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EXTENDABLE SHELLING, SIMPLICIAL AND
TORIC h-VECTOR OF SOME POLYTOPES

Duško Jojić

Abstract. We show that the stellar subdivisions of a simplex are extendably

shellable. These polytopes appear as the facets of the dual of a hypersim-

plex. Using this fact, we calculate the simplicial and toric h-vector of the
dual of a hypersimplex. Finally, we calculate the contribution of each shelling
component to the toric h-vector.

1. Introduction

A polytopal (polyhedral) complex is a finite set C of polytopes (including ∅ ∈ C)
satisfying:

(i) if P ∈ C and Q is a face of P , then Q ∈ C;
(ii) For all P,Q ∈ C, P ∩ Q is a (possible empty) face of both P and Q.

For the definitions and properties of polytopes, see [10]. A simplicial complex is
a special case of polytopal complex, the case when every polytope is a simplex.
In this paper we consider only pure complexes C, that is, complexes which satisfy
the condition that all the maximal faces with respect to inclusion, called the facets
of C, have the same dimension, called the dimension of C.

An example of a pure polytopal complex is the boundary complex C(∂P ) of a
polytope P ; the set of the faces of P except for the polytope itself.

A shelling of a polytopal complex C is a linear ordering F1, F2, . . . , Fk of its
facets which is arbitrary for dim C = 0 (all Fi are points), and for dim C > 0 has
to satisfy the following conditions (see [4] or Section 8 in [10]):

(i) The boundary complex C(∂F1) of the first facet has a shelling.
(ii) For every i > 1, the intersection of Fi with the previous facets is a begin-

ning part of a shelling of the boundary complex C(∂Fi), that is:

Fi ∩
(⋃

j<i

Fj

)
= G1 ∪ G2 ∪ · · · ∪ Gl

for some shelling G1, G2, . . . , Gl, . . . , Gm of C(∂Fi).
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For polytopal complexes, the condition (i) is pleonastic, because the boundary
of any polytope is shellable, see [4]. Further, for simplicial complexes, the condition
(ii) can be simplified:

For every i < j � k there exist some l < j and a vertex v of Fj such that

(1) Fi ∩ Fj ⊂ Fl ∩ Fj = Fj � {v}.
A polytopal (simplicial) complex C is extendably shellable if every partial shell-

ing can be extended to a complete shelling of C. This concept is essential for the
algorithmic use of shellings, but we know very few about extendable shellability.
Ziegler showed in [9] that the boundaries of “almost all” 4-polytopes are not ex-
tendably shellable.

For a d-dimensional polytopal (simplicial) complex C, we denote the number
of i-dimensional faces of C by fi, and f(C) = (f0, f1, . . . , fd) is called the f -vector.
A generating polynomial for the f -vector is the f -polynomial :

f(C, x) = xd+1 + f0x
d + f1x

d−1 + · · · + fd−1x + fd.

A new invariant, the h -vector h(C) = (h0, h1, . . . , hd, hd+1) is defined to be the
coefficients of f(C, x − 1):

(2) f(C, x − 1) = h0x
d+1 + h1x

d + · · · + hdx + hd+1 = h(C, x).

The h-vector of a shellable simplicial complex C has the following combinatorial
interpretation. For a fixed shelling F1, F2, . . . , Fk of C, we define the restriction Rj

of the facet Fj :

Rj = {v ∈ V (Fj) : Fj � {v} ⊂ Fi for some 1 � i < j},
that is, Rj is a minimal new face at the j-th step in the given shelling.

The type of Fj in the given shelling is the cardinality of Rj , i.e., type(Fj) = |Rj |.
Now, we have that

hk(C) = |{j : type(Fj) = k}|.
This interpretation of the h-vector was of great significance in the proof of

the upper-bound theorem and in the characterization of f -vectors of simplicial
polytopes, see [10].

The entries of the h-vector of a simplicial polytope are Betti numbers of the
associated toric variety. This can be generalized to nonsimplicial polytopes, to
define the toric h-vector, but we do not have combinatorial interpretation for the
entries of this vector.

In this paper, we use the combinatorial formula for the toric h-vector of Eulerian
poset given by Stanley [8]. To a graded poset P we associate two polynomials,
f(P, t) and g(P, t) recursively:

(1) For the Boolean lattice B1, the only graded poset of rank 1, we have
f(B1, t) = g(B1, t) = 1.

(2) If rank(P ) = n + 1 > 0, then f(P, t) has the degree n, say
f(P, t) = hT

0 + hT
1 t + · · · + hT

n−1t
n−1 + hT

n tn, and we define
g(P, t) = hT

0 + (hT
1 − hT

0 )t + · · · + (hT
[n/2] − hT

[n/2]−1)t
[n/2].
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(3) If rank(P ) = n + 1 > 0 we define

(3) f(P, t) =
∑

x∈P, x<1̂P

g
(
[0̂P , x], t

)
(t − 1)n−r(x).

The toric h-vector hT (P ) = (hT
0 , hT

1 , . . . , hT
n ) of an Eulerian poset P is defined as

the vector of coefficients of the polynomial f(P, t).
For all simplicial Eulerian posets the toric h-vector coincides with the usual

h-vector, defined with relation (2). Further, for the entries of the toric h-vector of
any Eulerian poset of rank n + 1 holds hT

i = hT
n−i.

A poset P is quasisimplicial if for any coatom c of P , the interval [0̂, c] is
simplicial, that is, for any corank 2 element x of P , the interval [0̂, x] is a Boolean
algebra. From the formulae (3) and the fact that for all Boolean lattices Bm the
equality g(Bm, t) = 1 holds, we can obtain that for a quasisimplicial poset P whose
h-vector is h(P ) = (h0, h1, . . . , hn) the toric h-vector of P is

(4) hT
i =

{
hi for i � [n/2],
hn−i for i > [n/2].

2. Polytopes T n
k are extendable shellable

The stellar subdivision of a polytope P in a face F (see [6] for more details) is
a new polytope conv(P ∪ xF ), where xF is a point of the form yF − ε(yP − yF ),
where yP is in the interior of P , yF is in the relative interior of F , and ε is small
enough. Let Tn

k denotes a polytope obtained as a stellar subdivision of n-simplex
∆n in a k-face S. Obviously, Tn

k is simplicial and in [2] we can find that

(5) ∂Tn
k = (∆n � S) ∪ (∂S ∗ ∂lk∆n

S ∗ {xS}) .
Remark 1. Let us denote the vertices of S with r1, r2, . . . , rk+1; the vertices

of ∆n � S denote with c1, c2, . . . , cn−k, and let cn−k+1 denotes the new vertex xS .
Now, we have that the set of the vertices of Tn

k is

V (Tn
k ) = {r1, r2, . . . , rk+1} ∪ {c1, c2, . . . , cn−k, cn−k+1}.

From the relation (5), we conclude that all facets of Tn
k are just (n − 1)-simplices

Fi,j = conv(V (Tn
k )�{ri, cj}), for all i = 1, 2, . . . , k+1; j = 1, 2, . . . , n−k, n−k+1.

Therefore, if we label rows and columns of a (k + 1) × (n − k + 1) rectangle
R(k+1)×(n−k+1) with vertices r1, r2, . . . , rk+1 and c1, c2, . . . , cn−k, cn−k+1 of Tn

k ,
then facets of Tn

k correspond with (k + 1)(n − k + 1) squares of R(k+1)×(n−k+1).

Now, with an appropriate labelling of the vertices, we can prove that the fol-
lowing complexes are combinatorially equivalent: ∂Tn

k
∼= ∂(∆k × ∆n−k)∗ ∼= ∂Λn+1

k

(here Λn+1
k is a simplicial n-disk, obtained as the union of k+1 facets of an (n+1)-

simplex).
Note that the facets Fi,j and Fp,q of Tn

k share a common (n − 2)-simplex if
and only if i = p or j = q (corresponding squares are in the same row or column
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of R(k+1)×(n−k+1)). Now, it is easy to verify that the lexicographical order of the
facets of Tn

k

(6) Fi,j < Fp,q ⇔ i < p or i = p, j < q

is a shelling order. In this order we have that type(Fi,j) = i + j − 2, so we can
conclude that for 0 � k � n − k the h-vector of the polytopes Tn

k is h(Tn
k ) =

(1, 2, . . . , k, k + 1, . . . , k + 1, k, . . . , 1).

Theorem 2. Polytopes Tn
k are extendably shellable.

Proof. Let F be a subset of the facets of Tn
k , which we can identify with

the squares in the rectangle R(k+1)×(n−k+1). For all i = 1, 2, . . . , k + 1 we let
Fi = {j ∈ [n− k + 1] : Fi,j ∈ F}; i.e., Fi is the set of the squares from F contained
in the i-th row of R(k+1)×(n−k+1). We will prove that the following statements are
all equivalent:

(a) there exists a shelling order for the union of the facets contained in F .
(b) the sets Fi form a chain: for all i, j we have that Fi ⊆ Fj or Fj ⊆ Fi.
(c) there exists a shelling of Tn

k with the facets from F at the beginning.

(a) ⇒ (b). Assume that for some i, i′ there exists j such that j ∈ Fi and
j /∈ Fi′ . Now, from the shellability of F , for all j′ ∈ Fi′ , the intersection Fi,j ∩Fi′,j′

is contained in an (n − 2)-simplex, which is the intersection of Fi,j or Fi′,j′ with a
facet from F , see (1). The only facets of Tn

k with the above properties are Fi,j′ and
Fi′,j . As we assumed that Fi′,j /∈ F , then shellability of F implies that Fi,j′ ∈ F ,
and therefore Fi ⊇ F ′

i .

(b) ⇒ (c). We may assume that F1 ⊇ F2 ⊇ . . . ⊇ Fk+1 (because we can relabel
the vertices of S). We define the following linear order for the facets of Tn

k :

(7) Fi,j < Fk,l ⇔ either j ∈ Fi, l /∈ Fk or i < k ∨ i = k, j < l.

If Fa,b precedes to Fc,d in this order we consider the two possibilities:

1◦ a � c, when b /∈ Fa, d /∈ Fc or b ∈ Fa, d ∈ Fc or b ∈ Fa, d /∈ Fc, and then

Fa,b ∩ Fc,d ⊆ Fa,d ∩ Fc,d = Fc,d � {ra};
2◦ c < a, when b ∈ Fa, d /∈ Fc, and then Fa,b∩Fc,d ⊆ Fc,b∩Fc,d = Fc,d�{cb}.

Note that Fa,d (and Fc,b in the second case) precedes to Fc,d in the given order.
Therefore, a shelling order for the facets of Tn

k is defined by (7).

Finally, the implication (c) ⇒ (a) is obvious. �

It is shown in [5] that the cross polytope C
∆

n (the convex hull of the standard
basis vectors in R

n and their negatives), is not extendably shellable in dimension
12 or higher. The cross polytope can be obtained as the dual of the product of
segments, or by successive stellar subdivisions of a simplex, so we cannot generalize
Theorem 2 in this way.
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3. Simplicial and toric h-vector of ∆∗
n−1(k)

The hypersimplex ∆n−1(k) is a polytope in R
n obtained as the intersection

of the n-cube Cn = [0, 1]n with the hyperplane Hk =
{
x ∈ R

n :
∑n

i=1 xi = k
}
.

In particular, ∆n−1(1) and ∆n−1(n − 1) are (n − 1)-simplices. As the polytopes
∆n−1(k) and ∆n−1(n− k) are isomorphic, we can assume that 0 � k � n− k. The
face lattice L(∆n−1(k)) of a hypersimplex is described with the following

Lemma 3. Let
Ln−1(k) = {(A,B) : A ⊂ B ⊆ [n]; |A| < k; |B| > k}

∪{(A,A) : A ⊆ [n]; |A| = k} ∪ {0̂}.
If we define an order on Ln−1(k) with (A,B) � (C,D) ⇔ A ⊇ C, B ⊆ D, then
L(∆n−1(k)) ∼= Ln−1(k).

Proof. Note that Hk does not intersect the edges of Cn in their relative
interior. Therefore, the only vertices of ∆n−1(k) are vertices of Cn contained in
Hk. The correspondence

A = {a1, a2, . . . , ak} ⊆ [n], (A,A) ↔ TA = (t1, t2, . . . , tn), ti =

{
1, i ∈ A;
0, i /∈ A

gives us a bijection between the atoms of Ln−1(k) and the vertices of ∆n−1(k).
For any pair (A,B) of the subsets of [n], such that

(8) A ⊂ B ⊆ [n]; |A| � k − 1; |B| � k + 1,

the linear functional x �→∑
i∈A xi−

∑
j /∈B xj reaches the maximum on the ∆n−1(k)

at the (|B| − |A| − 1)-dimensional face

S(A,B) =
{

x ∈ Cn :
n∑

i=1

xi = k; ∀i ∈ A, xi = 1; ∀j /∈ B, xj = 0
}

.

So, we establish a bijection between all of pairs (A,B) for which the relation
(8) holds and all (|B| − |A| − 1)-faces of ∆n−1(k). Also, it is easy to see that the
correspondence (A,B) �→ S(A,B) defines a poset isomorphism between Ln−1(k) and
the face lattice L(∆n−1(k)). �

Note that the face lattice of the dual polytope ∆∗
n−1(k) can be obtained by

applying the Et-construction on the Boolean lattice Bn, see in [7].

Remark 4. For a vertex TA of ∆n−1(k), denote by FA its corresponding facet
in ∆∗

n−1(k). For 1 < k < n, note that ∆n−1(k) has 2n facets Ri and Cj :

Ri = {x ∈ ∆n−1(k) : xi = 1} = S({i},[n]) = conv
({TA : i ∈ A}),

Cj = {x ∈ ∆n−1(k) : xj = 0} = S(∅,[n]�{j}) = conv
({TA : j /∈ A}).

Therefore, ∆∗
n−1(k) has 2n vertices: V (∆∗

n−1(k)) = {r1, . . . , rn, c1, . . . cn}. The
vertex TA in ∆n−1(k) is contained in the facets Ri, for i ∈ A and Cj , for j /∈ A.
Therefore, the set of the vertices of FA is V (FA) = {ri : i ∈ A} ∪ {cj : j /∈ A}.



90 JOJIĆ

An edge E = S(A�{i0},A∪{j0}) of ∆n−1(k), which contains TA, is contained in
the facets Ri, for i ∈ A � {i0} and Cj , for j ∈ Ac

� {j0}. So, we have that the
maximal face of FA, which corresponds to E, is an (n − 3)-simplex Gri0 ,cj0

(A) =
conv(V (FA) � {ri0 , cj0}).

For A = {a1, a2, . . . , ak} ⊂ [n], we denote the i-th row of a k×(n−k) rectangle
with rak+1−i

. If Ac = {b1, b2, . . . , bn−k}, then the j-th columns we denote with cbj
.

Now, from Remark 1 it follows that all of the facets of ∆∗
n−1(k) are combinatorially

equivalent with Tn−2
k−1 .

Note that Gra,cb
(A) and Grb,ca

(A�{a}∪{b}) denote the same faces of ∆∗
n−1(k)

(the common facets of FA and FA�{a}∪{b}). So, with

Gra,cb
(A), for A ⊂ [n], |A| = k; a < b, a ∈ A, b /∈ A,

we list all of (n − 3)-faces of ∆∗
n−1(k).

Now, we consider a lexicographic order of the facets of ∆∗
n−1(k):

(9) FA <L FB ⇔ A <L B ⇔ min(A � B) ∈ A.

If we denote with ΓA the intersection of the facet FA with the previous facets
in this order, we can prove that

ΓA = FA ∩
( ⋃

FA′<LFA

FA′

)
=

⋃
a∈A, b∈[n]�A, b<a

Gra,cb
(A).

Now, we use well known bijection between k-subsets of an n-set (facets of ∆∗
n−1(k)),

and all shortest paths from lower left-hand corner, and ending at the upper right-
hand corner of a k × (n − k) rectangle. The squares above this path correspond
with facets of FA contained in ΓA.

From Theorem 2, it follows that there exists a shelling for facets from ΓA, and
this shelling can be extended to the shelling of the whole FA, and therefore <L is
a shelling order for the facets of ∆∗

n−1(k).
Further, motivated by (6), we can define the linear order of the (n − 3)-faces

of ∆∗
n−1(k):

Gra,cb
(A) < Grk,cl

(A′) ⇔

⎧⎪⎨⎪⎩
A <L A′, or
A = A′, ra > rk, or
A = A′, ra = rk and cb < cl.

It is easy to prove that this is a shelling order for (n − 3)-skeleton of ∆∗
n−1(k).

Also, we can note in the above list, that from a facet FA we take just the facets
which does not appear in ΓA, i.e., facets whose corresponding squares are bellow
corresponding path. When the simplex Gra,cb

(A) corresponds with the square (i, j)
in a k× (n−k) rectangle, then its type in described shelling is i+ j− 2. Therefore,
the square (i, j) below the corresponding path, contributes the one to i+j−2 entry
of h-vector of ∆∗(n−3)

n−1 (k).
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If we define a k × (n − k) matrix Ak,n−k with ai,j = number of paths in
Rk×(n−k), in which the square (i, j) are below, then we have that

hk(∆∗(n−3)
n−1 (k)) =

∑
i+j=k+2

ai,j .

By considering the possibilities for the first step in a such path, it is easy to
note that the matrices Ak,n−k satisfy the following recursive relations:

(10) Ak,n−k =

⎡⎢⎢⎢⎣
0
0
...
0

Ak,n−k−1

⎤⎥⎥⎥⎦+
[

Ak−1,n−k(
n−1
k−1

) (
n−1
k−1

) · · · (
n−1
k−1

)]

Theorem 5. For all n ∈ N and 0 � k � n − k it holds:

(11) h(∆∗
n−1(k)) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
n
0

)(
n
0

)
+
(
n
1

)
...(

n
0

)
+
(
n
1

)
+ · · · + ( n

k−1

)
...(

n
0

)
+
(
n
1

)
+ · · · + ( n

k−1

)
...(
n
0

)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
−
(

n

k

)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
...
0
1
1
...
1
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎬⎪⎪⎭ n−k
zeros

Proof. From Euler–Poincaré formula we know that the last entry of h-vector
is always equal 1. The above combinatorial interpretation for the h-vector of the
(n − 3)-skeleton of ∆∗

n−1(k) and relation (10) gives us that:

h(n−3)(∆∗
n−1(k)) =

(
0

h(n−4)(∆∗
n−2(k))

)
+
(

h(n−4)(∆∗
n−2(k − 1))
0

)
+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...
0(

n−1
k−1

)
...(

n−1
k−1

)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎬⎭ k−1
zeros

Let us to denote with h̃(P ) “the reduced” h vector of a polytope P , i.e., h(P ) =
(h̃(P ), 1). Now we use Stanley’s trick to compute the h-vector of ∆∗

n−1(k). From
the above we obtain the following recursive relations

h̃
(
∆∗

n−1(k)
)

=
(
0, h̃(∆∗

n−2(k))
)

+
(
h̃(∆∗

n−2(k − 1)), 0
)

+
(
0, . . . , 0︸ ︷︷ ︸

k−1

,
(
n−1
k−1

)
, 0, . . . , 0, 1 − (n−1

k−1

))
.
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Note that
(
n−1
k−1

) − 1 is the last entry of h(n−4)(∆∗
n−2(k − 1)). The formulae (11)

will follow from the above relation and beginning conditions; ∆∗
2(1) i ∆∗

2(2) are
2-simplexes. �

Now, we consider the toric h-vector of ∆∗
n−1(k). The polytopes ∆∗

n−1(k) are
quasisimplicial, and from the formulae (4), for 0 � k � n − k we have that

hT (∆∗
n−1(k)) =

((
n
0

)
,
(
n
0

)
+
(
n
1

)
, . . . ,

(
n
0

)
+
(
n
1

)
+ · · · + ( n

k−1

)
,

. . . ,
(
n
0

)
+
(
n
1

)
+ · · · + ( n

k−1

)
, . . . ,

(
n
0

)
+
(
n
1

)
,
(
n
0

))
.

Bayer showed in [1] how the shelling of the ordinary polytope could be used to
compute the toric h-vector. Here, we are able to compute the toric h-vector of
∆∗

n−1(k) from the shelling order described in (9). For this we need the following
theorem, see [3].

Theorem 6. For a d-disk Γ whose h-vector is h(Γ) = (h0, h1, . . . , hd, 0) and
its boundary (d − 1)-sphere ∂Γ the following equality holds

hi(∂Γ) = h0 + h1 + · · · + hi − hd+1−i − · · · − hd+1, for 0 < i � [d/2].

With hT
A(t) we denote the contributions to h(∆∗

n−1(k), t) of the faces that
appear for the first time when we add facet FA:

hT
A(t) =

∑
G⊆FA, G/∈⋃B<A FB

g(G, t)(t − 1)n−dim G.

Theorem 7. For 1 � a1 < a2 < · · · < ak � n and A = {a1, a2, . . . , ak} we
have hT

A(t) = tn−k−1
∑k

i=1 t2i−ai .

Proof. If we denote with ΛA the intersection of the facet FA with the facets
that came after FA in the shelling order given in the relation (9), new faces are
exactly those from ΛA � ∂ΛA. Therefore, from the definition of hT

A we obtain:

hT
A =

∑
F∈ΛA

g(F, t)(t − 1)n−1−dim F −
∑

F∈∂ΛA

g(F, t)(t − 1)n−1−dim F + g(FA, t).

The face posets of ΛA and ∂ΛA are simplicial, and therefore we can compute their
contribution to the hT

A from the usual (simplicial) h-vector of Λ and ∂Λ. So, we
have

(12) hT
A = (t − 1)h(ΛA, t) − (t − 1)2h(∂ΛA, t) + tk−1 + tk−2 + · · · + t + 1.

In a shelling order for ΛA, the reverse order of the one given in (6), the contribution
of the squares from the (k+1− i)-th row (the row denoted with rai

) to the h-vector
of ΛA is

hai
= (

i−1︷ ︸︸ ︷
0, 0, . . . , 0,

n−k−ai+i︷ ︸︸ ︷
1, 1, . . . , 1,

k−2i+ai︷ ︸︸ ︷
0, . . . , 0).

If i − 1 � k − 2i + ai, from Theorem 6, we know that the contribution of ai to the
h-vector of ∂ΛA is

(

i−1︷ ︸︸ ︷
0, 0, . . . , 0, 1, 2, . . . , r, r . . . , r, r, . . . , 2, 1,

i−1︷ ︸︸ ︷
0, 0, . . . , 0)
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When we put this in (12), we obtain that the contribution of the ai to hT
A is exactly

tn+2i−k−ai−1.
A similar calculation goes for the case i − 1 > k − 2i + ai, and the theorem

follows. �
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