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COMPLEX POWERS OF OPERATORS
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ABSTRACT. We define the complex powers of a densely defined operator A
whose resolvent exists in a suitable region of the complex plane. Generally,
this region is strictly contained in an angle and there exists o € [0, 00) such
that the resolvent of A is bounded by O((1 + |A|)®) there. We prove that for
some particular choices of a fractional number b, the negative of the fractional
power (—A)? is the c.i.g. of an analytic semigroup of growth order r > 0.

1. Introduction

Chronologically, the theory of fractional powers of operators dates from a paper
of S. Bochner who constructed the fractional powers of —A in 1949. From then on,
many different techniques have been established in the framework of this theory. Let
us mention the papers of Balakrishnan [4], Komatsu [11], Balabane [3], Martinez,
Sanz and Marco [15], Straub [20] and deLaubenfels, Yao and Wang [6]. Especially,
we refer to the monograph [14] where the interested reader can find a great part of
the theory of fractional powers of non-negative operators including topics related
to extensions of Hirsch functional calculus, fractional powers of operators in locally
convex spaces, interpolation spaces and the famous Dore-Venni theorem.

This paper is motivated by the work of Straub [20] who defined the complex
powers of a closed, densely defined operator A satisfying:

(1.1) ¥(7):={2€C:2#0, |arg(z)| <v}U{0} C p(A), for some v € (0, F);

(1.2) [ROA:A)| <MA+ A", X € X(v), for some M > 0 and n € Np.

For such an operator A, Straub defined in [20] the fractional powers (—A)°,
for all b € C. If A fulfills (1.1) and (1.2), then one can employ the construction
given in [6] to obtain the definition of the fractional operator of —A, but only for
b € [0,00). In general, the definitions given in [6] and [20] do not coincide; see [6]
and [19] for further information.

In this paper, we show how ideas developed in [20] can be applied to an es-
sentially larger class of closed, densely defined operators. It is worth noting that
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the spectrum of an operator belonging this class and X(v) may have non-empty
intersection, for every v € (0,%). Condition (1.2) in our analysis is replaced by
[R(A = A)|| < M1+ |A)?, for some M > 0 and € [0,00). This implies that
the operators J® (cf. Section 3), which are fundamental in the construction of frac-
tional powers given in [9], [20] and this paper, remain bounded for all b € C with
Reb < —(a + 1). The fractional power (—A)?, b € C, is defined to be the closure
of J'. If b € (0,3), then the negative of the fractional power (—A)® is the c.i.g.
of an analytic semigroup of growth order » > 0. This allows one to consider the
incomplete higher order abstract Cauchy problems; in this paper, it is necessary
that the order of such a problem is strictly greater than two.

2. Basic concepts

Throughout this paper, E denotes a complex Banach space and A a closed,
densely defined operator in E. The space of all bounded linear operators from F
into E is denoted by L(E); p(A) stands for the resolvent set of A while [D(A)]
designates the Banach space D(A) equipped with the graph norm. Let a € (0, 1),
Ce (0,1 and d € (0,1]; By :={z € C:|z] < d} and

Poc i ={{+in:£€(0,00), n€R, [n] < C&}.
We assume that A satisfies the following conditions:
(*) Pa,cUBa C p(A),
(#x) [|[ROA: A)|| S M+ |A)Y, A € P, ¢ U By, for some M >0 and a > 0.
Note, if P, c U{0} C p(A4) and ||R(A : A)|| = O((1 + |A])*), A € P, c U{0},

then there exists a d € (0,1] and an appropriate M > 0 such that (x) and (xx) are
fulfilled.

ExAMPLE 2.1. (a) Let @ > 0 and 0 < 7 < oco. It is said that the abstract
Cauchy problem

ue C([0,7): [D(A)]) nCH([0,7) : E),
Cay1(7) u’(t):Au(t)JrF((txij_l):zz7 0<t<,
u(0) =z,

is well posed if it has a unique solution for every z € E, cf. [1] if & € N and [13]
if @ > 0. If u(t,x) is a solution of Cy41(7), then the operators S(t)x := Lu(t, ),
t €[0,7), x € E, are bounded and form an a-times integrated semigroup generated
by A. By [13, Theorem 2.1], the well-posedness of the problem C,1(7) implies
that for every ¢ € (0,Z), there exist constants ¢; > 0 and M > 0 such that the
exponential region E(c,c1) :={&+in: £ €R, n €R, € > ¢y, |n| < e} C p(A)
and that [|[R(A: A)|| < MIA|*, A € E(c,c1). If, additionally, D(A) = E, then there
exists a sufficiently large w > 0 such that A — w satisfies the assumptions (x) and
(%) given above. Further on, if A is the densely defined generator of an a-times
integrated semigroup (S(t));>0 satisfying ||S(t)|| < MtPet, for all t > 0, where
w>0,02>20, >0, then for every a € (0,1), C € (0,1] and d € (0,1], there
exists a sufficiently large w > 0 such that A — w satisfies (x). Furthermore, it can
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be proved that A — w satisfies (x) with a — 8 — 1 instead of «, see [17, page 158]
for this refinement.

(b) If the operator A satisfies the assumptions (1.1) and (1.2), then it can be
easily proved that, for every a € (0,1), there exist C € (0,1] and b € (0,1] such
that (%) and (xx) are valid (with & = n). It is clear that there exist a great number
of multiplication, differential and pseudo-differential operators acting on LP type
spaces which fulfill (%) and (*x), but not (1.1). Especially, the construction given
in [20] cannot be applied even if F := L*(R) and A is chosen to be the operator
A? — §A — I with maximal distributional domain. Then the spectrum of A is
{6+in: £ €R, n€R, n? = £+ 1} and, for every b € C, our construction gives the
definition of (I +iA — A?)°.

We recall the basic fasts about semigroups of growth order r > 0, see [5], [18],
[19] and [21] for this notion. An operator family (7'(t)):>o in L(E) is a semigroup
of growth order r if it satisfies:

(i) T(t+s)=TE)T(s), t, s >0,
(ii) for every z € E, the mapping t — T'(t)zx is continuous,

(iii) [T @) = O(1), t — 0+,

(iv) T(t)z =0 for all ¢ > 0 implies = 0, and

(v) Eo = Uyso T(t)E is dense in E.

The infinitesimal generator of (T'(t)):>o is defined by

)

It is a closable linear operator and its closure A = Ay is called the complete in-
finitesimal generator (c.i.g.) of (T'(t))¢~o. Following Tanaka [21], if the semigroup
(T'(t))¢>0 of growth order r > 0 has an analytic extension to 3, := {z € C :
z # 0, |arg(z)] < v}, for some v € (0,%), denoted by the same symbol, and
if additionally there exists an w € R such that, for every 6 € (0,7), there ex-
ists a suitable constant M; > 0 with [|2"T(2)| < Mse*R°* 2 € %5, then the
family (7'(t))ies, is called an analytic semigroup of growth order r. We will
use the following notations. For given a € (0,1), C € (0,1] and d € (0,1], put
i(a,Cyd) == {(+in: ¢ €R, n €R, n=—-CE €2 +n? > d?}. Tt is clear that
there exists a unique £(a, C,d) € (0,d) such that (e(a,C,d), —Ce(a,C,d)*) € 0Bj.
We define I'y(a,C,d) :=={¢+in: E€R, n€R, €2 +n% =d? ¢ <e(a,C,d)} and
I3(a,C,d) ;= {+in: £ €R, n € R, n=CE £24+n% > d?}. The upwards oriented
curve I'(a, C, d) is defined by I'(a, C, d) :=T'1(a,C,d) UT'y(a, C,d) UT's(a, C, d); put
now H(a,C,d) := {€+in: €€ (0,00), n € R, || < C&*}YUBy. For given d € (0, d]
and a € (0, a], one can find a suitable constant C so that T'(a, C, cZ) C H(a,C,d),
where we define I'(@, C, d) in the same way as I'(a, C, d).

3. Operators J?, be C

In order to construct the fractional powers (—A)®, for every b € C, we define a
closable linear operator J°. Asin [20], if o« € Ny and [9], if @ = —1, the construction
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is based on improper integrals of the form
1
— [ (=N R(\: A)z d).
— [(NPRO A
r

PROPOSITION 3.1. Let b € C satisfy Reb < —(a+ 1) and let © € E. Then the
integral
(b = —— / (“A)PROA : A)z d
I'(a,C,d)
exists and defines a bounded linear operator 1(b) € L(E). Moreover, if for some
€ (0,a], C € (0,C] and d € (0,d]: T'(a,C,d) C H(a,C,d), then
1
I(b)z = -— ~A)R(X: Az dA.
Or=5m [ CNBEO AR
I'(a,C,d)

PROOF. The proof is essentially contained in that of Lemma 1.1 in [20]. We
sketch it for the sake of completeness. Note that the function A — (—=\)* (1° = 1)
is analytic in C \ [0, c0) and that
(3.1) [(=A)?] < |A[RebemImbl -\ e €\ {0}.

The integral over I's(a, C, d) exists since I'y(a, C, d) is a finite path. The estimate
(#%) implies
1
— / (=NPR(\: Az d/\H
2mi
Fg(a,C,d)

<M (Vs c2ee) R0 el (14 Ve C2t2a)a (14 Cae(a,C,d)*~ ) dt

h 27 e(a,C,d)

a=1 x| Imob| x Reb
_ M(1+ Cas(a,C.d)" e / (Ve cre) ear

= 2w

e(a,C,d)
Since (t? + C2t2@)Reb/2¢a  otReb 100 the integral over I's(a, C,d) exists.
Similarly, the integral over T'y(a,C,d) exists. It remains to be shown that the
integral I(b) is independent of the choice of a curve I'(a, C, d). Let R be sufficiently
large and let the curve Tr = {Re® : t € [arctan(CR*1),arctan(CR* )]} be
upwards oriented. Then

/(—A)bR(A cA)x d)\H < 2mem MBI RReb() 4 RYYR 0, R — 4o00.
'r

The proof completes an elementary application of Cauchy’s theorem. O

If no confusion seems likely, we shall simply denote I'(a,C,d), H(a,C,d) and
g(a,C,d) by I, H and e, respectively.

Let t € R. Denote by |t] and [t] the largest integer < ¢ and the smaller integer
> t, respectively. Put {t} :=t — [t]|. Note, if b € C, then Re(b— |Reb+ | —2) €
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[~(a+ 2), —(a + 1)). Hence, the following definition of the operator J” makes a
sense.

DEFINITION 3.1. Let b € C. The operator J° is defined as follows: D(J%) :=
D(A\_Reb-i-aj-‘rQ) and

. I(b)z, —(a+2)<Reb< —(a+1),
Jlw = I(b— |Reb+a] — 2)(—A)Rebtal+25  otherwise.

REMARK 3.1. If a densely defined operator A satisfies (1.1) and (1.2), then we
have already seen that, for every a € (0,1), there exist C' € (0,1] and d € (0, 1]
such that (¥) and () are fulfilled. In this case, the definition of J° is equivalent
to the corresponding one given in Definition 1.2 of [20].

In what follows, we will use the generalized resolvent equation
(3.2) (=N)"TTRA: A)(—A) e =R Az + Y (AT (—A) e,
i=0
if A€ p(4), A#0, n € Ny, z € D(A"™!), and the simple equality [.(—A)?d\ =0,
if Reb < —1.

PROPOSITION 3.2. Suppose x € D(ARebTel+2) " Then

L [(=X)PR(A: A)zd), Reb < 0,
r

27
Jba =
T L [N IReBSIR(N s A)(—A) RV H Iz g, Reb > 0.

2me

PROOF. Suppose Reb < 0. If Reb € [—(a+2), —(a+1)), the conclusion follows
directly from the definition of Jb. If Reb ¢ [—(a+2), —(a+1)), then by Definition

3.1 and (3.2):
be — be |Re b+aJ72(_A) |Re b+aJ+2x
— % (_/\)b—LReb+(xj—2R(/\ : A)(—A) [Reb+aJ+2w d\
T
1 [Reb+a+1 _ _
=5 (N (RO Az+ > (=N TTH(=A)z)d)
T =0

If Reb < 0and i =0,1,...,|Reb+ a| + 1, then Reb—i — 1 < —1 and the last
term equals

%/(f/\)bR(/\ : Az d)

as claimed. Suppose now Reb > 1. Then (3.2) implies

[Reb]
(—A)PReEITLR(N L A) (—A) Rty = (NP (RO Az + D (-N) T (= A) ).
1=0
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By Definition 3.1,
be _ be |[Reb+a|—2 (714) [Reb+a] 2,

QL (7)\)b7LReb+ozj72R(>\ . A)(*A) [Reb+o¢J+2x d\
™
r

1 |Re b+a+1]

=5 (VPR Az+ > (=N)TTH(=A) ) d),
T =0

and since for j = |[Reb+1],...,|Reb+a+ 1], Reb—i—1 < —1, we obtain

) [Reb) 4
=5 (= MP(R( Ax—l—z —A)'z) d\
r
% (_/\)b—LRch—lR(/\ : A)(—A) LRCb_HJJ?d)\.
r
The proof is completed. O

Put OV := (—A)LRebtal+2 jb=[Rebtal=2 "Then for every b € C, C? is a closed
linear operator. Proceeding similarly as in the proof of [20, Proposition 1.3], one
obtains that, for every b € C with Reb > —(a + 1), J* € C® and, consequently, .J
is a closable operator. Clearly, J® € L(E) for every b € C with Reb < —(a + 1).

LEMMA 3.1. Let b € C. Then J® is a closable operator.

LEMMA 3.2. Let b€ C. Then
(i) Jbx = J*HF(—A)~kz, k € Ng, x € D(JY), and
(ii') Jbzx = J*TF(—A)"Fz, if —k € N and x € D(A™>x(=k [Rebta+2]))

Proor. (i) If k = 0, the proof is trivial. Suppose now k = 1. If —(a + 2) <
Reb < —(a+ 1), then Reb+ 1 < 0 and by Proposition 3.2, we obtain

1
T (A e = o [(FN)TIRO A) (= A) e dA
i
r
1 pp1 ROV Az — (—A) o
T 2mi / (=) Y dA
r
1
= — [(=NPR(\: A)zd.
2w
r
If Reb ¢ [—(a+ 2),—(a + 1)), the assertion follows from Definition 3.1. Now (i')
follows by induction; (ii’) can be proved by the use of (i'). O

For b € C, denote (b) := max(0, |[Reb + « + 2). Note that (b+ c) < (b) + (c).
The expected semigroup property of the family (J?)yec can be proved similarly as
in [20, Lemma 1.4]. More precisely, we have:
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PROPOSITION 3.3. Let b, ¢ € C. Then J°Jx = J¥ ¢z, x € D(A®IF(),

If k € Nand z € D(AF), put ||z := ||z|| + || Az| + - - + | A*2|]. We prove the
following lemma which naturally corresponds to [20, Lemma 1.5].

PROPOSITION 3.4. Let b € Z and x € D(AYTI+2) Then Jbz = (—A)bz.
Proor. By Lemma 3.2, it is enough to prove the statement in the case b = 1.
We have to prove (see Proposition 3.2) that

1

211
r

(“N)IR(A: A)(—A)zd) = — Az

By the resolvent equation, if 2 € D(AL**1), then there exists a suitable constant
M > 0 such that

1RO = Az < MIA* 7 2]l gy, A€ HUT, A >

Let R > d. Then there exists a unique number x(R) € (0, R) such that x(R)? +
C?k(R)** = R2. Denote T'r = {Re" : |0 < arctan(Cr(R)*™1)}; we assume that
' is upwards oriented. If z € D(AL**+3) then A%z € D(Al*I+1) and the previous
inequality implies

M
H/ 1RAJM<M%MH<%RR%Mk”MW%W—W,RH+w

The rest of proof follows by an application of Cauchy’s integral formula. (]
Proceeding as in [20], one can prove the next proposition.

PROPOSITION 3.5. The next assertions are valid
(i) If b€ Z, then Jb = (—A)°.
(ii) If Reb > o+ 1, then Jb = CP.

4. Fractional powers and semigroups generated by them

DEFINITION 4.1. Let b € C. Then the fractional power (—A)" of the operator
—A is defined by (—A)® := Jb.

The next theorem clarifies the basic structural properties of fractional powers.
See [20] for the proof.

THEOREM 4.1. Letb, c€ C and k € Ny. Then
(a) D(AWReb+al+24k) 45 o core for (—A)°.

(b) (=A)"*e C (A (=A)°.

(C) ( )b+c — (_ ) ( A)c’ 7 ( )b+c — Cb""c,
(d) (A=A =1; (~A) " (~A)’z =z, x € D((—A)").
(e) (—A)® is injective.

(&

In the rest of this section, we consider fractional powers as generators of analytic
semigroups of growth order r > 0.



22 KOSTIC

THEOREM 4.2. Let b € (0,1). Then the operator —(—A)® is the c.i.g. of an

15
. . +1
analytic semigroup (Ty(2)) of growth order 3=, where

2€Xarctan(cos wb)

1
(4.1) Tiz) = 5 / N R A)dA, 2 € Sareran(eos .
N

PROOF. Our choice of b implies bx < 7. Put v := arctan(cos7b). Then

v € (0,%) and, for every z = { +in € ¥, we have £ cos(br) — || > 0. Furthermore,
e (- N)"| = €I’ cos(barg(=X)+nlA|" sin(barg(=2)) ¢ o= (& cos(bm)=nDIAI",

The convergence of the curve integral over I'y and I's follows from the computation

1 b
[ eFEVR(M: A)dA
27m'/e (A= 4)
I
o0 b o
< 2% eIV (1 iy ) (14 ast Yt
Yis

€

M(l +(l€a_1) [/e—(ﬁcos(bﬂ')—ln)tb (1+\/§)adt+ /.ooe—(gcos(bﬂ-)—n|)tb(1+ﬁ)atadt:|

N

27 1
€

N

2

« —1 oo
M(1+v2)%(1+ae") [(1 _ e)e(Eeosm—n< _|_/ e—(&cos(bﬂ')—ln)tbtadt:|
0

M(1+v2)"(1+ac"") —(€cos(bm)—Inl)et 1ot -

- 27 (-0 +5T(55) (ecosom =)™ |,
where I'(+) denotes the gamma function in the last estimate. The convergence of
the integral over I's is obvious and one obtains

1 —Z(—A)b
— R(A:A)d\
o / € (A= 4)

2

< Me—(&cos(bn)—|n|)db(1_~_d)a+1.

Hence, for every & € (0,7), we have || 2“5 T,(z)|| = O(1), z € £5. By an elementary
application of Cauchy’s formula, it follows that the integral in (4.1) does not depend
on the choice of the curve I'(a, C,d). Fix a A\g € p(A) \ H. Here we would like to
point out that p(A) \ H is a nonempty set since p(A) is an open subset of C. Using
the same arguments as in [20, Propositions 2.3, 2.5, 2.6, 2.7 and 2.8], one obtains:

1. Let m € {0,1}. The improper integral

_(_/\)mbe—z(—)\)b .
/ A RO A)

converges uniformly for z € 3.

2. The mapping z — Ty(2), z € ¥,, is analytic and

dzn?

/(—A)"be‘t("\)bR()\ :A)d\, neN.
T

211
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3. Tb(zl —|—Z2) = Tb(zl)Tb(Zg), 21, %2 € E .

4. If 2 € D(AlP+el+2) = D(JY), then lim, o, scx, % = —Jbz. Espe-
cially, the continuity set , := {z € E : Tj(t)r — x ast — 0+} is dense in E.
Since the set Ej :=J,. Tp(t)E is dense in €y, it follows that B, = E.

5. For every z € X, Ty(#) is an injective operator.

By the foregoing, we obtain that (73(t)):ex., is an analytic semigroup of growth
order “. Denote by A, the generator of (Tj(t));>0. By 4, we obtain that —J° C
Ayp. Consequently, —(=A)’ C 4,. Since [re” t=N"A" g\ = 0, n € Ny, one can
repeat literally the arguments given in [20, Lemma 2.10] in order to obtain that,
for every x € F and t > 0, Ty(t)x € D(A™) and that

(4.2) A”Tb(t)x:% / N AR L A)x dA.
e
I

Particularly, F C Dy (A). In order to prove that A, C —(—A)®, one can proceed
in the same manner as in [20]. Actually, it is sufficient to replace the natural
number n in the proofs of [20, Propositions 2.11 and 2.12] with |b+ «]. O

The following theorem is the main result of this paper and possesses several
natural consequences in the theory of partial differential equations.

THEOREM 4.3. Suppose that a closed, densely defined opemtor A satisfies (x)
and (x). Then, for every n € N with n > 3 and x € D(ALxt2+2) the abstract
Cauchy problem

u € C((0,00) : [D(A)]) NC"™((0,00) : E),

d
dt—nu(t) = (=) Au(t), t >0,
li t) =z, A < oo,
i, u(t) =@, sup [lu(#)]] < oo
has a solution u(t) = T1 (t)x, t > 0. Further on, u can be analytically extended to

Yarctan(cos =) and, for every § € (0,arctan(cos 7)) and i € No,

sup
ZEXs

1+no/+n H

PROOF. One can use the assertion 2 given in the proof of the Theorem 4.2 and
(4.2) to obtain that jtn (t) = (—1)" Tt Au(t), t > 0. By Theorem 4.2, u can be
analytically extended to ¥,.ctan(cos ESE Due to the proof of Theorem 4.2 (see the
assertion 4), we conclude that lim; o4 u(t) = x. Let 6 € (0,arctan(cos 7)) and

z € X5 be fixed. Since

dCZiU(Z) = (_1).11 /(—/\)%e_z(_k)%R(/\ s Az dA,
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and [|(=\) % R(\ : A)|| < M (1 + [A])>#, it follows (see the proofs of Theorem 4.2
and [20, Proposition 2.2]) that

di s _(a+i+1)/i
u(z)| = 0 (€cos(T) - ), zew,
| u2)]| = o((gcos(T) — ) s €T,
Hence, sup,cy, |27 Loy (2)]| < oo O
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