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AN ENUMERATIVE PROBLEM
IN THRESHOLD LOGIC

Žana Kovijanić Vukićević

Abstract. The number of Boolean threshold functions is investigated. A
new lower bound on the number of n-dimensional threshold functions on a set
{0, 1, . . . , K − 1} is given.

1. Introduction

Let K ∈ N be positive integer and EK = {0, 1, . . . ,K − 1}. An n-dimensional
threshold function on EK is a function f : En

K → {−1, 1} such that there exists
a hyperplane π separating the pre-images f−1(−1) and f−1(1). The question is:
what is the number P (K,n) of n-dimensional threshold functions on EK?

The bounds for these numbers have been well-studied only for the case K = 2.
Nevertheless, the asymptotic even for P (2, n) is still open. The case K = 2 has an
application in switching theory.

A Boolean (switching) function f : {−1,+1}n → {−1,+1} is a threshold func-
tion when there exist real numbers a0, a1, . . . , an so that

(1) f(x) = sgn
(

a0 +
n∑

i=1

aixi

)

i.e., hyperplane that separates vertices of n-dim cube in which f takes value −1
from the vertices in which it takes value 1. The number of all switching func-
tions is obvious, but the basic problem in the study of threshold functions, their
enumeration for each n, is still open.

Clearly, two sets of weights a = (a0, a1, . . . , an) and b = (b0, b1, . . . , bn) generate
different functions f and g by rule (1) iff two points a, b ∈ Rn+1 are separated by
one of 2n hyperplanes 1±x1±· · ·±xn = 0 in Rn+1. Thus, each distinct hyperplane
partition of a cube, or each threshold function defined on that cube, corresponds
to one of regions in Rn+1 defined by the arrangement of the upper 2n hyperplanes.
This connection with the number of cells in central hyperplane arrangement yields
that the best upper bound of the number P (2, n) of threshold functions given by
Schläfli [3] in 1850 is:
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P (2, n) < 2
n∑

i=0

(
2n − 1

i

)
∼ exp2

(
n2 − n log n − O(n)

)
, n → ∞

By direct application of Odlyzko’s [2] and Winder’s [6] results, Zuev [4] in 1989
obtained the asymptotics log2 P (2, n) ∼ n2, n → ∞. More precisely, he obtained a
lower bound

(2) P (2, n) > exp2

(
n2 − 10n2

ln n
− O(n ln n)

)
The interpretation in the terms of hyperplane arrangements permits us to ob-

tain an upper bound P (K,n) � 2
∑n

i=0

(
Kn−1

i

)
. For the lower bound it is necessary

to develop much more sophisticated methods. Here we sketch the proof for the next
lower bound:

P (K,n + 1) � 1
2

(
Kn⌊

n − 2 n
logK n − 4

⌋)

×
[
P

(
K,

⌊
2

n

logK n
+ 3

⌋)
− 1 +

⌊
2

n

logK n
+ 4

⌋ (
P

(
K,

⌊
2

n

logK n
+ 2

⌋)
− 1

)]

As far as we now, this is the best lower bound for P (K,n).

2. Previous work

Without loss of generality we may suppose that

EK =

{
{±1,±3, . . . ,±(2Q − 1)} , K = 2Q

{0,±1,±2, . . . ,±Q} , K = 2Q + 1

Hyperplane H : a1x1 + a2x2 + · · · + anxn = 0 divides the cubical net En
K on the

three parts:

AH = En
K ∩ H+, BH = En

K ∩ H, CH = En
K ∩ H−.

For arbitrary ε > 0 let

H−ε : a1x1 + . . . + anxn − ε = 0
Hε : a1x1 + . . . + anxn + ε = 0.

To be definite, assume that H+
−ε∩H−

ε �= ∅ and ε is chosen such that
(
H+

−ε ∩ H−
ε

)∩
En

K = BH . Then, AH = En
K ∩ H+

ε and CH = En
K ∩ H−

−ε. On the other hand, each
triplet (AH , BH , CH) defines a hyperplane partition of the (n + 1)-dim cubic net
En+1

K on the following way:

• If K is even, i.e., K = 2Q, the partition is defined by hyperplane

H : a1x1 + . . . + anxn +
ε

2Q − 1
xn+1 = 0
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• If K is odd, i.e., K = 2Q + 1, the partition is defined by hyperplane

H : a1x1 + . . . + anxn +
ε

Q
xn+1 = δ,

where δ is sufficiently small such that H ∩ (EK)n+1 = ∅.
Proof of our main result is based on the following simple observation (see [1]):

Lemma 1. Let H and G be two hyperplanes in Rn so that BH �= BG. Then,
associated hyperplanes H and G generate different partitions of the (n + 1)-dim
cubical net.

It follows from the above that the lower bound of the number P (K,n) can be ob-
tained by estimation of the number of sets BH appearing in triplets (AH , BH , CH).
Let us take the vectors v1, v2, . . . , vp ∈ En

K in whose linear cover there is no “new”
vector from En

K . Sets {v1, v2, . . . , vp} will play the role of the BH !
The most important argument in the construction of the sets BH is the next

theorem, proved in [1]. It is a generalization of Odlyzko’s result [2] on subspaces
spanned by random selections of ±1 vectors.

Theorem 1. For any K ∈ N and any nonnegative integer p � n− 2 n
logK n − 4

probability P that in the linear cover of p vectors v1, v2, . . . , vp chosen at random
from the set En

K there is at least one vector from En
K �

⋃p
i=1〈vi〉 tends to zero, as

n tends to infinity.

Let p =
⌊
n − 2 n

logK n − 4
⌋

be the value from Theorem 1 and let Mn denotes
the family of p× n matrices with elements from set EK . Let M′

n be subset of Mn

such that any two rows of the matrix M ∈ M′
n are linearly independent. In that

case,
∥∥M′C

n

∥∥ � KnK
(
p
2

)
Kn(p−2) i.e., ‖M′

n‖ ∼ ‖Mn‖, n → ∞.
Over the family M′

n we define the relation ∼ on the next way: A ∼ B iff A
is obtainable from B by permutation of the rows or by replacement of one row with
the row that is collinear to that one. ∼ is equivalence relation and each equivalence
class has p!Kp elements. Two matrices from the same class of equivalence generate
the same linear subspace. By Theorem1, linear covers of the row-vectors of almost
all K-valued matrices M ∈ Mn do not contain K-valued vectors v ∈ En

K different
from that row-vectors and vectors collinear with any of them. It follows that the
number of sets BH from Lemma 1 is greater than or equal with

1
2

Knp

p!Kp

Hence logK P (K,n) ∼ n2, n → ∞.
The biggest r ∈ N with the property that any r vectors of the system S =

{s1, . . . , sn} are linearly independent is called the strong rank of S. It is denoted
by rst(s1, . . . , sn).

In [5] we have proved that the probability that a random n by n K-valued
matrix is singular tends to zero. The next theorem can be proved by a little
modification of that one.
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Theorem 2. Let p =
⌊
n − 2 n

logK n − 4
⌋

and let a1, . . . , an be at random inde-
pendently chosen from Ep

K . The probability that rst(a1, . . . , an) = p tends to 1, as
n tends to infinity.

3. The main result

Let p =
⌊
n−2 n

logK n −4
⌋

and let An denotes the event: the rows v1, v2, . . . , vp ∈
En

K and the columns c1, c2, . . . , cn ∈ Ep
K of the random matrix Mp×n ∈ Epn

K have
the next properties:

(1) in the linear cover of the vectors v1, v2, . . . , vp there is no “new” vector of
the same type, i.e., vector from En

K �

⋃p
i=1〈vi〉,

(2) rst(c1, . . . , cn) = p.
On the basis of theorems 1 and 2, we have that P (Ac

n) → 0 as n → ∞. There-
fore, starting from some enough large n0 ∈ N , the number of p-sets {v1, v2, . . . , vp}
⊂ En

K , n � n0, that satisfy the upper two conditions is bigger than 1
2

(
Kn

p

)
. Let

B = {v1, v2, . . . , vp} be one of them. Because of the first property, B is one of the
sets BH introduced in previous section. Denote by B p-dimensional linear subspace
spanned by B. In what follows, with different chose of hyperplanes that expand
subspace B, we are going to get a different hyperplane partitions of the net En

K ,
with the same set B. Because of the simplicity of presentation, instead of the
net En

K , only the cube C = {−1,+1}n will be considered on. Generalization on
arbitrary K will be obvious.

Let D be the orthogonal complement of the space B. By g1, . . . , gn denote the
images of the basis vectors e1, . . . , en of the space Rn under the orthogonal pro-
jection prD : [−1, 1]n → D and by Gi, i = 1, . . . , n linear segments conv{−gi, gi}.
First, let us prove that any d = n− p vectors of the set g1, . . . , gn are linearly inde-
pendent. If it would not be true, there would be d vectors, for instance g1, . . . , gd,
and their linear combination α1g1 + · · · + αdgd = 0, with some nonzero coefficient.
This is equivalent with α1e1 + · · · + αded ∈ B − {0}, i.e.,

det(v1, . . . , vp, e1, . . . , vd) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

v1
1 v2

1 . . . vd
1 vd+1

1 . . . vn
1

v1
2 v2

2 . . . vd
2 vd+1

2 . . . vn
2

...
...

. . .
...

...
. . .

...
v1

p v2
p . . . vd

p vd+1
p . . . vn

p

1 0 . . . 0 0 . . . 0
0 1 . . . 0 0 . . . 0
...

...
. . .

...
...

. . .
...

0 0 . . . 1 0 . . . 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0

It follows that ∣∣∣∣∣∣∣∣∣

vd+1
1 vd+2

1 . . . vn
1

vd+1
2 vd+2

2 . . . vn
2

...
...

. . .
...

vd+1
p vd+2

p . . . vn
p

∣∣∣∣∣∣∣∣∣
= 0.



AN ENUMERATIVE PROBLEM IN THRESHOLD LOGIC 133

This is contrary to the assumption rst(c1, . . . , cn) = p, where ci = (vi
1, v

i
2, . . . , v

i
p)

are the column vectors of the matrix defined by row vectors v1, . . . , vp ∈ {−1, 1}n.
We conclude that the image of cube C under orthogonal projection on to d-

dimensional plane D, is a cubical zonotop Z = G1 + . . . + Gn and any r � d − 1
vectors gi1 , . . . , gir

∈ {g1, . . . , gn} define r-dimensional facies

F = Gi1 + · · · + Gir
+

∑
j �=i1,...,ir

δjgj , δj ∈ {±1}.

Line segments Gi1 , . . . , Gir
will be called the components and vector

∑
j �=i1,...,ir

δjgj

the moving vector of F .
We shall now prove that different central partitions of the set of vertices

p(Z) =
{
δ1g1 + δ2g2 + · · · + δngn | δ1 = ±1, i = 1, n

}
of zonotope Z yield to the different central partitions of cube C (the partition is
central if it is defined by hyperplane that contains the origin; the points of P (Z)
are not necessary all distinct).

Let us take hyperplane Hd−1 = 〈h1, . . . , hd−1〉 that define a partition of the set
P (Z). Let h ∈ D be its normal vector. Than, Hn−1 = 〈h1, . . . , hd−1, vi1 , . . . , vip

〉 =
V + Hd−1 is hyperplane in Rn and h is its normal vector. Thus, for any v ∈ Rn:

〈v, h〉 < 0 iff 〈prDv, h〉 < 0

Let cube F0 = G1+· · ·+Gd−1+
∑n

j=d δjgj be a facet (maximal or (d−1)-dimensional
face) of zonotope Z and B0 = G1 + · · · + Gd−2 +

∑n
j=d−1 δjgj a facet of cube F0.

Denote by F1 the facet of Z such that F0 ∩ F1 = B0. The components of the face
F1 are G1, . . . , Gd−2 and Gi for some i ∈ {1, . . . , n}�{1, . . . , d−1}. Without loose
of generality it can be assumed that i = d. Let B1 be a facet of F1 that is the
reflection of B0 in the center of cube F1. Its components are G1, . . . , Gd−2, too.
If we continue this procedure, we obtain the sequence of (d − 1)-dimensional faces
F0, F1, . . . , Fp+2 and the sequence of (d−2)-dimensional faces B0, B1, . . . , Bp+2 such
that Fi ∩ Fi+1 = Bi; Bi and Bi+1 are mutually symmetric faces of the cube Fi+1,
i = 0, p, Fp+2 is the reflection of F0 in the origin, G1, . . . , Gd−2 are the components
of each (d− 2)-dimensional face Bi, i = 0, p + 1 and the components of the face Fi

are G1, . . . , Gd−2, Gd−1+i, for each i = 0, p + 2.
Let A be (d − 1)-dimensional affine cover of the cube F0. Each of P (2, d −

1) hyperplane partitions of F0 can be uniquely expanded to central hyperplane
partitions of the zonotope Z. Let us consider the number of hyperplane partitions
of Z whose restriction on A is negative-empty partition of the face F0.

The number of all hyperplane partitions of (d − 2)-dimensional cube B1 is
P (2, d − 2). P (2, d − 2) − 1 of them are proper or positive-empty. Let H1

d−3

be hyperplane in Aff(B1) that generates one of them. Denote by H1
d−2 (d − 2)-

dimensional subspace that linearly spans H1
d−3. In D there is a hyperplane H1

d−1

such that
(1) H1

d−2 ⊂ H1
d−1

(2) F0 is contained in the positive halfspace H1+
d−1,

(3) B1 is not contained in the positive halfspace H1+
d−1.
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If we continue the same procedure for the faces Bi, i = 2, . . . , p, in each of p
steps we construct P (2, d − 2) new partitions of Z with the next properties:

(1) the partitions obtained in i-th step are defined by the the proper or
positive-empty partitions of (d − 2)-dimensional cube Bi in the affine
plane Aff(Bi),

(2) the faces F0, B1, B2, . . . , Bi−1 are contained in the positive halfspace Hi+
d−1,

(3) the face Bi is not contained in the positive halfspace Hi+
d−1.

Hence, the number of hyperplane partitions of Z whose restriction on A is
negative-empty partition of the face F0 (i.e., F0 is contained in the positive half-
space) is p (P (2, d − 2) − 1) .

The lower bound

P (2, n + 1) � 1
2

(
2n⌊

n − 2 n
log2 n − 4

⌋)

×
[
P

(
2,

⌊
2

n

log2 n
+ 3

⌋)
− 1 +

⌊
2

n

log2 n
+ 4

⌋ (
P

(
2,

⌊
2

n

log2 n
+ 2

⌋)
− 1

)]
follows from d = n − p = 2 n

logK n − 4 and the above estimates.
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