is concerned
principally with the construction of nonprincipal solutions of the equation (A).

We emphasize that the contraction mapping principle can also be applied to
verify the existence of a principal solution yq for (A) which is originally established
by means of successive approximations. A brief account of this fact will be given
at the end of Section 2.

2. Construction of nonprincipal solutions

We present here a proof of Theorem A stated in the introduction which is
different from that given in Howard and Mari¢ [2]. Since the proof of the “only if”
part is straightforward, we need only to prove the “if” part of the theorem. Our
purpose is to show that this can be done by making effective use of the Banach
contraction mapping principle.

PROOF OF THEOREM A. Agsume that the condition (2) is satisfied . Put

(5) bult) = ¢ / " g(s)ds — ¢
and define
t —
©) n() =esp{ [ AEEEZU g

where t; > 0 is some constant. For this y1(¢) to be a solution of (A) it suffices to
determine v(t) from the requirement that u(t) = (A1 + ¢.(t) — v(t))/t satisfies the
Riccati equation,

(7) u'(t) +u(t)® +q(t) = 0.
The differential equation for v(t) then becomes
22 — 1+ 2<;§c(t)v(t) C0(t)? + de(t)? + 20 ¢ (2)

!

t =
® vl t 0
which can be rewritten as

t .
© o ®) - A [o(0)? + 6:0)? + 20600 =0,
in terms of the function
Eox — 14 26,
(10) p(t) = exp {/ ! : Pe(s) ds} € n-RV(2)\; — 1).
1
It is easily verified that for any fixed ¢t; > 0
1 [tp(s) 1

11 lim — —=ds =
(11) tl{gop(t)/tl s ds 2/\1—1>0

and

1" p(s) s : _
(12) tll,r& 0 /tl Th(s) ds =0 if h € C[t;,00) and tliglo h(t) = 0.
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Define

(13) D, (t) = sup [¢e(s)["/?

s>t
and choose t; > 0 so that
20 —1

14 d.(t) < ———=

(14) (t2) 40 +1)

and

1 (" p(s) 2

1 [P gs ¢ for t > ty.
(15) p(t)/t S ds 1 ort >t

This is possible because of (2) and (11).
Let Co[t1,00) be the set of all continuous functions on [t1,00) tending to 0 as
t — oo. Clearly Cy[t1,00) is a Banach space with the norm ||v|| = sup|v(t)|. Let V

denote the set t2t:
(16) V ={v € Cyft1,0) : |v(t)| < B(t1) for t > t1}
and define the integral operator F by
1 ‘ p(s) 2 2
(17) Fot) = —= [ == [v(s)” + ¢c(8)> + 2\1hc(s)] ds, ¢ > t1.
pt) Jy, s
If v € V, then, by (14) and (15),
L " p(s)
] <20\ + 1)@ (1) — [ —2d
7o <200+ Dee(t)? o [P ds
4(M +1) 2
< — < >
S 2)\1 _1 (I)c(tl) A q)c(tl); t = tl;

and lim;_,o, Fo(t) = 0 by (12), since v(t)? + ¢.(t)? + 2A1¢.(t) — 0 as t — oo.
Hence Fv € V, so that F maps V into itself. If vy, v2 € V, then, for t > ¢1,
1

|For(t) — Fua(t)] < o0 /tlt @ (lvr ()] + [va(s)]) o1 (s) — va(s)|ds

1 t (s
< 28,(t1)||vy —112||—/ P g
t1

p(t) s
49.(t1) 1

< — — <

Son 1l e
which show that F is a contraction mapping on V. Let v € V be the fixed element
of F. Then, v(t) satisfies the integral equation

1t
(18) v(t) = —/ pls) [v(8)? + ¢c(5)® + 2M1¢c(s)] ds, t > t,
pt) Ji, s

which implies that v(¢) is a solution of differential equation (9) on [t1,00). Since
lims_, o v(t) = 0, the function y;(t) defined by (6) with this v(t) is shown to be a
solution of (A) belonging to n-RV ().

llvr — vall,
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The second linearly independent solution yo(t) of (A) is given by (4). Using
Karamata’s theorem [[1], Proposition 1.5.10], we see that yo(t) is a principal solu-
tion of (A) belonging to n-RV()\g). This completes the proof of Theorem A. O

Let ¢ = 0 in (2). Then, Ao = 0 and A\; = 1 are the real roots of (1), and
Theorem A specialized to yields the following corollary of interest.

COROLLARY. The equation (A) possesses a fundamental set of solutions {yo, y1}
such that

yo € n-SV and y1 € n-RV(1)
if and only if o
tllglot/t q(s)ds =0.

REMARK. The core of the original proof of Theorem A given by Howard and
Marié¢ [2] is the construction of principal solutions of (A) by means of successive
approximations. We remark here that the existence of principal solutions of (A) can
also be established by means of the Banach contraction mapping principle under
the condition (2).

In fact, following the procedure of the proof of Theorem A by using the function

(19) volt) = exp {/tt Ao + ¢c(s) +w(s) ds}

o S

instead of (6), we are led to the differential equation for w(t)

t

(20) (o) + 2D (2 + 6,02 + 27ape(0)] =0,
where

t —
(21) o(t) = exp {/ 2o 1: 29c(5) ds} € n-RV(2)\ — 1).

1
Since 2A¢ — 1 < 0, the function o(¢t) has the properties that

. 1 Fo(s), 1

(22) )Loo@/t s BTy, 0
and
(23)

1 o0
lim —/ ﬁh(s)ds = 0if h € Ctg, o0) for some tgp > 0 and lim h(t) = 0.
t—o0 a'(t) ¢ s t—oo

This fact suggests that we should integrate the equation (20) over the unbounded
interval [t,00) and solve the resulting equation

(1)  w(t) = L/ TE) [ (0)? 4 go(s)? + 2hade(s)] ds, ¢ > to,
o(t) Ji s

for some ty. The subtle difference between (24) and the equation (18) that was

used in the proof of Theorem A should be observed. To derive (18) the equation

(9) was integrated over the bounded interval [t1, ], and this had to be done because

of the increasing nature of the function p(t) appearing in (9).
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To see that the Banach fixed point principle can also be applied to solve (24)

it suffices to verify that the integral operator

1 o(s)

@) Gu) = [T [0 + 65 + 2hote(e)) ds. ¢t

o(t)

is a contraction mapping on the set
(26) W = {w € Cyltg, ) : |w(t)| < ®c(to), t=to}

provided ¢y > 0 is chosen so large that

1—2)
B, (tg) < ——20
() < T+ o))

and

1 [ o(s) 2
— ds < , t2=to,
o) /t s ST on 0

where ®.(t) is given by (13). The solution w(t) of (24) thus obtained gives rise to
a principal solution yo(t) € n-RV()g) via the formula (19).

(1]
(2]

(3]
(4]

(5]

The verification of the details is left to the reader.
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