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ABSTRACT. A probabilistic extension of intuitionistic logic is introduced. The
corresponding completeness and decidability theorems are proven.

1. Introduction

In this paper we combine probabilistic operators with intuitionistic logic. There
are two possible approaches to do that. We may treat probabilistic operators intu-
itionistically or we may assume that they behave classically. The former approach
was analyzed in [3, 4, 5, 6], while we consider here the later one which is more
in spirit of [13, 14, 15]. At the syntax level we add probabilistic operators to
the propositional intuitionistic language which enables making formulas such as
P> a. The intended meaning of the formula is “the probability of truthfulness of
a is greater than or equal to s”. In our logic nesting of probabilistic operators,
i.e., higher order probabilities, will not be allowed. Thus, on the first level we
have intuitionistic propositional calculus, and on the second level we start with
the formulas of the form P o as atoms (where « is an intuitionistic propositional
formula) and apply to them classical conjunction and negation, i.e., on the second
level the rules of classical logic hold. Syntactically, this corresponds to the approach
in [13, 14, 15] except that on the first level we have intuitionistic logic, so e.g., we
have =, A, V, and — as independent propositional connectives. Our choice in com-
bining intuitionistic and probabilistic logics makes it possible to give a simple and
natural interpretation of probabilistic formulas, quite in line with Boole’s original
ideas, based on the ‘size’ of the set of possible worlds in which a proposition is true.

2000 Mathematics Subject Classification. Primary 03B48; Secondary: 03B45, 68T27.
Supported by the Ministarstvo za nauku, tehnologiju i razvoj Republike Srbije, through
Matematicki Institut, Contract 1379.

31



32 MARKOVIC, OGNJANOVIC, AND RASKOVIC

In axiomatization of our logic we follow the ideas from [13, 14, 15], but in this
paper we give a new inference rule which allows to determine ranges of probabilities
syntactically.

2. Syntax

Let S be a recursive subset of [0, 1] which contains all rational numbers from
[0,1]. The language of the logic consists of a denumerable set ¢ = {p,q,r,...} of
propositional letters, connectives -, A, V, = and two lists of unary probabilistic
operators (Ps;)scs, and (Pgs)ses-

The set Fory of intuitionistic propositional formulas is the smallest set X con-
taining ¢ and closed under the formation rules: if a and g belong to X, then —a,
aAfB,aVp, and a = § are in X. Elements of For; will be denoted by «, 3,...

The set Forp of probabilistic propositional formulas is the smallest set Y con-
taining all formulas of the form P»,a and Pg,a for o € Fory, s € S, and closed
under the formation rules: if A and B belong to Y, then —A, and A A B are in
Y. Probabilistic literals are formulas of the form P>, -Pss0a, Pgsa or 7Pgya.
Formulas from Forp will be denoted by A, B,...We use AV B, A - B, P.;a,
P, ;0o and P—;a to denote the formulas ~(—=AA-B), AV B, ~P5,a, =P¢,a, and
P50 A Pgsa, respectively.

Let Fory UForp be denoted by For. We use ¢, 1,...to denote formulas from
For. For « € Fory, and A € Forp, we abbreviate both —=(a — «) and —=(4 — A) by
1.

3. Semantics

We propose a possible-world approach to give semantics to formulas from the
set For. According to the structure of For, there are two levels in the definition of
models. At the first level there are the notions of intuitionistic Kripke models and
the forcing relation (IF) [11, 12, 18]. We suppose that the reader is familiar with
them. At the second level probabilistic models and the satisfiability relation are
defined.

Let M = (W, <,v) be an intuitionistic Kripke model. We use [a]y to denote
{w € W :w Ik a} for every a € Fory. Note that the family H; = {[a]a : a € Forr}
is a Heyting algebra which may not be closed under complementation.

DEFINITION 3.1. A probabilistic model is a structure (W, <, v, H, u) where:

e (W, <,v) is an intuitionistic Kripke model,

e H is the smallest algebra on W (H contains W, and it is closed under
complementation and finite union) containing H; = {[a]y : o € Fory}
and the family {W \ [a]um : « € Forr}, and

e u: H — Sis a finitely additive probability (u(W) = 1, u(G1 U Gs) =
u(G1) + p(G2) for all disjoint G4 and G2 € H).

DEFINITION 3.2. The satisfiability relation |= is defined by the following con-
ditions for every probabilistic model M = (W, <,v, H, pu):

o if @ € Fory, M E o iff (Vw € W)w I+ a,

o M= Pyuaiff p(le]a) 2 s,
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o M | Pgsaiff p([a]m) < s,
o if A€ Forp, M |=-Aiff M = A does not hold, and
o if ABeForp, M EAANBiff M= A, and M = B.
A formula ¢ € For is satisfiable if there is a probabilistic model M such that
M k= ¢; ¢ is valid if for every probabilistic model M, M |= ¢; a set of formulas is
satisfiable if there is a probabilistic model M such that for every formula ¢ from
the set, M |= .

4. A sound and complete axiomatization

We shall prove that the set of all valid formulas can be characterized by the
following sound and complete set of axiom schemata:

1) all For-instances of intuitionistic propositional tautologies
2) all Forp-instances of classical propositional tautologies
3) P;()OL
4) PZ]_,T_!OZ — _|P>S()é, for s > r
5) P>ra — Pssa, forr > s
6) Ps,a — Pssa,
7) Psi(a <+ f8) = (P=sa = P=s3)

(8) (P:Sa A P:T/B A PBI_'(a A /3)) - P:min(l,s+7‘) (a \Y% 6)
and inference rules:

(1) From ¢ and ¢ — 1) infer 1.

(2) If a € Fory, from a infer Py, a.

(3) From B — —~P—;q, for every s € S, infer B — L.

The axioms and rules are similar to the ones given in [13, 14, 15], except
for the adjustment required by Axioml, i.e., the fact that Forr-formulas obey the
intuitionistical laws. Rule3 is a new one. The axioms5 and6 are equivalent to

(5’) Pcra = Pega, > s

(6") P<sa = Pgsa
respectively. Note that by substituting -« for a in Axiom3, and using the axioms4
and6’ the formula Pgja is obtained which means that every formula is satisfied
by a set of worlds of the measure at most 1. Finally, note that the monotonicity
of the measure can be expressed by the formulas P>, = Ps,a, for r > s, and
P¢,a — Pgsa, for r < s. These formulas are easy consequences of the axioms5,6,
5’ and6’.

A formula ¢ € For is deducible from a set T of formulas (T + ¢) if there is
an at most countable sequence of formulas ¢g, ©1,..., ¢, such that every formula
in the sequence is an axiom or a formula from the set T', or it is derived from the
preceding formulas by an application of an inference rule. If § F ¢, we say that ¢
is a theorem of the deductive system, also denoted by F ¢.

A set T of formulas is consistent if neither T+ —(a = &) nor T + =(4A — A)
for arbitrary a € Fory, A € Forp. Otherwise, T is inconsistent. A set T of formulas
is maximal consistent if the following conditions are satisfied:

e T'is consistent,
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o for every o € Forr, if T o, then o € T, Py1a € T, and
e for every A € Forp, either A € Forp or - A € Forp.

5. Soundness and completeness

Soundness of the system follows from the soundness of propositional intuition-
istic and classical logics, as well as from the properties of probabilistic measures,
so the proof is straightforward.

THEOREM 5.1 (Deduction theorem). If T is a set of formulas and TU{p} F 1,
then T &+ ¢ — ), where either ¢, € Forr or ¢, € Forp.

PROOF. We use the transfinite induction on the length of the proof of ¢ from

T U {¢}. We consider the case where ) = C' — L is obtained from T'U {¢} by an
application of the inference rule3, and ¢ € Forp. Then:

(1) T, F C — P40, for every s € S

(2) TF ¢ — (C — P4s0), for every s € S, by the induction hypothesis

(3) TH (¢ AC) = Py, for every s € S

(4) TH(pAC)— L, from (3) by Rule3

(5) THyp — .
The other cases follow by standard arguments. O

THEOREM 5.2. Every consistent set T can be extended to a mazximal consistent
set.

PRrOOF. Let T be a consistent set T' of formulas, ipconseq(T') = {a € Fory : T +

a} be the set of all intuitionistic propositional consequences of T', and ipconseq(T')
be a consistent disjunctive closure of ipconseq(T), i.e. if 8V~ € ipconseq(T'), then
B € ipconseq(T') or v € ipconseq(T"). Note that ipconseq(T") is consistent because
it is the set of consequence of a consistent set, and that in that case ipconseq(T)
always exists. Let Ag, Aj,...be an enumeration of all formulas from Forp. Let ayp,
aji,- - -be an enumeration of all formulas from For;. We define a sequence of sets
T;,1=0,1,2,..., and a set T* such that:

(1) To = T Uipconseq(T) U {Ps1a : a € ipconseq(T)}

(2) for every i > 0, if Ty; U {A;} is consistent, then Th; 11 = To; U {A;},

otherwise, Th;11 = To; U {—4;},
(3) for every i > 0, Ta;y2 = Tit1 U {P=ra;}, for some r € S, so that Th;42 is
consistent.

(4) T = U;T;.
Ty is consistent because it is a set of consequences of a consistent set. Suppose
that T5;41 is obtained by the step2 of the above construction and that neither
T»;U{A;}, nor Tr; U{—A;} are consistent. It follows by the deduction theorem that
Ts; - A; A —A;, which is a contradiction. Consider the step3 of the construction,
and suppose that for every r € S, Ta;r1 U {P-ra;} is not consistent. Let To;y1 =
To U Tyt .1, where Ty | denotes the set of all formulas from Forp that are added
to Tp in the previous steps of the construction. It means that:

(1) To,T;{H, P_,a; - L, for every s € S, by the hypothesis
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(2) To + (/\BeT;;+1B) — 2 P_,a;, for every s € S, by Deduction theorem
(3) To + (/\BET;;HB) — 1, by Rule3
(4) Tojpr - L,

which contradicts consistency of Ta;41.

Finally, we have to prove that 7™ is maximal consistent. We do it by showing
that T™* is a deductively closed set that neither contains all formulas from For; nor
all formulas from Forp.

Since T is a consistent set, there is an a € Fory such that Tt/ a, a € Ty, and
a € T*. For a formula A € Forp the set T* does not contain both A = A; and
—A = Aj, because Tpax(2i,2j)+1 is consistent.

Next, if T; F ¢ for some ¢ and ¢ € For, it must be ¢ € T*, because if ¢ € Fory,
it follows from the construction of Ty, and if ¢ = A; € Forp, it follows from
consistency of Trax(i,2j)+1- Also, note that if P_,a € T, then it follows from
classical Axiom A — (B — A) that for every B € Forp, B — P_,a € T*.

If a formula a € For; and T™* F «, then by the construction of Ty, o € T™ and
PoiaeT™.

Let A € Forp. It can be proved by the induction on the length of the inference
that if 7* F A, then A € T™.

Suppose that the sequence @1, a,..., A forms the proof of A from T*. If the
sequence is finite, there must be a set T; such that T; F A, and A € T*. Thus,
suppose that the sequence is countably infinite. We can show that for every i, if
; is obtained by an application of an inference rule, and all the premises belong
to T*, then it must be ¢; € T*. If the rule is a finitary one, then there must
be a set T; which contains all the premises and T; - ¢;. Reasoning as above, we
conclude ¢; € T*. Otherwise, let ¢; = B — L be obtained from the set of premises
{¢¥ = B — =P_,,v: s € S} by Rule3. By the induction hypothesis, ¢f € T* for
every k. By the step3 of the construction, there are some [ and s; € S such that
P;,v € T;. Reasoning as above, we conclude that B — P,y € T*. Thus, there
must be some j such that T} - B — =P,y, T; - B = Py,v,and T; - B — 1,
which means that B — 1 € T™*.

Hence, from T* - ¢, we have ¢ € T*, and T* is consistent. Finally, according
to the above definition of a maximal set, it is provided by the construction of the
set T* that T™* is maximal. |

Being a maximal consistent set, 7* has all the expected properties, and addi-
tionally the following ones.

THEOREM 5.3. Let T™* be as above. Then the following holds:

(1) There is exactly one s € S such that P—;a € T™*.
(2) If Pssa € T, there is some r € S such that r > s and P—,a € T™*.
(3) If P<sa € T*, there is some r € S such that r < s and P—_,a € T*.

ProorF. (1) It is easy to see that H P—ya — —P—,q, for 7 # s. Thus, if
P_,a € T*, then for every r # s, P_,a € T*. Suppose that for every s € S,

—P_;a € T*. It follows that T*  =P_sa for every s € S, and by Rule3, T* F L
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which contradicts consistency of T*. Thus, for every a € Forc, there is exactly one
s € S such that P_sa € T™*.

(2) If Py,a € T*, we have that ~P.,a € T*. Also, there is some r € S such
that P_,a € T*. It means that P>,a € T*, and Pg,a € T*. If r < s, then by
Axiom) from Pg¢,a € T* it follows that P.,a € T*, a contradiction. Thus, it must
be r > s.

(3) Analogously to (2). O

THEOREM 5.4 (Extended completeness theorem). Every consistent set of for-
mulas has a model.

PRrROOF. Let T be a consistent set of formulas. According to Theorem5.2 there
is a maximal consistent set T* which contains T'. Let wy = ipconseq(T'), and W be
the set of all consistent, deductively closed extensions of wy having the property
that for every a, 8 € Fory, w F aV 8 implies w F a or w F 8, w € W. Let for
every w € W, v(w) = {a € ¢ : @ € w}. Then, Axiom]1 guarantees that (W, C,v) is
an intuitionistic Kripke model.

Let Hr = {[&]nr}acFor;, and for every a € Fory, ur([a]ar) = s iff Pga € T*.
The probabilistic part of our axiomatic system guarantees that p; is a finitely addi-
tive probability on the lattice H;. Let H be the smallest algebra on W containing
Hy and the family {W \ [a]am : @ € Forr}. Using [2, Theorem 3.2.10] we can find
a finitely additive probability p on H which is an extension of ur. It follows that
M = (W,C,v, H, u) is a probabilistic model.

Finally, M has the property that for every ¢ € For, M = ¢ iff ¢ € T*. Let
¢ = Pysa. If Pysa € T, then, by Theorem 5.3, there is some 7 > s such that
P_,o € T*, i.e, such that p([a]p) = r > s. Thus, M = P>s;a. On the other
hand, suppose that M = P»;a, ie., that p(fa]y) =7 > s, s0 Ppa € T*. It
means that P>,a € T*, and by the theorem - Py,a = P a, for r > s it follows
that P>,a € T*. The case ¢ = P¢ a follows analogously, while the other cases are
routine (see [9, 16, 18] for the intuitionistic part).

Thus, T* and T are both satisfiable. O

6. Decidability

Note that a formula o € For; is intuitionistically satisfiable iff it is forced in
the root of a tree-like model which is decidable [9, 12, 18]. It follows that satis-
fiability problem of For;-formulas in our probabilistic logic is decidable. To prove
decidability of our logic we have to show that satisfiability problem for probabilistic
formulas is decidable.

Let A € Forp and Subj(4) = {a € Fors : ais a subformula ofA}. Let |A]
and | Subs(A)| denote the length of A, and the number of formulas in | Subs(A)|,
respectively. Obviously, | Subr(4)| < |A].

THEOREM 6.1. The satisfiability problem for probabilistic formulas is decidable.
PROOF. Let A be a probabilistic formula. Using [16, Theorem 5.3.4], we can

prove that A is satisfiable iff it is satisfiable in a finite probabilistic model containing
2
at most 214" worlds.
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Let DNF(A) be the formula V; Aj +Pps, ;a;; which is equivalent to A, where
p € {>,<}, and £P,;, 0, ;’s are probabilistic literals. For every A € Forp there
is at least one DNF(A), because propositional connectives behave classically at
the probabilistic level. A is satisfiable iff at least one disjunct D from DNF(A)
is satisfiable. Since D is a conjunction of probabilistic literals, without loss of
generality we can assume that A is of the same form.

We can check satisfiability of A in the following way. For every [, 1 < [ <
2|A|2, there is only finitely many intuitionistic models with different valuations
with respect to the set of propositional letters that occur in A. For every such
intuitionistic model M; = (W, <, v) we can find the algebra H generated by the set
{[@]m, : @ € Suby(A)}. Thanks to [2, Theorem 3.3.4], we can suppose that every
world from W belongs to H as well, and consider the following linear system:

Ywew Hw) =1
p(w) =20, forwe W
Zwe[a]MI w(w)pr, for every P,.a which appears in A
w(w)p'r, for every = P,.a which appears in A, where <’ denotes
wE[a]MI P
>, and >’ denotes <.

Obviously, if the above system is solvable, M = (W, <, v, H, u) = A.

There is a finite number of models and linear systems we have to check. Since
linear programming problem is decidable, the same holds for the considered satis-
fiability problem. O
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