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COMPLEX POWERS OF OPERATORS
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Abstract. We define the complex powers of a densely defined operator A
whose resolvent exists in a suitable region of the complex plane. Generally,
this region is strictly contained in an angle and there exists α ∈ [0,∞) such
that the resolvent of A is bounded by O((1 + |λ|)α) there. We prove that for
some particular choices of a fractional number b, the negative of the fractional
power (−A)b is the c.i.g. of an analytic semigroup of growth order r > 0.

1. Introduction

Chronologically, the theory of fractional powers of operators dates from a paper
of S. Bochner who constructed the fractional powers of −∆ in 1949. From then on,
many different techniques have been established in the framework of this theory. Let
us mention the papers of Balakrishnan [4], Komatsu [11], Balabane [3], Mart́ınez,
Sanz and Marco [15], Straub [20] and deLaubenfels, Yao and Wang [6]. Especially,
we refer to the monograph [14] where the interested reader can find a great part of
the theory of fractional powers of non-negative operators including topics related
to extensions of Hirsch functional calculus, fractional powers of operators in locally
convex spaces, interpolation spaces and the famous Dore-Venni theorem.

This paper is motivated by the work of Straub [20] who defined the complex
powers of a closed, densely defined operator A satisfying:

(1.1) Σ(γ) := {z ∈ C : z �= 0, | arg(z)| � γ} ∪ {0} ⊂ ρ(A), for some γ ∈ (0, π
2 );

(1.2) ‖R(λ : A)‖ � M(1 + |λ|)n, λ ∈ Σ(γ), for some M > 0 and n ∈ N0.
For such an operator A, Straub defined in [20] the fractional powers (−A)b,

for all b ∈ C. If A fulfills (1.1) and (1.2), then one can employ the construction
given in [6] to obtain the definition of the fractional operator of −A, but only for
b ∈ [0,∞). In general, the definitions given in [6] and [20] do not coincide; see [6]
and [19] for further information.

In this paper, we show how ideas developed in [20] can be applied to an es-
sentially larger class of closed, densely defined operators. It is worth noting that
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the spectrum of an operator belonging this class and Σ(γ) may have non-empty
intersection, for every γ ∈ (0, π

2 ). Condition (1.2) in our analysis is replaced by
‖R(λ : A)‖ � M(1 + |λ|)α, for some M > 0 and α ∈ [0,∞). This implies that
the operators Jb (cf. Section 3), which are fundamental in the construction of frac-
tional powers given in [9], [20] and this paper, remain bounded for all b ∈ C with
Re b < −(α + 1). The fractional power (−A)b, b ∈ C, is defined to be the closure
of Jb. If b ∈ (0, 1

2 ), then the negative of the fractional power (−A)b is the c.i.g.
of an analytic semigroup of growth order r > 0. This allows one to consider the
incomplete higher order abstract Cauchy problems; in this paper, it is necessary
that the order of such a problem is strictly greater than two.

2. Basic concepts

Throughout this paper, E denotes a complex Banach space and A a closed,
densely defined operator in E. The space of all bounded linear operators from E
into E is denoted by L(E); ρ(A) stands for the resolvent set of A while [D(A)]
designates the Banach space D(A) equipped with the graph norm. Let a ∈ (0, 1),
C ∈ (0, 1] and d ∈ (0, 1]; Bd := {z ∈ C : |z| � d} and

Pa,C := {ξ + iη : ξ ∈ (0,∞), η ∈ R, ‖η| � Cξa}.
We assume that A satisfies the following conditions:

(∗) Pa,C ∪ Bd ⊂ ρ(A),
(∗∗) ||R(λ : A)|| � M(1 + |λ|)α, λ ∈ Pa,C ∪ Bd, for some M > 0 and α � 0.
Note, if Pa,C ∪ {0} ⊂ ρ(A) and ‖R(λ : A)‖ = O((1 + |λ|)α), λ ∈ Pa,C ∪ {0},

then there exists a d ∈ (0, 1] and an appropriate M > 0 such that (∗) and (∗∗) are
fulfilled.

Example 2.1. (a) Let α > 0 and 0 < τ � ∞. It is said that the abstract
Cauchy problem

Cα+1(τ) :

⎧⎪⎨
⎪⎩

u ∈ C
(
[0, τ) : [D(A)]

) ∩ C1([0, τ) : E),

u′(t) = Au(t) + tα

Γ(α+1) x, 0 � t < τ,

u(0) = x,

is well posed if it has a unique solution for every x ∈ E, cf. [1] if α ∈ N and [13]
if α > 0. If u(t, x) is a solution of Cα+1(τ), then the operators S(t)x := d

dtu(t, x),
t ∈ [0, τ), x ∈ E, are bounded and form an α-times integrated semigroup generated
by A. By [13, Theorem 2.1], the well-posedness of the problem Cα+1(τ) implies
that for every c ∈ (0, τ

α ), there exist constants c1 > 0 and M > 0 such that the
exponential region E(c, c1) := {ξ + iη : ξ ∈ R, η ∈ R, ξ � c1, |η| � ecξ} ⊂ ρ(A)
and that ‖R(λ : A)‖ � M |λ|α, λ ∈ E(c, c1). If, additionally, D(A) = E, then there
exists a sufficiently large ω > 0 such that A − ω satisfies the assumptions (∗) and
(∗∗) given above. Further on, if A is the densely defined generator of an α-times
integrated semigroup (S(t))t�0 satisfying ‖S(t)‖ � Mtβeωt, for all t � 0, where
ω � 0, β � 0, α > 0, then for every a ∈ (0, 1), C ∈ (0, 1] and d ∈ (0, 1], there
exists a sufficiently large ω > 0 such that A − ω satisfies (∗). Furthermore, it can
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be proved that A − ω satisfies (∗∗) with α − β − 1 instead of α, see [17, page 158]
for this refinement.

(b) If the operator A satisfies the assumptions (1.1) and (1.2), then it can be
easily proved that, for every a ∈ (0, 1), there exist C ∈ (0, 1] and b ∈ (0, 1] such
that (∗) and (∗∗) are valid (with α = n). It is clear that there exist a great number
of multiplication, differential and pseudo-differential operators acting on Lp type
spaces which fulfill (∗) and (∗∗), but not (1.1). Especially, the construction given
in [20] cannot be applied even if E := L2(R) and A is chosen to be the operator
∆2 − i∆ − I with maximal distributional domain. Then the spectrum of A is
{ξ + iη : ξ ∈ R, η ∈ R, η2 = ξ +1} and, for every b ∈ C, our construction gives the
definition of (I + i∆ − ∆2)b.

We recall the basic fasts about semigroups of growth order r > 0, see [5], [18],
[19] and [21] for this notion. An operator family (T (t))t>0 in L(E) is a semigroup
of growth order r if it satisfies:

(i) T (t + s) = T (t)T (s), t, s > 0,
(ii) for every x ∈ E, the mapping t 	→ T (t)x is continuous,
(iii) ‖trT (t)‖ = O(1), t → 0+,
(iv) T (t)x = 0 for all t > 0 implies x = 0, and
(v) E0 =

⋃
t>0 T (t)E is dense in E.

The infinitesimal generator of (T (t))t>0 is defined by

A0 :=
{

(x, y) ∈ E2 : lim
t→0+

T (t)x − x

t
= y

}
.

It is a closable linear operator and its closure A = A0 is called the complete in-
finitesimal generator (c.i.g.) of (T (t))t>0. Following Tanaka [21], if the semigroup
(T (t))t>0 of growth order r > 0 has an analytic extension to Σγ := {z ∈ C :
z �= 0, | arg(z)| < γ}, for some γ ∈ (0, π

2 ), denoted by the same symbol, and
if additionally there exists an ω ∈ R such that, for every δ ∈ (0, γ), there ex-
ists a suitable constant Mδ > 0 with ‖zrT (z)‖ � Mδe

ω Re z, z ∈ Σδ, then the
family (T (t))t∈Σγ

is called an analytic semigroup of growth order r. We will
use the following notations. For given a ∈ (0, 1), C ∈ (0, 1] and d ∈ (0, 1], put
Γ1(a,C, d) := {ξ + iη : ξ ∈ R, η ∈ R, η = −Cξa, ξ2 + η2 � d2}. It is clear that
there exists a unique ε(a,C, d) ∈ (0, d) such that (ε(a,C, d),−Cε(a,C, d)a) ∈ ∂Bd.
We define Γ2(a,C, d) := {ξ + iη : ξ ∈ R, η ∈ R, ξ2 + η2 = d2, ξ � ε(a,C, d)} and
Γ3(a,C, d) := {ξ+iη : ξ ∈ R, η ∈ R, η = Cξa, ξ2+η2 � d2}. The upwards oriented
curve Γ(a,C, d) is defined by Γ(a,C, d) := Γ1(a,C, d)∪Γ2(a,C, d)∪Γ3(a,C, d); put
now H(a,C, d) := {ξ + iη : ξ ∈ (0,∞), η ∈ R, |η| � Cξa}∪Bd. For given d̃ ∈ (0, d]
and ã ∈ (0, a], one can find a suitable constant C̃ so that Γ(ã, C̃, d̃) ⊂ H(a,C, d),
where we define Γ(ã, C̃, d̃) in the same way as Γ(a,C, d).

3. Operators Jb, b ∈ C

In order to construct the fractional powers (−A)b, for every b ∈ C, we define a
closable linear operator Jb. As in [20], if α ∈ N0 and [9], if α = −1, the construction
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is based on improper integrals of the form
1

2πi

∫
Γ

(−λ)bR(λ : A)x dλ.

Proposition 3.1. Let b ∈ C satisfy Re b < −(α + 1) and let x ∈ E. Then the
integral

I(b)x :=
1

2πi

∫
Γ(a,C,d)

(−λ)bR(λ : A)x dλ

exists and defines a bounded linear operator I(b) ∈ L(E). Moreover, if for some
ã ∈ (0, a], C̃ ∈ (0, C] and d̃ ∈ (0, d]: Γ(ã, C̃, d̃) ⊂ H(a,C, d), then

I(b)x =
1

2πi

∫
Γ(ã,C̃,d̃)

(−λ)bR(λ : A)x dλ.

Proof. The proof is essentially contained in that of Lemma 1.1 in [20]. We
sketch it for the sake of completeness. Note that the function λ 	→ (−λ)b (1b = 1)
is analytic in C � [0,∞) and that

(3.1) |(−λ)b| � |λ|Re beπ| Im b|, λ ∈ C � {0}.
The integral over Γ2(a,C, d) exists since Γ2(a,C, d) is a finite path. The estimate
(∗∗) implies∥∥∥∥ 1

2πi

∫
Γ3(a,C,d)

(−λ)bR(λ : A)x dλ

∥∥∥∥
� M

2π

∫ ∞

ε(a,C,d)

(√
t2 + C2t2a

)Re b

eπ| Im b|
(
1+

√
t2 + C2t2a

)α(
1 + Caε(a,C, d)a−1

)
dt

�
M

(
1 + Caε(a,C, d)

)a−1
eπ| Im b|

2π

∞∫
ε(a,C,d)

(√
t2 + C2t2a

)Re b

tαdt.

Since (t2 + C2t2a)Re b/2tα ∼ tα+Re b, t → +∞, the integral over Γ3(a,C, d) exists.
Similarly, the integral over Γ1(a,C, d) exists. It remains to be shown that the
integral I(b) is independent of the choice of a curve Γ(a,C, d). Let R be sufficiently
large and let the curve ΓR = {Reit : t ∈ [arctan(C̃Rã−1), arctan(CRa−1)]} be
upwards oriented. Then∥∥∥∥

∫
ΓR

(−λ)bR(λ : A)x dλ

∥∥∥∥ � 2πeπ| Im b|RRe b(1 + R)αR → 0, R → +∞.

The proof completes an elementary application of Cauchy’s theorem. �

If no confusion seems likely, we shall simply denote Γ(a,C, d), H(a,C, d) and
ε(a,C, d) by Γ, H and ε, respectively.

Let t ∈ R. Denote by �t
 and �t� the largest integer � t and the smaller integer
� t, respectively. Put {t} := t − �t
. Note, if b ∈ C, then Re(b − �Re b + α
 − 2) ∈
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[−(α + 2),−(α + 1)). Hence, the following definition of the operator Jb makes a
sense.

Definition 3.1. Let b ∈ C. The operator Jb is defined as follows: D(Jb) :=
D(A�Re b+α�+2) and

Jbx :=

{
I(b)x, −(α + 2) � Re b < −(α + 1),

I(b − �Re b + α
 − 2)(−A)�Re b+α�+2x, otherwise.

Remark 3.1. If a densely defined operator A satisfies (1.1) and (1.2), then we
have already seen that, for every a ∈ (0, 1), there exist C ∈ (0, 1] and d ∈ (0, 1]
such that (∗) and (∗∗) are fulfilled. In this case, the definition of Jb is equivalent
to the corresponding one given in Definition 1.2 of [20].

In what follows, we will use the generalized resolvent equation

(3.2) (−λ)−n−1R(λ : A)(−A)n+1x = R(λ : A)x +
n∑

i=0

(−λ)−i−1(−A)ix,

if λ ∈ ρ(A), λ �= 0, n ∈ N0, x ∈ D(An+1), and the simple equality
∫
Γ
(−λ)b dλ = 0,

if Re b < −1.

Proposition 3.2. Suppose x ∈ D(A�Re b+α�+2). Then

Jbx =

⎧⎪⎨
⎪⎩

1
2πi

∫
Γ

(−λ)bR(λ : A)x dλ, Re b < 0,

1
2πi

∫
Γ

(−λ)b−�Re b�−1R(λ : A)(−A)�Re b�+1x dλ, Re b � 0.

Proof. Suppose Re b < 0. If Re b ∈ [−(α+2),−(α+1)), the conclusion follows
directly from the definition of Jb. If Re b /∈ [−(α+2),−(α+1)), then by Definition
3.1 and (3.2):

Jbx = Jb−�Re b+α�−2(−A)�Re b+α�+2x

=
1

2πi

∫
Γ

(−λ)b−�Re b+α�−2R(λ : A)(−A)�Re b+α�+2x dλ

=
1

2πi

∫
Γ

(−λ)b(R(λ : A)x +
�Re b+α�+1∑

i=0

(−λ)−i−1(−A)ix) dλ.

If Re b < 0 and i = 0, 1, . . . , �Re b + α
 + 1, then Re b − i − 1 < −1 and the last
term equals

1
2πi

∫
Γ

(−λ)bR(λ : A)x dλ

as claimed. Suppose now Re b � 0. Then (3.2) implies

(−λ)b−�Re b�−1R(λ : A)(−A)�Re b�+1x = (−λ)b(R(λ : A)x+
�Re b�∑
i=0

(−λ)−i−1(−A)ix).
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By Definition 3.1,

Jbx = Jb−�Re b+α�−2(−A)�Re b+α�+2x

=
1

2πi

∫
Γ

(−λ)b−�Re b+α�−2R(λ : A)(−A)�Re b+α�+2x dλ

=
1

2πi

∫
Γ

(−λ)b(R(λ : A)x +
�Re b+α+1�∑

i=0

(−λ)−i−1(−A)ix) dλ,

and since for j = �Re b + 1
, . . . , �Re b + α + 1
, Re b − i − 1 < −1, we obtain

=
1

2πi

∫
Γ

(−λ)b(R(λ : A)x +
�Re b�∑
i=0

(−λ)−i−1(−A)ix) dλ

=
1

2πi

∫
Γ

(−λ)b−�Re b�−1R(λ : A)(−A)�Re b+1�x dλ.

The proof is completed. �

Put Cb := (−A)�Re b+α�+2Jb−�Re b+α�−2. Then, for every b ∈ C, Cb is a closed
linear operator. Proceeding similarly as in the proof of [20, Proposition 1.3], one
obtains that, for every b ∈ C with Re b � −(α + 1), Jb ⊂ Cb and, consequently, Jb

is a closable operator. Clearly, Jb ∈ L(E) for every b ∈ C with Re b < −(α + 1).

Lemma 3.1. Let b ∈ C. Then Jb is a closable operator.

Lemma 3.2. Let b ∈ C. Then
(i′) Jbx = Jb+k(−A)−kx, k ∈ N0, x ∈ D(Jb), and
(ii′) Jbx = Jb+k(−A)−kx, if −k ∈ N and x ∈ D(Amax(−k,�Re b+α+2�)).

Proof. (i′) If k = 0, the proof is trivial. Suppose now k = 1. If −(α + 2) �
Re b < −(α + 1), then Re b + 1 < 0 and by Proposition 3.2, we obtain

Jb+1(−A)−1x =
1

2πi

∫
Γ

(−λ)b+1R(λ : A)(−A)−1x dλ

=
1

2πi

∫
Γ

(−λ)b+1 R(λ : A)x − (−A)−1x

−λ
dλ

=
1

2πi

∫
Γ

(−λ)bR(λ : A)x dλ.

If Re b /∈ [−(α + 2),−(α + 1)), the assertion follows from Definition 3.1. Now (i′)
follows by induction; (ii′) can be proved by the use of (i′). �

For b ∈ C, denote 〈b〉 := max(0, �Re b + α
 + 2). Note that 〈b + c〉 � 〈b〉 + 〈c〉.
The expected semigroup property of the family (Jb)b∈C can be proved similarly as
in [20, Lemma 1.4]. More precisely, we have:
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Proposition 3.3. Let b, c ∈ C. Then JbJcx = Jb+cx, x ∈ D(A〈b〉+〈c〉).

If k ∈ N and x ∈ D(Ak), put ‖x‖k := ‖x‖+ ‖Ax‖+ · · ·+ ‖Akx‖. We prove the
following lemma which naturally corresponds to [20, Lemma 1.5].

Proposition 3.4. Let b ∈ Z and x ∈ D(A�b+α�+2). Then Jbx = (−A)bx.

Proof. By Lemma 3.2, it is enough to prove the statement in the case b = 1.
We have to prove (see Proposition 3.2) that

1
2πi

∫
Γ

(−λ)−1R(λ : A)(−A)2x dλ = −Ax.

By the resolvent equation, if x ∈ D(A�α+1�), then there exists a suitable constant
M > 0 such that

‖R(λ : A)x‖ � M |λ|α−�α�−1‖x‖�α+1�, λ ∈ H ∪ Γ, |λ| � d.

Let R > d. Then there exists a unique number κ(R) ∈ (0, R) such that κ(R)2 +
C2κ(R)2a = R2. Denote ΓR = {Reiθ : |θ| � arctan(Cκ(R)a−1)}; we assume that
ΓR is upwards oriented. If x ∈ D(A�α�+3), then A2x ∈ D(A�α�+1) and the previous
inequality implies∥∥∥∥

∫
ΓR

(−λ)−1R(λ : A)(−A)2x dλ

∥∥∥∥ � 2π
M

R
Rα−�α�−1‖x‖�α+3�R → 0, R → +∞.

The rest of proof follows by an application of Cauchy’s integral formula. �

Proceeding as in [20], one can prove the next proposition.

Proposition 3.5. The next assertions are valid
(i) If b ∈ Z, then Jb = (−A)b.
(ii) If Re b > α + 1, then Jb = Cb.

4. Fractional powers and semigroups generated by them

Definition 4.1. Let b ∈ C. Then the fractional power (−A)b of the operator
−A is defined by (−A)b := Jb.

The next theorem clarifies the basic structural properties of fractional powers.
See [20] for the proof.

Theorem 4.1. Let b, c ∈ C and k ∈ N0. Then
(a) D(A�Re b+α�+2+k) is a core for (−A)b.
(b) (−A)b+c ⊂ (−A)b(−A)c.
(c) (−A)b+c = (−A)b(−A)c, if (−A)b+c = Cb+c.
(d) (−A)−b(−A)b = I; (−A)−b(−A)bx = x, x ∈ D((−A)b).
(e) (−A)b is injective.

In the rest of this section, we consider fractional powers as generators of analytic
semigroups of growth order r > 0.
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Theorem 4.2. Let b ∈ (0, 1
2 ). Then the operator −(−A)b is the c.i.g. of an

analytic semigroup (Tb(z))z∈Σarctan(cos πb) of growth order α+1
b , where

(4.1) Tb(z) =
1

2πi

∫
Γ

e−z(−λ)b

R(λ : A) dλ, z ∈ Σarctan(cos πb).

Proof. Our choice of b implies bπ < π
2 . Put γ := arctan(cos πb). Then

γ ∈ (0, π
2 ) and, for every z = ξ + iη ∈ Σγ , we have ξ cos(bπ)−|η| > 0. Furthermore,

|e−z(−λ)b | = e−ξ|λ|b cos(b arg(−λ))+η|λ|b sin(b arg(−λ)) � e−(ξ cos(bπ)−|η|)|λ|b .

The convergence of the curve integral over Γ1 and Γ3 follows from the computation∥∥∥∥ 1

2πi

∫
Γ1

e−z(−λ)b

R(λ : A) dλ

∥∥∥∥

� M

2π

∞∫
ε

e
−(ξ cos(bπ)−|η|)

(√
t2+t2a

)b(
1 +

√
t2 + t2a

)α

(1 + aεa−1)dt

� M(1 + aεa−1)

2π

[ ∞∫
ε

e−(ξ cos(bπ)−|η|)tb(
1+

√
2
)α

dt +

∫ ∞

1

e−(ξ cos(bπ)−|η|)tb(
1+

√
2
)α

tαdt

]

�
M

(
1 +

√
2
)α

(1 + aεa−1)

2π

[
(1 − ε)e−(ξ cos(bπ)−|η|)εb

+

∫ ∞

0

e−(ξ cos(bπ)−|η|)tb

tαdt

]

=
M

(
1+

√
2
)α

(1+aεa−1)

2π

[
(1 − ε)e−(ξ cos(bπ)−|η|)εb

+
1

b
Γ
(α+1

b

)(
ξ cos(bπ) − |η|)− α+1

b

]
,

where Γ(·) denotes the gamma function in the last estimate. The convergence of
the integral over Γ2 is obvious and one obtains∥∥∥∥ 1

2πi

∫
Γ2

e−z(−λ)b

R(λ : A) dλ

∥∥∥∥ � Me−(ξ cos(bπ)−|η|)db

(1 + d)α+1.

Hence, for every δ ∈ (0, γ), we have ‖z α+1
b Tb(z)‖ = O(1), z ∈ Σδ. By an elementary

application of Cauchy’s formula, it follows that the integral in (4.1) does not depend
on the choice of the curve Γ(a,C, d). Fix a λ0 ∈ ρ(A) � H. Here we would like to
point out that ρ(A)�H is a nonempty set since ρ(A) is an open subset of C. Using
the same arguments as in [20, Propositions 2.3, 2.5, 2.6, 2.7 and 2.8], one obtains:

1. Let m ∈ {0, 1}. The improper integral∫
Γ

−(−λ)mbe−z(−λ)b

(λ − λ0)�b+α�+2
R(λ : A) dλ

converges uniformly for z ∈ Σγ .
2. The mapping z 	→ Tb(z), z ∈ Σγ , is analytic and

dn

dzn
Tb(z) =

(−1)n

2πi

∫
Γ

(−λ)nbe−t(−λ)b

R(λ : A) dλ, n ∈ N.
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3. Tb(z1 + z2) = Tb(z1)Tb(z2), z1, z2 ∈ Σγ .

4. If x ∈ D(A�b+α�+2) = D(Jb), then limz→0, z∈Σγ

Tb(z)x−x
z = −Jbx. Espe-

cially, the continuity set Ωb := {x ∈ E : Tb(t)x → x as t → 0+} is dense in E.
Since the set Eb :=

⋃
t>0 Tb(t)E is dense in Ωb, it follows that Eb = E.

5. For every z ∈ Σγ , Tb(z) is an injective operator.

By the foregoing, we obtain that (Tb(t))t∈Σγ
is an analytic semigroup of growth

order α+1
b . Denote by Ab the generator of (Tb(t))t>0. By 4, we obtain that −Jb ⊂

Ab. Consequently, −(−A)b ⊂ Ab. Since
∫
Γ

e−t(−λ)b

λn dλ = 0, n ∈ N0, one can
repeat literally the arguments given in [20, Lemma 2.10] in order to obtain that,
for every x ∈ E and t > 0, Tb(t)x ∈ D(An) and that

(4.2) AnTb(t)x =
1

2πi

∫
Γ

e−t(−λ)b

λnR(λ :A)x dλ.

Particularly, Eb ⊂ D∞(A). In order to prove that Ab ⊂ −(−A)b, one can proceed
in the same manner as in [20]. Actually, it is sufficient to replace the natural
number n in the proofs of [20, Propositions 2.11 and 2.12] with �b + α
. �

The following theorem is the main result of this paper and possesses several
natural consequences in the theory of partial differential equations.

Theorem 4.3. Suppose that a closed, densely defined operator A satisfies (∗)
and (∗∗). Then, for every n ∈ N with n � 3 and x ∈ D(A� 1

n +α�+2), the abstract
Cauchy problem ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

u ∈ C
(
(0,∞) : [D(A)]

) ∩ Cn
(
(0,∞) : E

)
,

dn

dtn
u(t) = (−1)n+1Au(t), t > 0,

lim
t→0+

u(t) = x, sup
t>0

‖u(t)‖ < ∞,

has a solution u(t) = T 1
n
(t)x, t > 0. Further on, u can be analytically extended to

Σarctan(cos π
n ) and, for every δ ∈ (0, arctan(cos π

n )) and i ∈ N0,

sup
z∈Σδ

∥∥∥zi+nα+n di

dzi
u(z)

∥∥∥ < ∞.

Proof. One can use the assertion 2 given in the proof of the Theorem 4.2 and
(4.2) to obtain that dn

dtn u(t) = (−1)n+1Au(t), t > 0. By Theorem 4.2, u can be
analytically extended to Σarctan(cos π

n ). Due to the proof of Theorem 4.2 (see the
assertion 4), we conclude that limt→0+ u(t) = x. Let δ ∈ (0, arctan(cos π

n )) and
z ∈ Σδ be fixed. Since

di

dzi
u(z) =

(−1)n

2πi

∫
Γ

(−λ)
i
n e−z(−λ)

1
n R(λ : A)x dλ,
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and ‖(−λ)
i
n R(λ : A)‖ � M(1 + |λ|)α+ i

n , it follows (see the proofs of Theorem 4.2
and [20, Proposition 2.2]) that∥∥∥ di

dzi
u(z)

∥∥∥ = O
((

ξ cos(
π

n
) − |η|)−(α+ i

n +1)/ i
n

)
, z ∈ Σδ.

Hence, supz∈Σδ
‖zi+nα+n di

dzi u(z)‖ < ∞. �
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