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AN ENUMERATIVE PROBLEM
IN THRESHOLD LOGIC

Zana Kovijanié Vukiéevié

ABSTRACT. The number of Boolean threshold functions is investigated. A
new lower bound on the number of n-dimensional threshold functions on a set
{0,1,..., K — 1} is given.

1. Introduction

Let K € N be positive integer and Fx = {0,1,..., K — 1}. An n-dimensional
threshold function on Ek is a function f : E}t — {—1,1} such that there exists
a hyperplane 7 separating the pre-images f~!(—1) and f~1(1). The question is:
what is the number P(K,n) of n-dimensional threshold functions on Ex ?

The bounds for these numbers have been well-studied only for the case K = 2.
Nevertheless, the asymptotic even for P(2,n) is still open. The case K = 2 has an
application in switching theory.

A Boolean (switching) function f: {—1,+1}"™ — {—1,41} is a threshold func-
tion when there exist real numbers ag, aq,...,a, so that

(1) f(z) =sgn (ao + é aixi)

i.e., hyperplane that separates vertices of n-dim cube in which f takes value —1
from the vertices in which it takes value 1. The number of all switching func-
tions is obvious, but the basic problem in the study of threshold functions, their
enumeration for each n, is still open.

Clearly, two sets of weights a = (ag, a1, ...,a,) and b = (bg, b1, ..., b,) generate
different functions f and g by rule (1) iff two points a,b € R"*! are separated by
one of 2" hyperplanes 1+, +---+2, = 0in R*T!. Thus, each distinct hyperplane
partition of a cube, or each threshold function defined on that cube, corresponds
to one of regions in R"*! defined by the arrangement of the upper 2" hyperplanes.
This connection with the number of cells in central hyperplane arrangement yields
that the best upper bound of the number P(2,n) of threshold functions given by
Schlafli [3] in 1850 is:
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n
2" —1
P(2,n) < 22 ( ; ) ~ exp, (n®> —nlogn — O(n)), n— oo
i=0

By direct application of Odlyzko’s [2] and Winder’s [6] results, Zuev [4] in 1989
obtained the asymptotics logy P(2,1) ~ n?, n — oo. More precisely, he obtained a
lower bound

10n2
2 _———
(2) P(2,n) > exp, (n o O(nlnn))

The interpretation in the terms of hyperplane arrangements permits us to ob-
tain an upper bound P(K,n) < 231 (*",7"). For the lower bound it is necessary
to develop much more sophisticated methods. Here we sketch the proof for the next
lower bound:

p(K,n+1)>;(Ln_2K: _4J)

log e n
% [P<K’ Plogi(n +3D - Plogr;n +4J <P<K’ Plogln +2J> B 1)]

As far as we now, this is the best lower bound for P(K,n).

2. Previous work

Without loss of generality we may suppose that

L {EL 8 £(2Q - 1)), K =2Q
{0, £1,42,...,+Q}, K=2Q+1

Hyperplane H : a1 + agx2 + - -+ + apx, = 0 divides the cubical net E% on the
three parts:

Ag=EirNH", By=ERNH, Cy=ErnH".
For arbitrary € > 0 let

H , :aix1+...4+apz, —=0
H.:a1z1+...4+apx, +=0.

To be definite, assume that H_NH_ # () and € is chosen such that (HX_ N HZ )N
E7% = By. Then, Ay = ER N H} and Cy = E N HZ,. On the other hand, each
triplet (Ag, By, Cpy) defines a hyperplane partition of the (n + 1)-dim cubic net
E}QH on the following way:

o If K is even, i.e., K = 2(Q), the partition is defined by hyperplane

— €
H:ajz1+...4apzy + ——xp41 =0

2Q — 1
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o If K is odd, i.e., K = 2Q + 1, the partition is defined by hyperplane

— €
H:aix1+ ...+ apTyn + =Tpy1 =6,

Q
where ¢ is sufficiently small such that H N (Ex)"! = (.

Proof of our main result is based on the following simple observation (see [1]):

LEMMA 1. Let H and G be two hyperplanes in R" so that By # Bg. Then,
associated hyperplanes H and G generate different partitions of the (n + 1)-dim
cubical net.

It follows from the above that the lower bound of the number P(K,n) can be ob-
tained by estimation of the number of sets By appearing in triplets (Agy, By, Cq).
Let us take the vectors vi,vy,...,v, € E} in whose linear cover there is no “new”
vector from EF;. Sets {vi,vs,...,v,} will play the role of the By!

The most important argument in the construction of the sets By is the next
theorem, proved in [1]. It is a generalization of Odlyzko’s result [2] on subspaces
spanned by random selections of £1 vectors.

THEOREM 1. For any K € N and any nonnegative integer p < n — 210g’; ——4
probability P that in the linear cover of p vectors vi,va,...,vp chosen at random

from the set E}: there is at least one vector from E7 ~\Ji_, (vi) tends to zero, as
n tends to infinity.

Let p = |n — 2o — 4| be the value from Theorem 1 and let M, denotes
the family of p X n matrices with elements from set Fx. Let M/ be subset of M,,
such that any two rows of the matrix M € M!, are linearly independent. In that
case, ||[MC|| < K"K (5)K"P=2) ie., M|l ~ [My]], n — oo.

Over the family M/, we define the relation ~ on the next way: A ~ B iff A
is obtainable from B by permutation of the rows or by replacement of one row with
the row that is collinear to that one. ~ is equivalence relation and each equivalence
class has p! K? elements. Two matrices from the same class of equivalence generate
the same linear subspace. By Theoreml, linear covers of the row-vectors of almost
all K-valued matrices M € M,, do not contain K-valued vectors v € E} different
from that row-vectors and vectors collinear with any of them. It follows that the
number of sets By from Lemma 1 is greater than or equal with

1 K™
2 p!KP

Hence log, P(K,n) ~n?, n — oo.

The biggest r € N with the property that any r vectors of the system & =
{s1,...,8,} are linearly independent is called the strong rank of S. It is denoted
by rst(s1,.-.,8n)-

In [5] we have proved that the probability that a random n by n K-valued
matrix is singular tends to zero. The next theorem can be proved by a little
modification of that one.
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n

THEOREM 2. Let p = |n — 2 o

pendently chosen from E%.. The probability that rs (@, ...,an) = p tends to 1, as
n tends to infinity.

— 4J and let ay,...,a, be at random inde-

3. The main result

Let p = {n—?logf{ — —4J and let A,, denotes the event: the rows v;,vg,...,v, €
E7 and the columns ¢y, ca,. .., ¢, € Ef of the random matrix My, € EY" have

the next properties:

(1) in the linear cover of the vectors vy, va, ..., v, there is no “new” vector of
the same type, i.e., vector from E ~ |JY_; (vi),
(2) rse(cry.. . cn) =Dp.

On the basis of theorems 1 and 2, we have that P(AS) — 0 as n — oo. There-
fore, starting from some enough large ny € N, the number of p-sets {vi,va,...,vp}
C E}%, n = ng, that satisfy the upper two conditions is bigger than %(I;) Let
B = {v1,v2,...,v,} be one of them. Because of the first property, B is one of the
sets By introduced in previous section. Denote by B p-dimensional linear subspace
spanned by B. In what follows, with different chose of hyperplanes that expand
subspace B, we are going to get a different hyperplane partitions of the net E},
with the same set B. Because of the simplicity of presentation, instead of the
net E%, only the cube C = {—1,+1}" will be considered on. Generalization on
arbitrary K will be obvious.

Let D be the orthogonal complement of the space B. By g1, ..., g, denote the
images of the basis vectors eq,...,e, of the space R™ under the orthogonal pro-
jection prp : [-1,1]" — D and by Gy, i = 1,...,n linear segments conv{—g;, g; }.
First, let us prove that any d = n — p vectors of the set g1, ..., g, are linearly inde-
pendent. If it would not be true, there would be d vectors, for instance g1, ..., gq4,
and their linear combination ayg1 + - - - + aggq = 0, with some nonzero coefficient.
This is equivalent with aje; + -+ + ageq € B — {0}, i.e.,

VL L T 114
vi v . g ng R
1,2 d o d+1 n
v, v voow v
det(vi,...,vp,€1,...,0q) = lp 6’ 67 PO 67 =0
0 1 0 0 0
0 0 1 0 0
It follows that
,UilJrl Uii+2 ,U{L
ng U§l+2 vy
. ) .| =0
vdJrl ,Ud+2 P
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This is contrary to the assumption r¢(ci,...,cn) = p, where ¢; = (vi,v5,...,0})
are the column vectors of the matrix defined by row vectors vy, ...,v, € {—1,1}".

We conclude that the image of cube C under orthogonal projection on to d-
dimensional plane D, is a cubical zonotop Z =G+ ...+ G, and any r < d — 1

vectors gi,, ..., i, € {g1,...,9n} define r-dimensional facies
F=Gi+-+Gi,+ Y  6gy, 0;€{£l}.
j?éil yeeeslp
Line segments G;,, ..., G;,. will be called the components and vector Z#il i 0595

the moving vector of F.
We shall now prove that different central partitions of the set of vertices

p(Z) = {6191 + 02ga + -+ + Opgn | 61 = £1, i =T, n}

of zonotope Z yield to the different central partitions of cube C' (the partition is
central if it is defined by hyperplane that contains the origin; the points of P(Z)
are not necessary all distinct).

Let us take hyperplane Hy—1 = {hq,...,hq_1) that define a partition of the set
P(Z). Let h € D be its normal vector. Than, H,,_1 = (h1,...,ha—1,V;,...,0;,) =
V + Hg_; is hyperplane in R™ and h is its normal vector. Thus, for any v € R™:

(v,h) <0 iff (prpv,h) <0

Let cube Fy = G1+ - +Ga-1+>_7_,;0;9; be a facet (maximal or (d—1)-dimensional
face) of zonotope Z and By = G1 + -+ + Gq—2 + Z;L:d_l d;9; a facet of cube Fp.
Denote by Fi the facet of Z such that Fy N F} = By. The components of the face
Fy are Gy,...,Gq—2 and G; for some i € {1,...,n}~{1,...,d—1}. Without loose
of generality it can be assumed that ¢ = d. Let B; be a facet of F} that is the
reflection of By in the center of cube Fj. Its components are Gi,...,Gq_2, too.
If we continue this procedure, we obtain the sequence of (d — 1)-dimensional faces
Fy, F1,. .., Fpyo and the sequence of (d—2)-dimensional faces By, By, .. ., Bpy2 such
that F; N F; 11 = B;; B; and B,y are mutually symmetric faces of the cube Fj,1,
i =0,p, Fyyo is the reflection of Fy in the origin, G1,...,G4_2 are the components
of each (d — 2)-dimensional face B;, ¢ = 0,p + 1 and the components of the face F;
are G1,...,Gq_2,Gq_144, for each i = 0,p + 2.

Let A be (d — 1)-dimensional affine cover of the cube Fy. Each of P(2,d —
1) hyperplane partitions of Fy can be uniquely expanded to central hyperplane
partitions of the zonotope Z. Let us consider the number of hyperplane partitions
of Z whose restriction on A is negative-empty partition of the face Fjp.

The number of all hyperplane partitions of (d — 2)-dimensional cube B is
P(2,d —2). P(2,d —2) — 1 of them are proper or positive-empty. Let H} ,
be hyperplane in Aff(B;) that generates one of them. Denote by H} , (d — 2)-
dimensional subspace that linearly spans H 573. In D there is a hyperplane H}
such that

(1) Hy_, C Hy_,
(2) Fy is contained in the positive halfspace H;",
(3) By is not contained in the positive halfspace H T, .
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If we continue the same procedure for the faces B;, i = 2,...,p, in each of p
steps we construct P(2,d — 2) new partitions of Z with the next properties:

(1) the partitions obtained in i-th step are defined by the the proper or
positive-empty partitions of (d — 2)-dimensional cube B; in the affine
plane Aff(B;),

(2) the faces Fy, By, Bo, ..., B;_1 are contained in the positive halfspace Hflfl,

(3) the face B; is not contained in the positive halfspace H. .

Hence, the number of hyperplane partitions of Z whose restriction on A is
negative-empty partition of the face Fy (i.e., Fy is contained in the positive half-
space) is p (P(2,d —2) —1).

The lower bound

P(2,n+1) > ;(LH_QQZ _4j)

logy n
x P(Q, PL+3D 14 {2 " +4J P(2, {2 n +2J) 1
logyn logyn logyn
follows from d =n —p = 2103,’; — — 4 and the above estimates.
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