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THE INDUCED CONNECTIONS ON
THE SUBSPACES IN MIRON’S Osc* M

Irena Comié¢, Gabrijela Grujié¢, and Jelena Stojanov

ABSTRACT. We simultaneously consider two families of subspaces, which for
some constant values of parameters give one family of subspaces. The trans-
formation group here is restricted. Instead of usual transformation in Osc® M
here we use such transformation group, that T'(Osc® M) is the direct sum of
T(Osck M) and T(Osck M3), dim M7 +dim M = dim M. The adapted bases
of T*(OscF My) and T* (OscF Mz) are formed, and the relations between these
spaces and T*(Osc® M) are given. The same is done for their dual spaces.
We introduce generalized linear connection in the surrounding space and give
transformation rule under the condition that covariant derivatives of the vec-
tor field are tensors. Using the decomposition of T'(Osc® M) in directions of
two complementary subspaces, the induced connection on the subspaces are
determined and examined. It is proved that almost all connection coefficients
transform as tensor except some of them, which have second lower index Oa,
Oc or Oa.

1. Introduction

Lately a big attention has been payed on the higher order geometries. The
theory was introduced by Miron and Atanasiu in [9] and [10]. The theory of La-
grange spaces was studied earlier. Among others we mention here the book of
Miron and Anastasiei [8]. Lately Miron gave the comprehend theory of higher or-
der Lagrange and Hamilton spaces and their applications in [6], [7] and [11]. Here
the theory of subspaces in Osck M will be given, specially the generalized con-
nection and the induced connections.The transformation group and the adapted
basis will be slightly different from that introduced by former mentioned authors.
The subspaces in most known papers are defined in such a way, that the coordi-
nates of the surrounding space are function of some parameters and its tangent
space is the direct sum of the tangent vectors of the subspace and arbitrary vec-
tors normal to this subspace. Here Osc® M will be defined as a €' manifold in
which the transformations of form (1.1) are allowed. It is formed as a tangent
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space of higher order of the base manifold M. Let E = Osc® M be a (k + 1)n
dimensional C*° manifold. In some local chart (U, ) some point y € E has co-
ordinates (y°,y**,y%%,...,y*) = (y**), a = 1,2,...,n, A =0,1,2,..., k. Itis

convenient that small Latin letters run over {1,2,...,n} and big Latin letters run
over {0,1,2,...,k}, ie, a,bc,d,... = 1,2,...,n, A,B,C,D,... =0,1,2,...,k,
and we will use the following abbreviations:
) o , ayOa’ ayOa
8Aa = wa aa = aOa = Wa Bg = ayoa ) 3/ = 8y0a/-

If in some other chart (U’,¢’) the point y € E has coordinates (yoal, yla' g2
yk“'), then in U N U’ the allowable coordinate transformations are given by [5]:

Y00 — 0" (0L 02 0y 0a” ()0
yla, — (a()a,yOQ,)ylu,7
v = (Q0ay™ )yt + (D1ay* )y,
(11) y3a, — (aanQQ,)yla 4 (alayQQ,)y2a 4 (82ay2a,)y3aa

’

yka’ _ (aan(kfl)a’)yla + (alay(kfl)a’)yQa +eet (a(kil)ay(kfl)a )yka'

The adapted basis B* of T*(E) (which are given in [1], [2] [4]) is B* =
{690, syte, Sy?e, ..., syk?} = {dy4“}, where

6y0a — dyOa.
5y1a _ dyla + MoléldyOb,
5y2a _ dy2a + M12(;1dy1b +M§é’dy0b,

5yka — dyka + M(kkafl)bdy(kil)b + M(]?cafg)bdy(kimb N Mécbady(]b'

The elements of B* are transformed as d-tensor fields (53/‘4“/ = Bgl5yA“). The
adapted basis B of T'(E) (which are given in [1], [4]) is B = {d0a;, 0145924, - - - ,Oka} =
{64a}, where

800 = Ooa—Ng201p — Ngdop — - - - — NEP Oy,
014 = Oa — N20sp — - -+ — N2 Opp,
Oka = Oka-

The elements of B are transformed as d-tensor fields (§44r = B%04,). B and B*
are dual to each other ((§yP §4q) = 656%). Such functions M#¢, N5 for which
previous claims are satisfied are given in [1].
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We shall consider here some special case of the general transformation (1.1)

of Osc® M, namely when y°* = y0e(ult, .. u0m, p0Unt ) [ )0y = g)0a (g0 p)0a)
a=12,...,n,a=12..... m,a=m++1,...,nis valid and the new coordinates of
the point in the base manifold are (u', ..., u% 000" +D" 49"} where, u" =
w0 (W01, w0, 008 = & (1 0(m+1) - 0n) and
yOa — yOa (u01 . ’uOm ’,U[](m+l) e ’,UOn ) — y[]a (an ,’an )
_ yOa (u0a (UOQ)’UOQ (an)) — y[]a (u(]a (an(yOa))’UOtx (UOQ(yOa)))
0a’ (1, 0a
=y (¥)
We shall use the following notations:
la dyOa yka - dlcy(]a
odt T Cdtk
o dan uk:a B dkuﬂa
oodt 0 Codtk
& _ dvoa vka B dkvoa
e 7 dtk

In the base manifold M we can construct two families of subspaces M7 and M,
given by equations

(1.2) My : yOa — yOa(an7 CO&)’ M, : yOa _ y(]a(CvOa7 ,an)
where we suppose that the functions determined by (1.2) are C*°. Some point from
Osc® M has coordinates (u®®, u'®, ..., u*®) and the point from Osc® M, has coordi-
nates (v°%, 01, ... v*®). We have dim(Osc® M) = (k +1)m and dim(Osc¥ M) =
(k+1)(n —m).

If we denote by E; = OscF M; the (k + 1)m dimensional space whose, some

point u has coordinates (u®%,u'e,... ,uka), and where the transformation group is
given by
’ ’
an _ an (’U,Ol, u027 . uOm)./
0a’
1o’ _ Ju ula
 Qude ’
1a’ 1a’
2a’ _ au la au 2a
U = oo U+ PR
(13) dud> dule
. 2a’ 2a’ 2a’
u3a' 8“‘ la 6“ 2ce au 3

= Ol u Oule u™ + Ou2e u

Hulk—1a’ - Hulk—1a’ oo Hulk—1a’
= Hula u A+ Oule ut At Ouk—Da us
then the adapted basis Bf = {u®®, sul®,...,sub*} of T*(F;) is given in the fol-
lowing way:

ko'
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Sul = du’®
Sut® = du'® + M&gduoﬁ,
Su® = du + Mfgduw + Mggduoﬂ,

SuFe = duF + M&afl)ﬂdu(kfl)ﬁ + M(kkoig)ﬁdu(kfz)ﬁ + -+ Mé“g‘duoﬁ.

, oo’

The elements of B} are transformed as d-tensor fields (6uAO‘ = auwéu“‘o‘ =
U

Bg/(squ‘). The adapted basis By = {doa, 014 ---,0ka} of T(E7) is given in the

following way

800 = Boa— NoaOrp — Noadap — -+ — Now Okss
S1a = O — NiPdog — -+ — N2y,
6k:o¢ = aka-
au[]a
The elements of B; are transformed as d-tensor fields (5 Aol = W& Aa =
u «

B284a). Bi and Bi are dual to cach other ((5uP?,644) = 6567).

If we denote by Ey = Osc® M, the (k41)(n—m) dimensional space whose, some

point v has coordinates (v°%,v'®, ... v*®) and where the transformation group is
given by
UO&’ _ ,UOa’ (UO(m+1)7 el ,UOn)7
O/\/
'@ = _81) D: o'e,
B’UOO‘
~, (%15/ R 1a’
2a la 2a
Jp0a v + Jula e,
(1.4) / ~ ~
3a’ a,UQa 9 la + a’UQOC b 2a + a’UQa a,UBa
BRGILE Hula Hu24 )
k— ~1I k— ~1 k— ~1
k& 81)( Da 18 61)( i)a avga I a’U( Da

T Hpoa Gl ovla Hulk—1)a v

then the adapted basis Bj = {6v°%, 6v'®, ... §vF®} of T*(Ey) is given in the fol-
lowing way

oa __ (115
v = dv™?,

1a _ g, 1a& 1@ 4,03
v =dv +M0[3dv ,
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v = dv?® + Mfgdvla + Mﬁgdvoé,

ka _ ;5 ka ka g (k=1)3 k& g (k=2)8 | ... k& 7, 08
6V = dv +M(k71)ﬁdv +M(k72)/8dv + +MO,8 dv™”.
o SpAT —

The elements of B are transformed as d-tensor fields (51}A6‘, = 5,04
v (7

Bg,&)Aa). The adapted basis Bs = {00a, 014, ---,0ka} of T(Es) is given in the

following way

Boa—Non 015 — Now Oy — -+ = Ngo

doa

0aY23 — k3>

. -
d1a = D1 — Niqoys — -+ = N2 Oz,
Oka = Oka-

) oa’
The elements of B, are transformed as d-tensor fields (5 Aar = %5 Aa =
v (e}

Bg,&Aa). By and Bj are dual to each other (<’UBB, 5Aa> = 5565).

The relations between adapted bases: B* = {6y, dyt¢, ..., dy**} and B =
Br U B = {6u®, 0%, sule, sv1®, ... suPe, 6v*%} when (1.2) and (1.3) are satis-
fied are dyAd® = BgéuAﬁ + B%(Sv‘w . The relations between adapted bases: B =
{004,014 ---+0ka} and B’ = By U By = {d0a, d0as 10, 014 - - - s Okas Oka } also under
condition (1.2) and (1.3) are
(1.5) 5,4,12335,4&4-355,4&, A=0,1,... k.

Such adapted bases By, Ba, By, B3, B’ and B™* for which previous conditions are
satisfied are constructed in [4].

2. The linear connection on T(F)

DEFINITION 2.1. The generalized linear connection V : T(E) x T(E) — T(E),
V:(X,Y) — VxY is the linear connection which in the adapted basis B = {04, }
is given by
Vsa.086 = TEf aadce

= T'Bs aadoc + TBy aabic + -+ + T55 aa0Be + -+ + T5} aa ke

(2.1)

and the summation is going over both kinds of indices (4, B,C = 0,1,...,k,
a,b,c=1,2,...,n).

DEFINITION 2.2. The d-connection (distinguished connection) is such a linear
connection for which in (2.1) remain only the underlined terms, the other are equal
to zero.
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If we denote by Ty(E),T1(E),...,T(E) the subspaces of T(FE) spanned by
{60a}, {01a}s -+, {0ka} respectively, we see that the d-connection preserves
To(E), T1(E),...Tk(E). More precisely VxY and Y belong to the same subspace,
one of Ty(E), Ty (E),...Tp(F) for every X € T(E).

DEFINITION 2.3. The generalized linear connection is strongly distinguished
(s.d) connection if

V54,080 =0 forA # B,
Viaabab = IAf aadac-

For the s.d-connection X,Y and VxY belong to the same subspace of T(FE),
one of To(E), T1(E),..., Ty(E).

Now we shall consider the generalized linear connection. If X and Y are
two vector fields in T'(E), (i.e., X = X4%4,, Y = YP%p;), then VxY =
V xaas,, Y P26pp. Using the properties of linear connection V, we get

VxY = XA (64,Y P")bpy + XAV PTE] 4u00e
= X404,V + TG54,V )0
THEOREM 2.1. For the generalized linear connection we have
VxY = (Y9,,) X ¢,
where

(22) YO, = 0¥ O+ TGS 4,V P

For the d-connection (2.2) has the form ch\Aa =84 YOHTES 4. YO (no summa-
tion over C). For the s.d-connection we have ch\Ca =0caY 9+ 15 5, Y (no
summation over C'). The above expression YCCI Aq 5 the covariant derivative of y e
in the direction of §4,. YCCI 4o Under coordinate transformation (1.1) transforms
as tensor, i.e., YCCI:M’ = YCC‘AaBg,le.

T*(E) is a 1-form space defined on E. Their elements act multi-linearly on
T(E). It B={d44} is the adapted basis of T(F), then the adapted basis in T (F)

is {dyAe}.

THEOREM 2.2. The linear connection V defined by (2.1) acts on T*(E) in the
following way:

(2.3) Vic.0y"? = =T 40 ccdy™.
PROOF. Because the operator Vx acts as differential operator we get
Vi (0P8, 04a) = Ve, 0500 = 0= (Vs 0y 6aa) + (0y"°, Vo .040) = 0
(V50 09"" 04a) = (=0y"*. T 24 cedpa) = —Tha ce-

From above it follows (2.3). O
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If w is a 1-forms on 7% (E) we can write w = w4,6y“?. Using the linearity of
V and (2.3) we obtain
VXw = VXAQ(;AawBb(Sbe = XA“(zSAawBb)&be — XAawBngZ Aa(;ycc.
From above it follows

THEOREM 2.3. For arbitrary X € T(FE) and w € T*(E) we have Vxw =
wCC‘AaXA%yCC, where Woelaa = 0AaWCe — Fg’c’ 4owWBb (the summation is going
over all kinds of indices). For the d-connection wceaq has simpler form weejaq =
0 AaWCe — Fglc’ Aawep (no summation over C).

For arbitrary tensor field T’ defined on T'(E) ® T*(FE) (see [4]) we have
VT =V yaag, (T ® 0y°) = XA (62T 0. )0m0 @ 5y
+ XAapBY, TR | pa ® 6y©e — XATB, TGS 4 0Bb © dyPe

From above it follows

THEOREM 2.4. If T is arbitrary tensor field defined on T(E) ® T*(E) and
X a vector field defined on T(E) we have VxT = (TBbcc\Aa A4)§pp ® dy©e,

Bb _ Bb Dd_ TBb Bb ; ;
where T 4y = 04aT 0 + T 0l Dgag =T ral B4 4. As before in previous
equations the summation is going over all kinds of indices. For the d-connection
we have TBch\Aa = 0447 P, + TP, TBY | —TB% TE . (no summation over
B and C).

Now we shall give the rule of transformation of the connection coefficients under
the coordinate transformations of form (1.1) At the beginning we shall give same
relations, which will be used later. As B% = B%(y°*") we have B%d,Bp = BY,,,,
B%35 44 By = 0, namely

a =

B%80a B = B% (00 — N2, — N220oy, — -+ — NEYOL,) B,
oyl 9 )
— b (_ b\ _
= Bg/a()aBb/ (— WW ) = a 0a’ Bb’
— Bb/b/ <: a%/ob , ) ’
a Dy0a’ §y0b
ayOa o ayOb
b _ _ —
BidaBh = 5 5 5 ( ayOb') —0 forA=1,...k.

From V5Aa,5Bb' = I‘ggi Aa0Cer We have
TG awdce =V ga s, (Bhds) = Bi(84aBy)ds + Bi BYTGi axdce.

If we in the above equation compare the coefficients beside d¢. (dce = BSdce) we
get:
If A=0and B # C we have

(2.4) FBb’ 0ar Bé = B BYT'S; oa-
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If A=0 and B = C we have

(2.5) &5 00 BS = Bl + BY BYTES g
If A # 0 we have
(2.6) P55 a0 BS = BUBYTES g

From above it follows:

LEMMA 2.1. For the generalized linear connection defined by (2.1) under the
coordinate transformation (1.1) only TS5, o BS = By + BLBLTES . are trans-

forming as connection coefficients in Riemannian space (2.5). The other are trans-
forming as tensors (2.4), and (2.6).

LEMMA 2.2. If the generalized linear connection reduces to the d-connection,
all coefficients Fggj Aa Jor A # 0 are transforming as tensors, and for A = 0 we
have FCb; owBe = Bp o +BS Bé’,Fgg 0a- The other connection coefficients are equal
to zero. For the s.d-connection all coefficients I‘Cb, ca (C #0) are transforming
as tensor, only, I‘Ob, owBS = By + Ba,Bb,Fog 0a-

3. The induced connection

Now we shall see the connection between the linear connection (X,Y) — VxY
(T(F) ® T(E) — T(F)) defined by (2.1) and the induced connections on T'(E;)
and T(Ey) (for the case Osc* M see [3]). From (2.1), (1.5) and the linearity of V
using (see [4])

(3.1) BB =67, BSBP =0, BLBP =0, BLBP =40, BB + BLBE = o,

we get
V5,080 = V(Bosan+B3640) (By 085 + By d55)
:Bg(5Aa )53/3—}-3&3 V5A (53[5'}-3 (5Aa )53[3
(3.2) +BoBP Vsaadps + BE(9aaBy)0ps + BS By Vs .08

+ Ba((SAaBl?)(SBB + BngvisAa&Bﬁ
= T'5§ 4a(Bl6cy + Blocs).

DEFINITION 3.1. The induced connection, also denoted by V, is the action of
generalized connection V on the basis B’ and it is defined by

c Ccy
Viaa 535 = FB% Aa507 + FB; Aa‘SC%

Voadps =092 80y + TS S0,
(3.3) B Bj Ax BB Aa

c
V12088 =I'gh aa0cy + FBﬂ PrLlect

Cry
Vsaadps =} 1 0cs +FB/3 12003
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Let us denote by Ty(E1), T1(E1), ..., Tk(E1), the subspaces of T'(F;) spanned
by {60a}s {01a};- -, {0ka} respectively and by To(FE2), T (E2), ..., Tk(Es), the sub-
spaces of T(E3) spanned by {0z}, {01a};-- -, {0ka} respectively. We have:

T(E;) = To(E;) ® Ty(E;) & - ® Ti(E;)  i=1,2,
T(E)=T(E1) & T(E) =To(E) © T1(E) @ - - & Tk (E).

DEFINITION 3.2. The induced connection defined by (3.3) is almost d-connect-
ion if it preserves Tp(E) = Tp(E1) ® Tp(E2), B=0,1,2,...,k, ie.,, VxY and Y
belong to the same T5(F) for VX € T(E). It is given by (3.3) if we put everywhere
C = B (no summation over B), the other coefficients are equal to zero. The induced
connection is d-connection if it preserves Tp(F;) and Tg(Es), i.e., VxY and YV
belong both to Tg(E1) or Tp(FE>) for each X € T(FE). The induced d-connection
is given by

B By
V6Aa535 = FB% Aa(SB’Y’ VéA 533 = FB% Aa(sB‘AY’

V542088 = Fgg Aa0B7 Véaadap = FBB 407

(no summation over B). The other connection coefficients are equal to zero.

DEFINITION 3.3. The induced connection defined by (3.3) is almost s.d-connect-
ion if it is given by (3.3), where we put A = B = (. The other connection
coefficients are equal to zero. For this connections X,Y and VxY belong to the
same Tg(F) (B =0,1,2,...,k). The induced connection is s.d-connection if X, Y
and VxY belong to the same Tg(FE;) or Tg(E2), i.e

V5aa048 = fog AadAy; V5 aa 5,4,@ =0,
Vsas0a5 rng 545, Vsaadap =0.

PROPOSITION 3.1. The induced connection coefficients and the connection co-
efficients of generalized linear connection V are connected by

(3.4) T8 aa = U85 4 BABEBY — (640 B)) BY
(3.5) TS} aa =TG5 4. BBEBY (B #C),
(3.6) T80 e = U554 BABEB] — (640 B)) BY,
(3.7) D50 4 = D5 aaBaBYB] (B £0),
(3.8) I v = DBi aaBaBEBY — (040 3)) B,
(3.9) L =TS aBaBBl  (B#C),
(3.10) L) o = DBi 4o BABLBY — (34aB;)BY,
(3.11) L0 o = U5 aaBaBLBY (B #C),

(3.12) T5h aa = UBb 4. BABEBY — (64aB)) BS,
(3.13) TG} as =TG4, BABEBY (B #0),
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(3.14) Fgg aa =TBf 4aBLBYBT — (6AaB§)BZ,
(3.15) T aa = U5 4. BEBEB] (B #£0),
(3.16) T3 aa = DB 4 BaBEBY — (0.2 B]) BY,
(3.17) Toh e =T564uBaBEBL (B#C),
(3.18) Tob e = D56 4aBaBEBY — (34aB})BY,
(3.19) To0 e = T80 aaBaBLBI  (B#£O),

In (3.4), (3.6), (3.8), (3.10), (3.12), (3.14), (3.16) and (3.18) no summation
over B!

PROOF. The substitution of (3.3) into (3.2) results

S|
X

54aBy)0ss + BS By (T Bj Aa‘SCv + FBﬁ 4a0C7)
540 B)d5a + BO‘BfB T +T7  6cs)
) (r 5
)5 (r¢

+
&
eQ

AA/\/-\

B Aa B Aa
(3.20)

+
&

daa Bl/)@ 535 +BaB’B BﬁAa(SC'Y +FBﬁAA60A
B
b

952) Q)

)
a [3 ~
4aB)0ps + BIBY (L)Y | by + 17 | d0s)

FBb Aa(B’Y(SC’Y + B] 50’7)

If we (3.20) multiply by B§ and use (3.1) we get

+

(3:21) (646B)085 + By (TG} asdcy +T5) as0c5) + (0as B )pa
’ C CcH a 5
+ BY (TG 4500y + D52 a5005) = TG 4aBS (Bl 60 + Bldcs).

If we (3.21) multiply by B? and use (3.1) we obtain

(3.22) (645By)Bps + (645 B)Bpa + TG] 4500y +T5) 45005
=I'Gi 4a By BY(B)6co + Blocs).

In the vector equation (3.22) the T'(F4) and T(Es;) parts are given by (3.23) and
(3.24) respectively:

(3.23) (5A5Bg)B£537 + ng asdcy = ng AaBngBzéCv-

(3.24) (645 B§)BLopa + T2 asdca = LG 4. B BB -

As A, B, C canbe 0,1,...,k, for B=C from (3.23) it follows (3.4) and for B # C

it follows (3.5). On the similar way for B = C' (3.24) results (3.6) and for B # C
it gives (3.7). If we (3.22) multiply with BQ we get the following vector equation

(5A535)B %06 + (345 B B%0pa + FBﬂ 45090y TGS L s0ca

(3.25) ;
=T 4.BS 35(33507 + B%cg).
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In the vector equation (3.25) the T'(E;) and T(E;) parts are given by (3.26) and
(3.27) respectively:

(3.26) (5A537)Bb537+r Scy = erAaBngB;Y&cV,

Bj AS

(3.27) (645 BE )B pa + 192 S as0ca =T%¢ AaBgB%Bféca.

From (3.26) for B = C it follows (3.8) and for B # C' it follows (3.9). From (3.27)
for B = C' it follows (3.10) and for B # C' it follows (3.11). If we (3.20) multiply
with Bf and using (3.1) we get

(6458055 + By (TG} M&cv + FBﬁ 450c3) + (043805

Jrij(rg7 e +rB  4s0c0) = I'Gh 1o B2 (Bloc, +BC<SCQ)

(3.28)

If we (3.28) multiply with Bg and use (3 1) we obtain
(645 By )BLops + (645B )B Opp + e a70cy + FBE Aw(sC,B
FBbAa BS(BJ(SC,Y +Bc 6023\)

In the vector equation (3.29) the T'(F;) and T(FEs;) parts are given by (3.30) and
(3.31) respectively:

(3.30) (6458 ) B0y + TG 4500y =TG5 4, BEBEB)ocs,

(3.29)

(3.31) (645By ) B 45 —|—FC; 4005 =T AaBaBbBﬁa

From (3.30) for B = C' it follows (3.12) and for B # C it follows (3.14). From
(3.31) for B = C it follows (3.14) and for B # C it follows (3.15). If we (3.28)
multiply with B% and use (3.1) we have

55 (5,433,?)3%557 + (cs/mBg@)B%Ba + rg SOy + rB % 4590

I‘Bb AaBEB%(BgécV + Bc5ca)

In the vector equation (3.32) the T'(F4) and T(FEs) parts are given by (3.33) and
(3.34) respectively:

(3.33) (645 B7) B, + rgg 45007 =55 40 BYB B¢,
(3.34) (845 B3 ) BS3pa + 153 - 0ca = I'Gi 4aBBLBE dca.
From (3.33) for B = C' it follows (3.16) and for B # C it follows (3.17). From
(3.34) for B = C it follows (3.18) and for B # C' it follows (3.19). O

PROPOSITION 3.2. Formulae (3.4), (3.6), (3.8), (3.10), (3.12), (3.14), (3.16)
and (3.18) have the explicit form

(3.35) U3 4 = D86 aaBABYBY  for A0,
B

(336) FB%OC! FBbOa aBﬁB’Y B’YBQB’

(3.37) ngma I55 aaBABEBY  for A#0,
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B~ a ~
FB%O& FBbOaBaBgBZ B’YBQ[%

B

B b b
FB%O =I5 OQBZB/B\BZ - BZBQE,

rg%A =T 4. BaB4BY  for A#0,

By . -
FB%O FBbOa aB BW BZBQB,
B a

U5l aa = U8t 4aBaBEBY  for A #0,

(3.38)
(3.39)
(3.40)
(3.41)
(3.42)
(3.43)
(3.44) T30 0a = D860 BBYBY — B) BS s,
(3.45)
(3.46)
(3.47)
(3.48)
(3.49)
(3.50)

3.45 D5} aa = DBf 4aBABYB]  for A#0,
3.46 I5% s = U85 0 BABYBY — B) BY,
3.47 rg; 4a = DB 4BABSBY for A#0,
3.48 Fg%o =550 BABLB] — B) BY;,
3.49 Fgg ua = DBi aaBEBYBY for A #0,
3.50 rggo = T30, BABYBY — B BY .
PROOF. Because of (3.1) we have in (3.4) (640B])Bj = 6aa(0}) — By 040 BY.
As Bb gy—;); = Bg(uoﬂv(ﬁ), we have 5AaBg =0 for A #0, and (50&]3% = BY,.

On the similar way we prove that for A # 0
(0aaB))By =0,  (54aB])By=0,  (54aB))B
(64aB])Bj =0, (6AaB§)BE =0, (64aB))B
(340B))B% =0,

(see (3.37), (3.39), (3.41), (3.43), (3.45), (3.47), (3.49)) and for A = 0 they give

the other corresponding equations (see (3.38), (3.40), (3.42), (3.44), (3.46), (3.48),
(3.50)). 0

THEOREM 3.1. All induced connection coefficients are the corresponding pro-
jections of connection coefficients defined in the surrounding space only eight types

By By By By By By By
of them.: FB,BOou 5500 FB[BOO/ FB[BOO/ FBﬂOoc/ FBﬂOoc FB,@Oa FB,@Oa have

different relations to the connection coefficients in the ambient space, i.e.
FBy Ax = FBbAaBiBzBCZ, for B#£C and every A =0,1,2,...,k;
FBy Ap = FBb AaBaBsz for every A #0;
FByOac_FBbOa avaBz Bb fOTA—O

yﬂc’

where x € {a,Q}, y € {575}; z e {7,7}.
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PROOF. It is a consequence of Proposition 3.1 and Proposition 3.2. U

THEOREM 3.2. If the generalized linear connection V acts on the surround-
ing space as d-conmection, then the induced connection on subspaces are almost
d-connections.

PROOF. From Proposition 3.1. we obtain, that for the d-connection in the
ambient space:

Crv _ cy _ Cr _ cy _
I's4a=0, T'psa,=0, FBBAQ_O’ FBBAa_ ,
Cy — cy — Cy — cy —
Topaa =00 Thpaa =00 Tp5,5=0 Tpgs=
for C' # B and by Definition 3.2 it means, that the induced connection is almost
d-connection. (|

THEOREM 3.3. If the generalized linear connection V acts on the surrounding
space as s.d-connection, then the induced connections on subspaces are almost s.d-
connections.

PRrOOF. The proof follows from Theorem 3.1 and the Definitions 2.3 and 3.3.
O

THEOREM 3.4. The covariant derivatives of the vector fields expressed in sur-
rounding space and with induced connection on subspaces are connected by

Ce ¢ payC c payC c payCy c payCy
(851) YO, = BSBIYO + BSBIY ) 4+ BSBOY T+ BSBIY T

where by definition

c C c B c Bf
Y e = 0aaY Y+ TRL Y ﬂJFFE%MY A,
Cry _ C Cyv B Cry BA
Y aa = 0asY ’Y+FBﬁAaY B_'_FBBAaY B’
cy o _ cH cy B cy BB
Y 4 = 04aY T T3} Y ﬁ+FB/§AaY A,

CY¥ _ 5 Oy pCA BB , 107 BB
Y5 = 0aaY 7 + T30 ,0Y +T5E Y

PRrOOF. From (1.5), (2.4) and X = X495 4,, Y = Y 5%, we have
VyY = YcﬁAaXAaacc
(3.52) =Y 4, BABIX A0y + Y4, BABIX 605
+ Y5 BaB) X450 + Y5, BABI X455,
The comparison of X = X454, Y = YB g, and (3.52) after some changing of
indices results
c _ yod b CH
Y ’\yAa =Y |AbBo¢B(’1y7 Y TAQ

Cy  _vCd pbpy C37  _vCd pbpd
Yo e =Y BaBy, Y745 =Y aBaBy-

_y/Cd b R
=Y |AbBaBd=

If we multiply this equation by BgBS, B BS, B BS and BY B respectively, add
these equations and use (3.2) we obtain (3.51). O
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We can now determine the action of induced connection on V on T™*(E).

THEOREM 3.5. The induced connection V defined by Definition 3.1 acts on
T*(E) in the following way

Vg, 0uP? =180 4 6u®r =158, 5v77,

Cy Aa
(3.53) Via 5077 = -Te) Aa‘suc7 FgB 4007,
' V2 0ul? = 15 ooucr =122 ov 7,
V(;Aa(;vBB = ngfj A&5u07 — Fgg Aa(ng?

PROOF. Starting from <6u35,5,4a> = 0B86F and using the property of V, we
get

(V54,0057 60y) + (6u°, Vs, bcy) =0 =
<V(5Aa 6u367 5CV> = <6UBB FC'y Aa(SD(S + Fg;y Aa(SD/’?>

B
= C'y Aa5 5ﬁ = _]‘—‘C"ﬂone7
B B
<V5Aa6u 5,505>+<5u ﬁ,vaA 505>:0 =
b=
(V54,007 005) = —(0uPP.Tg8 | 0ps +T 1 | dps)
_ DS BB _ Bpj
- FCBA 0pds = _FCBAa

If we substitute previous equations in first equation of (3.53) we obtain identity:

<V5Aa §u®”, 5Cv> <*F1:B)§ Aa5UD6 - Fgg AaévDﬁy’ 5Cv>

D6
FD5 Aa(SC 5’)/ I‘C'y Ao
Bp D7 Bp D7
<_Fm AaduTT = I'py A0V, 5c,§>

_ _B8  sDs7_ _pBB
P2 4a008) = -T00 .

<V5Aa suP”b, Sc5)

The other equations of (3.53) we get in the similar way. O
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