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Abstract. It is proved that, for 𝑇 𝜀 6 𝐺 = 𝐺(𝑇 ) 6 1
2
√
𝑇 ,∫︁ 2𝑇

𝑇

(︁
𝐼1(𝑡+𝐺,𝐺)− 𝐼1(𝑡, 𝐺)

)︁2
𝑑𝑡 = 𝑇𝐺

3∑︁
𝑗=0

𝑎𝑗 log𝑗
(︁√
𝑇

𝐺

)︁
+𝑂𝜀(𝑇 1+𝜀𝐺1/2 + 𝑇 1/2+𝜀𝐺2)

with some explicitly computable constants 𝑎𝑗 (𝑎3 > 0) where, for fixed 𝑘 ∈ N,

𝐼𝑘(𝑡, 𝐺) =
1
√
𝜋

∫︁ ∞
−∞
|𝜁( 1

2 + 𝑖𝑡+ 𝑖𝑢)|2𝑘𝑒−(𝑢/𝐺)2
𝑑𝑢.

The generalizations to the mean square of 𝐼1(𝑡+𝑈,𝐺)−𝐼1(𝑡, 𝐺) over [𝑇, 𝑇+𝐻]
and the estimation of the mean square of 𝐼2(𝑡 + 𝑈,𝐺) − 𝐼2(𝑡, 𝐺) are also
discussed.

1. Introduction

The mean values of the Riemann zeta-function 𝜁(𝑠), defined as

𝜁(𝑠) =
∞∑︁
𝑛=1
𝑛−𝑠 (𝜎 = Re 𝑠 > 1),

(and otherwise by analytic continuation) occupy a central place in the theory of
𝜁(𝑠). Of particular significance is the mean square on the “critical line" 𝜎 = 1

2 , and
a vast literature exists on this subject (see e.g., the monographs [3], [4], and [18]).
One usually defines the error term in the mean square formula for |𝜁( 1

2 + 𝑖𝑡)| as

(1.1) 𝐸(𝑇 ) :=
∫︁ 𝑇

0
|𝜁( 1

2 + 𝑖𝑡)|2𝑑𝑡− 𝑇
(︁

log 𝑇2𝜋 + 2𝛾 − 1
)︁
,
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2 IVIĆ

where 𝛾 = −Γ′(1) = 0.5772156649 . . . is Euler’s constant. More generally, one
hopes that for a fixed 𝑘 the function (𝐸(𝑇 ) ≡ 𝐸1(𝑇 ) in this notation)

(1.2) 𝐸𝑘(𝑇 ) :=
∫︁ 𝑇

0
|𝜁( 1

2 + 𝑖𝑡)|2𝑘𝑑𝑡− 𝑇𝑃𝑘2(log 𝑇 ) (𝑘 ∈ N)

represents the error term in the asymptotic formula for the 2𝑘-th moment of |𝜁( 1
2 +

𝑖𝑡)|, where 𝑃𝑙(𝑧) is a suitable polynomial in 𝑧 of degree 𝑙. This is known, besides the
case 𝑘 = 1, only in the case 𝑘 = 2 (see e.g., [4], [17]), and any further improvement
would be of great significance, in view of numerous applications of power moments
of |𝜁( 1

2 + 𝑖𝑡)|. By means of random matrix theory plausible values of the coefficients
of the polynomial 𝑃𝑘2(𝑧) that ought to be standing in (1.2) are given by J. B. Conrey
et al. [2]. However, these values are still conjectural.

As for explicit formulas for 𝐸𝑘(𝑇 ) and related functions, we begin by mention-
ing the famous formula of F. V. Atkinson [1] for 𝐸(𝑇 ). Let 0 < 𝐴 < 𝐴′ be any
two fixed constants such that 𝐴𝑇 < 𝑁 < 𝐴′𝑇 , let 𝑑(𝑛) =

∑︀
𝛿|𝑛 1 be the number of

divisors of 𝑛, and finally let 𝑁 ′ = 𝑁 ′(𝑇 ) = 𝑇/(2𝜋) +𝑁/2− (𝑁2/4 +𝑁𝑇/(2𝜋))1/2.
Then

(1.3) 𝐸(𝑇 ) =
∑︁

1
(𝑇 ) +

∑︁
2
(𝑇 ) +𝑂(log2 𝑇 ),

where∑︁
1
(𝑇 ) = 21/2

(︁ 𝑇
2𝜋

)︁1/4 ∑︁
𝑛6𝑁

(−1)𝑛𝑑(𝑛)𝑛−3/4𝑒(𝑇, 𝑛) cos(𝑓(𝑇, 𝑛)),(1.4)

∑︁
2
(𝑇 ) = −2

∑︁
𝑛6𝑁 ′

𝑑(𝑛)𝑛−1/2
(︁

log
(︁ 𝑇

2𝜋𝑛

)︁−1
cos
(︁
𝑇 log

(︁ 𝑇
2𝜋𝑛

)︁
− 𝑇 + 𝜋4

)︁)︁
,(1.5)

with

𝑓(𝑇, 𝑛) = 2𝑇 arsinh
(︀√︀
𝜋𝑛/(2𝑇 )

)︀
+
√︀

2𝜋𝑛𝑇 + 𝜋2𝑛2 − 1
4𝜋(1.6)

= − 1
4𝜋 + 2

√
2𝜋𝑛𝑇 + 1

6

√
2𝜋3 𝑛

3/2

𝑇 1/2 + 𝛽5
𝑛5/2

𝑇 3/2 + 𝛽7
𝑛7/2

𝑇 5/2 + · · · ,

where the 𝛽𝑗 ’s are constants,

𝑒(𝑇, 𝑛) = (1 + 𝜋𝑛/(2𝑇 ))−1/4
{︁

(2𝑇/𝜋𝑛)1/2 arsinh
(︀√︀
𝜋𝑛/(2𝑇 )

)︀}︁−1
(1.7)

= 1 +𝑂(𝑛/𝑇 ) (1 6 𝑛 < 𝑇 ),

and arsinh 𝑥 = log
(︀
𝑥+
√

1 + 𝑥2
)︀
. Atkinson’s formula came into prominence several

decades after its appearance, and incited much research (see e.g., [3],[4] for some
of them). The presence of the function 𝑑(𝑛) in (1.4) and the structure of the sum
Σ1(𝑇 ) point out the analogy between 𝐸(𝑇 ) and Δ(𝑥), the error term in the classical
divisor problem, defined as

Δ(𝑥) =
∑︁
𝑛6𝑥

𝑑(𝑛)− 𝑥(log 𝑥+ 2𝛾 − 1).
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This analogy was investigated by several authors, most notably by M. Jutila [13],
[14], and then later by the author [6]–[8] and [9]–[10]. Jutila [13] proved that

(1.8)
∫︁ 𝑇+𝐻

𝑇

(︁
Δ(𝑥+ 𝑈)−Δ(𝑥)

)︁2
𝑑𝑥

= 1
4𝜋2

∑︁
𝑛6 𝑇

2𝑈

𝑑2(𝑛)
𝑛3/2

∫︁ 𝑇+𝐻

𝑇

𝑥1/2
⃒⃒⃒
exp

(︁
2𝜋𝑖𝑈

√︀
𝑛/𝑥

)︁
− 1
⃒⃒⃒2
𝑑𝑥+𝑂𝜀(𝑇 1+𝜀+𝐻𝑈1/2𝑇 𝜀),

for 1 6 𝑈 ≪ 𝑇 1/2 ≪ 𝐻 6 𝑇 , and an analogous result holds also for the integral
of 𝐸(𝑥+ 𝑈)− 𝐸(𝑥) (the constants in front of the sum and in the exponential will
be 1/

√
2𝜋 and

√
2𝜋, respectively). Here and later 𝜀 (> 0) denotes arbitrarily small

constants, not necessarily the same ones at each occurrence, while 𝑎 ≪𝜀 𝑏 means
that the implied ≪–constant depends on 𝜀. From (1.8) one deduces (𝑎 ≍ 𝑏 means
that 𝑎≪ 𝑏≪ 𝑎)

(1.9)
∫︁ 𝑇+𝐻

𝑇

(︁
Δ(𝑥+ 𝑈)−Δ(𝑥)

)︁2
𝑑𝑥 ≍ 𝐻𝑈 log3

(︁√
𝑇
⧸︁
𝑈
)︁

for 𝐻𝑈 ≫ 𝑇 1+𝜀 and 𝑇 𝜀 ≪ 𝑈 6 1
2
√
𝑇 . In [14] Jutila proved that the integral in

(1.9) is
≪𝜀 𝑇 𝜀(𝐻𝑈 + 𝑇 2/3𝑈4/3) (1≪ 𝐻,𝑈 ≪ 𝑇 ).

This bound and (1.9) hold also for the integral of 𝐸(𝑥 + 𝑈) − 𝐸(𝑥). Furthermore
Jutila op. cit. conjectured that

(1.10)
∫︁ 2𝑇

𝑇

(︁
𝐸(𝑡+ 𝑈)− 𝐸(𝑡− 𝑈)

)︁4
𝑑𝑡≪𝜀 𝑇 1+𝜀𝑈2

holds for 1 ≪ 𝑈 ≪ 𝑇 1/2, and the analogous formula should hold for Δ(𝑡) as well.
In fact, using the ideas of K.-M. Tsang [19] who investigated the fourth moment
of Δ(𝑥), it can be shown that one expects the integral in (1.10) to be of the order
𝑇𝑈2 log6(

√
𝑇/𝑈). As shown in [11], the truth of Jutila’s conjecture (1.10) implies

the hitherto unknown eighth moment bound

(1.11)
∫︁ 𝑇

0
|𝜁( 1

2 + 𝑖𝑡)|8𝑑𝑡≪𝜀 𝑇 1+𝜀,

which would have important consequences in many problems from multiplicative
number theory, such as bounds involving differences between consecutive primes.

Despite several results on 𝐸2(𝑇 ) (see e.g., [17]), no explicit formula is known
for this function, which would be analogous to Atkinson’s formula (1.3)–(1.7). This
is probably due to the complexity of the function in question, and it is even not
certain that such a formula exists. However, when one works not directly with the
moments of |𝜁( 1

2 + 𝑖𝑡)|, but with smoothed versions thereof, the situation changes.
Let, for 𝑘 ∈ N fixed,

(1.12) 𝐼𝑘(𝑡, 𝐺) := 1√
𝜋

∫︁ ∞
−∞
|𝜁( 1

2 + 𝑖𝑡+ 𝑖𝑢)|2𝑘𝑒−(𝑢/𝐺)2
𝑑𝑢 (1≪ 𝐺≪ 𝑡).
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Y. Motohashi’s monograph [17] contains explicit formulas for 𝐼1(𝑡, 𝐺) and 𝐼2(𝑡, 𝐺)
in suitable ranges for 𝐺 = 𝐺(𝑡). The formula for 𝐼2(𝑡, 𝐺) involves quantities from
the spectral theory of the non-Euclidean Laplacian (see op. cit.). Let, as usual,
{𝜆𝑗 = 𝜅2

𝑗+ 1
4} ∪ {0} be the discrete spectrum of the non-Euclidean Laplacian acting

on 𝑆𝐿(2,Z) –automorphic forms, and 𝛼𝑗 = |𝜌𝑗(1)|2(cosh 𝜋𝜅𝑗)−1, where 𝜌𝑗(1) is the
first Fourier coefficient of the Maass wave form corresponding to the eigenvalue 𝜆𝑗 to
which the Hecke series 𝐻𝑗(𝑠) is attached. Then, for 𝑇 1/2 log−𝐷 𝑇 6 𝐺 6 𝑇/ log 𝑇 ,
and for an arbitrary constant 𝐷 > 0, Motohashi’s formula gives

(1.13) 𝐺−1𝐼2(𝑇,𝐺) = 𝑂(log3𝐷+9 𝑇 )

+ 𝜋√
2𝑇

∞∑︁
𝑗=1
𝛼𝑗𝐻

3
𝑗 ( 1

2 )𝜅−1/2
𝑗 sin

(︁
𝜅𝑗 log 𝜅𝑗4𝑒𝑇

)︁
exp
(︁
−1

4

(︁𝐺𝜅𝑗
𝑇

)︁2)︁
.

For our purposes the range for which (1.13) holds is not large enough. We shall
use a more precise the expression for 𝐼2(𝑇,𝐺) that can be derived by following the
proof of Theorem 3, given in [12], and then taking 𝜎 → 1

2 + 0. Namely if

(1.14) 𝑌0 = 𝑌0(𝑇 ;𝜅𝑗) := 𝜅𝑗
𝑇

(︃√︂
1 +

(︁ 𝜅𝑗
4𝑇

)︁2
+ 𝜅𝑗2𝑇

)︃
,

then, for 𝑇 𝜀 ≪ 𝐺 = 𝐺(𝑇 )≪ 𝑇 1−𝜀 , it follows that

(1.15) 𝐼2(𝑇,𝐺) ∼ 𝐹0(𝑇,𝐺) +𝑂(1)

+ 𝜋𝐺√
2𝑇

∑︁
𝜅𝑗6𝑇𝐺−1 log𝑇

𝛼𝑗𝐻
3
𝑗 ( 1

2 )𝜅−1/2
𝑗 𝑒−

1
4𝐺

2 log2(1+𝑌0)

× sin
(︁
𝜅𝑗 log 𝜅𝑗4𝑒𝑇 + 𝑐3𝜅3

𝑗𝑇
−2 + · · ·+ 𝑐𝑁𝜅𝑁𝑗 𝑇 1−𝑁

)︁
.

Here 𝑁(> 3) is a sufficiently large integer, and all the constants 𝑐𝑗 in (1.15) may
be effectively evaluated. The meaning of the symbol ∼ is that besides the spectral
sums in (1.15) a finite number of other sums appear, each of which is similar in
nature to the corresponding sum above, but of a lower order of magnitude. The
function 𝐹0(𝑡, 𝐺) is given explicitly e.g., by eq. (5.112) of [4]. We have

(1.16)

𝐹0(𝑡, 𝐺) = Re
{︂
𝐺√
𝜋

∫︁ ∞
−∞

[︂
𝐵1

Γ′

Γ + · · ·+𝐵11
(Γ′)2Γ′′

Γ2

]︂
( 1

2 + 𝑖𝑡+ 𝑖𝑢) 𝑒−(𝑢/𝐺)2
𝑑𝑢

}︂
,

where 𝐵1, . . . , 𝐵11 are suitable constants. The main contribution to 𝐹0(𝑡, 𝐺) is of
the form 𝐺𝑃4(log 𝑡), where 𝑃4(𝑧) is a polynomial of degree four in 𝑧, whose coeffi-
cients can be explicitly evaluated. This is easily obtained by using the asymptotic
formula

(1.17) Γ(𝑘)(𝑠)
Γ(𝑠) =

𝑘∑︁
𝑗=0
𝑏𝑗,𝑘(𝑠) log𝑗 𝑠+ 𝑐−1,𝑘𝑠

−1 + · · ·+ 𝑐−𝑟,𝑘𝑠−𝑟 +𝑂𝑟(|𝑠|−𝑟−1)
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for any fixed integers 𝑘 > 1, 𝑟 > 0, where each 𝑏𝑗,𝑘(𝑠) ( ∼ 𝑏𝑗,𝑘 for a suitable constant
𝑏𝑗,𝑘) has an asymptotic expansion in non-positive powers of 𝑠. One obtains (1.17)
from Stirling’s classical formula for Γ(𝑠).

2. Statement of results

In [11] the author improved (1.9) and its analogue for 𝐸(𝑇 ) to a true asymptotic
formula. Namely it was shown that, for 1≪𝑈=𝑈(𝑇 )6 1

2
√
𝑇 , we have (𝑐3 = 8𝜋−2)

(2.1)
∫︁ 2𝑇

𝑇

(︁
Δ(𝑥+ 𝑈)−Δ(𝑥)

)︁2
𝑑𝑥 = 𝑇𝑈

3∑︁
𝑗=0
𝑐𝑗 log𝑗

(︁√𝑇
𝑈

)︁
+𝑂𝜀(𝑇 1/2+𝜀𝑈2) +𝑂𝜀(𝑇 1+𝜀𝑈1/2),

a similar result being true if Δ(𝑥+𝑈)−Δ(𝑥) is replaced by 𝐸(𝑥+𝑈)−𝐸(𝑥), with
different constants 𝑐𝑗 . It follows that, for 𝑇 𝜀 6 𝑈 = 𝑈(𝑇 ) 6 𝑇 1/2−𝜀, (2.1) is a true
asymptotic formula. Moreover, for 𝑇 6 𝑥 6 2𝑇 and 𝑇 𝜀 6 𝑈 = 𝑈(𝑇 ) 6 𝑇 1/2−𝜀,
from (2.1) it follows that
(2.2)

Δ(𝑥+𝑈)−Δ(𝑥) = Ω
{︁√
𝑈 log3/2

(︁√𝑥
𝑈

)︁}︁
, 𝐸(𝑥+ℎ)−𝐸(𝑥) = Ω

{︁√
𝑈 log3/2

(︁√𝑥
𝑈

)︁}︁
.

These omega results (𝑓(𝑥) = Ω(𝑔(𝑥)) means that lim𝑥→∞ 𝑓(𝑥)/𝑔(𝑥) ̸= 0) show
that Jutila’s conjectures made in [13], namely that

(2.3) Δ(𝑥+ 𝑈)−Δ(𝑥)≪𝜀 𝑥𝜀
√
𝑈, 𝐸(𝑥+ 𝑈)− 𝐸(𝑥)≪𝜀 𝑥𝜀

√
𝑈

for 𝑥𝜀 6 𝑈 6 𝑥1/2−𝜀 are (if true), close to being best possible. It should be also
mentioned that the formula (2.1) can be further generalized, and the representative
cases are the classical circle problem and the summatory function of coefficients of
holomorphic cusp forms, which were also treated in [11].

In this work the problem of the mean square of the function 𝐼𝑘(𝑡, 𝐺) (see (1.12))
in short intervals is considered when 𝑘 = 1 or 𝑘 = 2. The former case is much less
difficult, and in fact an asymptotic formula in the most important case of the mean
square of 𝐼1(𝑡 + 𝐺,𝐺) − 𝐼1(𝑡, 𝐺) can be obtained. The result, which is similar to
(2.1), is

Theorem 1. For 𝑇 𝜀 6 𝐺 = 𝐺(𝑇 ) 6 1
2
√
𝑇 we have

(2.4)
∫︁ 2𝑇

𝑇

(︀
𝐼1(𝑡+𝐺,𝐺)− 𝐼1(𝑡, 𝐺)

)︀2
𝑑𝑡

= 𝑇𝐺
3∑︁
𝑗=0
𝑎𝑗 log𝑗

(︂√
𝑇

𝐺

)︂
+𝑂𝜀(𝑇 1+𝜀𝐺1/2 + 𝑇 1/2+𝜀𝐺2)

with some explicitly computable constants 𝑎𝑗 (𝑎3 > 0).

Corollary 1. For 𝑇 𝜀 6 𝐺 = 𝐺(𝑇 ) 6 𝑇 1/2−𝜀, (2.4) is a true asymptotic
formula.
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Corollary 2. For 𝑇 𝜀 6 𝐺 = 𝐺(𝑇 ) 6 𝑇 1/2−𝜀 we have

(2.5) 𝐼1(𝑇 +𝐺,𝐺)− 𝐼1(𝑇,𝐺) = Ω
(︀√
𝐺 log3/2 𝑇

)︀
.

Namely if (2.5) did not hold, then replacing 𝑇 by 𝑡, squaring and integrating
we would obtain that the left-hand side of (2.4) is 𝑜(𝑇𝐺 log3 𝑇 ) as 𝑇 → ∞, which
contradicts the right-hand side of (2.4). The formula given by Theorem 1 makes it
then plausible to state the following conjecture, analogous to (2.3).

Conjecture. For 𝑇 𝜀 6 𝐺 = 𝐺(𝑇 ) 6 𝑇 1/2−𝜀 we have

𝐼1(𝑇 +𝐺,𝐺)− 𝐼1(𝑇,𝐺) = 𝑂𝜀
(︀
𝑇 𝜀
√
𝐺
)︀
.

The generalization of Theorem 1 to the mean square of 𝐼1(𝑡+ 𝑈,𝐺)− 𝐼1(𝑡, 𝐺)
over [𝑇, 𝑇 + 𝐻] is will be discussed in Section 4, subject to the condition (4.1).
This is technically more involved than (2.5), so we have chosen not to formulate
our discussion as a theorem.

The mean square of 𝐼2(𝑡+𝑈,𝐺)− 𝐼2(𝑡, 𝐺) is naturally more involved than the
mean square of 𝐼1(𝑡+𝑈,𝐺)− 𝐼1(𝑡, 𝐺). At the possible state of knowledge involving
estimates with 𝜅𝑗 and related exponential integrals, it does not seem possible to
obtain an asymptotic formula, but only an upper bound. This is

Theorem 2. For 𝑇 𝜀 6 𝑈 6 𝐺𝑇−𝜀 ≪ 𝑇 1/2−𝜀, 𝑈 = 𝑈(𝑇 ), 𝐺 = 𝐺(𝑇 ) we have

(2.6)
∫︁ 2𝑇

𝑇

(︁
𝐼2(𝑡+ 𝑈,𝐺)− 𝐼2(𝑡, 𝐺)

)︁2
𝑑𝑡≪𝜀 𝑇 2+𝜀(𝑈/𝐺)2.

3. The proof of Theorem 1

We shall prove first the bound

(3.1)
∫︁ 2𝑇

𝑇

(︁
𝐼1(𝑡+𝐺)− 𝐼1(𝑡, 𝐺)

)︁2
𝑑𝑡≪ 𝑇𝐺𝐿3 (︀

𝑇 𝜀 6 𝐺 6 1
2

√
𝑇
)︀
,

where henceforth 𝐿 = log 𝑇 for brevity. This shows that the sum on the left-hand
side of (2.5) is indeed of the order given by the right-hand side, a fact which will
be needed a little later. We truncate (1.12) at 𝑢 = ±𝐺𝐿, then differentiate (1.1)
and integrate by parts to obtain

𝐼1(𝑡, 𝐺) = 1√
𝜋

∫︁ 𝐺𝐿
−𝐺𝐿

(︂
log 𝑡+ 𝑢2𝜋 + 2𝛾 + 𝐸′(𝑡+ 𝑢)

)︂
𝑒−(𝑢/𝐺)2

𝑑𝑢+𝑂(𝑒−𝐿
2/2)(3.2)

= 1√
𝜋

∫︁ 𝐺𝐿
−𝐺𝐿

(︂
log 𝑡+ 𝑢2𝜋 + 2𝛾 + 2𝑢

𝐺2𝐸(𝑡+ 𝑢)
)︂
𝑒−(𝑢/𝐺)2

𝑑𝑢+𝑂(𝑒−𝐿
2/2).

This gives, for 𝑇 6 𝑡 6 2𝑇, 𝑇 𝜀 ≪ 𝐺 6 1
2
√
𝑇 ,

(3.3) 𝐼1(𝑡+𝐺,𝐺)− 𝐼(𝑡, 𝐺)

= 2√
𝜋𝐺2

∫︁ 𝐺𝐿
−𝐺𝐿
𝑢𝑒−(𝑢/𝐺)2

(︁
𝐸(𝑡+ 𝑢+𝐺)− 𝐸(𝑡+ 𝑢)

)︁
𝑑𝑢+𝑂

(︁𝐺2

𝑇

)︁
.
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We square (3.3), noting that 𝐺2/𝑇 ≪ 1, and then integrate over [𝑇, 2𝑇 ]. We use
the Cauchy–Schwarz inequality for integrals together with Jutila’s bound (1.9) (or
(2.1)) for 𝐸(𝑥+ 𝑈)− 𝐸(𝑥), and then (3.1) will follow.

To prove (2.4) we need a precise expression for 𝐼1(𝑡 + 𝐺,𝐺) − 𝐼1(𝑡, 𝐺). One
way to proceed is to start from (3.2) and use Atkinson’s formula (1.3)–(1.7). In the
course of the proof, various expressions will be simplified by Taylor’s formula, and
one has to use the well known integral (see e.g., the Appendix of [3])

(3.4)
∫︁ ∞
−∞

exp
(︀
𝐴𝑥−𝐵𝑥2)︀ 𝑑𝑥 =

√︂
𝜋

𝐵
exp

(︂
𝐴2

4𝐵

)︂
(Re𝐵 > 0).

However, it seems more expedient to proceed in the following way. We start from
Y. Motohashi’s formula [17, eq. (4.1.16)], namely

𝑍1(𝑔) =
∫︁ ∞
−∞

[︂
Re
{︂

Γ′

Γ ( 1
2 + 𝑖𝑡)

}︂
+ 2𝛾 − log(2𝜋)

]︂
𝑔(𝑡) 𝑑𝑡+ 2𝜋Re{𝑔( 1

2 𝑖)}(3.5)

+ 4
∞∑︁
𝑛=1
𝑑(𝑛)

∫︁ ∞
0

(𝑦(𝑦 + 1))−1/2𝑔𝑐(log(1 + 1/𝑦)) cos(2𝜋𝑛𝑦) 𝑑𝑦,

where, for 𝑘 ∈ N fixed,

(3.6) 𝑍𝑘(𝑔) =
∫︁ ∞
−∞
|𝜁( 1

2 + 𝑖𝑡)|2𝑘𝑔(𝑡) 𝑑𝑡, 𝑔𝑐(𝑥) =
∫︁ ∞
−∞
𝑔(𝑡) cos(𝑥𝑡) 𝑑𝑡.

Here the function 𝑔(𝑟) is real for 𝑟 real, and there exist a large positive constant 𝐴
such that 𝑔(𝑟) is regular and 𝑔(𝑟)≪ (|𝑟|+ 1)−𝐴 for | Im 𝑟| 6 𝐴. The choice in our
case is

𝑔(𝑡) := 1√
𝜋

exp
(︀
−((𝑇 − 𝑡)/𝐺)2)︀ , 𝑔𝑐(𝑥) = 𝐺 exp

(︀
− 1

4 (𝐺𝑥)2)︀ cos(𝑇𝑥),

and one verifies without difficulty that the above assumptions on 𝑔 are satisfied.
In this case 𝑍1(𝑔) becomes our 𝐼1(𝑇,𝐺) (see (2.4)). To evaluate the integral on
the right-hand side of (3.5) we use (1.17) with 𝑘 = 1. Thus when we form the
difference 𝐼1(𝑡+𝐺,𝐺)− 𝐼1(𝑡, 𝐺) in this way, the integral on the right-hand side of
(3.5) produces the terms 𝑂(𝐺2/𝑇 ) + 𝑂(1) = 𝑂(1), since 𝐺2/𝑇 ≪ 1. The second
integral on the right-hand side of (3.5) is evaluated by the saddle-point method
(see e.g., [3, Chapter 2]). A similar analysis was made in [8] by the author, and an
explicit formula for 𝐼1(𝑇,𝐺) is also to be found in Y. Motohashi [17, eq. (5.5.1)]. As
these results are either less accurate, or hold in a more restrictive range of 𝐺 than
what we require for the proof of Theorem 1, a more detailed analysis is in order.
A convenient result to use is [3, Theorem 2.2 and Lemma 15.1] (due originally to
Atkinson [1]) for the evaluation of exponential integrals

∫︀ 𝑏
𝑎
𝜙(𝑥) exp(2𝜋𝑖𝐹 (𝑥)) 𝑑𝑥,

where 𝜙 and 𝐹 are suitable smooth, real-valued functions. In the latter only the
exponential factor exp(− 1

4𝐺
2 log(1 + 1/𝑦)) is missing. In the notation of [1] and [3]

we have that the saddle point 𝑥0 (root of 𝐹 ′(𝑥) = 0) satisfies

𝑥0 = 𝑈 − 1
2 =

(︂
𝑇

2𝜋𝑛 + 1
4

)︂1/2
− 1

2 ,
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and the presence of the above exponential factor makes it possible to truncate the
series in (3.5) at 𝑛 = 𝑇𝐺−2 log 𝑇 with a negligible error. Furthermore, in the
remaining range for 𝑛 we have (in the notation of [3])

Φ0𝜇0𝐹
−3/2
0 ≪ (𝑛𝑇 )−3/4,

which makes a total contribution of 𝑂(1), as does error term integral in Theorem
2.2 of [3]. The error terms with Φ(𝑎), Φ(𝑏) vanish for 𝑎 → 0+, 𝑏 → +∞ . In this
way we obtain a formula, which naturally has a resemblance to Atkinson’s formula
(compare it also to [8, eq. (19)]). This is

(3.7) 𝐼1(𝑡+𝐺,𝐺)− 𝐼1(𝑡, 𝐺) = 𝑂(1)

+
√

2𝐺
∑︁

𝑛6𝑇𝐺−2𝐿

(−1)𝑛𝑑(𝑛)𝑛−1/2
{︁
𝑢(𝑡+𝐺,𝑛)𝐻(𝑡+𝐺,𝑛)− 𝑢(𝑡, 𝑛)𝐻(𝑡, 𝑛)

}︁
,

where

𝑢(𝑡, 𝑛) :=
{︂(︂

𝑡

2𝜋𝑛 + 1
4

)︂1/2
− 1

2

}︂−1/2 (︁
𝑡 ≍ 𝑇, 1 6 𝑛 6 𝑇𝐺−2𝐿

)︁
,

and (in the notation of (1.6))

𝐻(𝑇, 𝑛) := exp
(︂
−𝐺2

(︁
arsinh

√︀
𝜋𝑛/2𝑇

)︁2
)︂

sin 𝑓(𝑇, 𝑛)
(︁
𝑡 ≍ 𝑇, 1 6 𝑛 6 𝑇𝐺−2𝐿

)︁
.

Now we square (3.7) and integrate over 𝑇 6 𝑡 6 2𝑇 , using the Cauchy–Schwarz
inequality and (3.1) to obtain

(3.8)
∫︁ 2𝑇

𝑇

(︁
𝐼1(𝑡+𝐺,𝐺)− 𝐼1(𝑡, 𝐺)

)︁2
𝑑𝑡 = 𝑆 +𝑂(𝑇𝐺1/2𝐿3/2),

where we set

(3.9) 𝑆 := 2𝐺2
∫︁ 2𝑇

𝑇

{︃ ∑︁
𝑛6𝑇𝐺−2𝐿

(−1)𝑛 𝑑(𝑛)
𝑛1/2

[︁
𝑢(𝑡+𝐺,𝑛)𝐻(𝑡+𝐺,𝑛)

− 𝑢(𝑡, 𝑛)𝐻(𝑡, 𝑛)
]︁}︃2

𝑑𝑡.

Squaring out the sum over 𝑛 in (3.9) it follows that

𝑆 = 2𝐺2
∫︁ 2𝑇

𝑇

∑︁
𝑛6𝑇𝐺−2𝐿

𝑑2(𝑛)
𝑛

[︁
𝑢(𝑡+𝐺,𝑛)𝐻(𝑡+𝐺,𝑛)− 𝑢(𝑡, 𝑛)𝐻(𝑡, 𝑛)

]︁2
𝑑𝑡(3.10)

+ 2𝐺2
∫︁ 2𝑇

𝑇

∑︁
𝑚 ̸=𝑛6𝑇𝐺−2𝐿

(−1)𝑚+𝑛 𝑑(𝑚) 𝑑(𝑛)√
𝑚𝑛

[︁
𝑢(𝑡+𝐺,𝑚)𝐻(𝑡+𝐺,𝑚)

− 𝑢(𝑡,𝑚)𝐻(𝑡,𝑚)
]︁[︁
𝑢(𝑡+𝐺,𝑛)𝐻(𝑡+𝐺,𝑛)− 𝑢(𝑡, 𝑛)𝐻(𝑡, 𝑛)

]︁
𝑑𝑡.

The main term in Theorem 1 comes from the first sum in (3.10) (the diagonal
terms), while the sum over the non-diagonal terms 𝑚 ̸= 𝑛 will contribute to the
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error term. To see this note first that the functions 𝑢(𝑡, 𝑛) ( ≍ (𝑛/𝑡)1/4 in our
range) and

exp
(︁
−𝐺2(︀arsinh

√︀
𝜋𝑛/2𝑇

)︀2
)︁

are monotonic functions of 𝑡 when 𝑡 ∈ [𝑇, 2𝑇 ], and moreover, since

𝜕𝑓(𝑡, 𝑛)
𝜕𝑡

= 2 arsinh
√︀
𝜋𝑛/2𝑡 ,

it follows that, for 𝑈, 𝑉 = 0 or 𝐺,

(3.11) 𝜕[𝑓(𝑡+ 𝑈,𝑚)± 𝑓(𝑡+ 𝑉, 𝑛)]
𝜕𝑡

≍ |
√
𝑚±
√
𝑛|√

𝑇
(𝑚 ̸= 𝑛).

In the sum over 𝑚 ̸= 𝑛 we can assume, by symmetry, that 𝑛 < 𝑚 6 2𝑛 or 𝑚 > 2𝑛.
Hence by the first derivative test (see e.g., Lemma 2.1 of [3]) and (3.11) we have
that the sum in question is

≪ 𝐺2
∑︁

16𝑛<𝑚6𝑇𝐺−2𝐿

𝑑(𝑚) 𝑑(𝑛)
(𝑚𝑛)1/4 ·

1√
𝑚−
√
𝑛

≪ 𝐺2
∑︁

𝑛6𝑇𝐺−2𝐿

𝑑(𝑛)
∑︁

𝑛<𝑚62𝑛

𝑑(𝑚)
𝑚− 𝑛

+𝐺2
∑︁

𝑚6𝑇𝐺−2𝐿

𝑑(𝑚)
𝑚3/4

∑︁
𝑛<2𝑚

𝑑(𝑛)
𝑛1/4

≪ 𝐺2𝑇 𝜀
(︂ ∑︁
𝑛6𝑇𝐺−2𝐿

1 +
∑︁

𝑚6𝑇𝐺−2𝐿

𝑑(𝑚)𝐿
)︂
≪𝜀 𝑇 1+𝜀.

Note that, by the mean value theorem,

𝑢(𝑡+𝐺,𝑛)− 𝑢(𝑡, 𝐺) = 𝑂(𝐺𝑛1/4𝑇−5/4) (𝑡 ≍ 𝑇, 1 6 𝑛 6 𝑇𝐺−2𝐿).

Hence we obtain, by trivial estimation,

𝑆 = 2𝐺2
∫︁ 2𝑇

𝑇

∑︁
𝑛6𝑇𝐺−2𝐿

𝑑2(𝑛)
𝑛
𝑢2(𝑡, 𝑛)

(︀
𝐻(𝑡+𝐺,𝑛)−𝐻(𝑡, 𝑛)

)︀2
𝑑𝑡(3.12)

+𝑂
(︂
𝐺2
∫︁ 2𝑇

𝑇

∑︁
𝑛6𝑇𝐺−2𝐿

𝑑2(𝑛)
𝑛
·𝐺𝑛1/2𝑇−3/2𝑑𝑡

)︂
+𝑂𝜀(𝑇 1+𝜀)

= 2𝐺2
∫︁ 2𝑇

𝑇

∑︁
𝑛6𝑇𝐺−2𝐿

𝑑2(𝑛)
𝑛
𝑢2(𝑡, 𝑛)

(︀
𝐻(𝑡+𝐺,𝑛)−𝐻(𝑡, 𝑛)

)︀2
𝑑𝑡+𝑂𝜀(𝑇 1+𝜀),

since 𝐺2 ≪ 𝑇 . Now note that

𝑢2(𝑡, 𝑛) =
(︂
𝑡

2𝜋𝑛

)︂−1/2
+𝑂

(︁ 𝑛
𝑇

)︁
(𝑇 6 𝑡 6 2𝑇 ),

hence the error term above makes a contribution to 𝑆 which is

≪ 𝐺2
∑︁

𝑛6𝑇𝐺−2𝐿

𝑑2(𝑛)≪ 𝑇𝐿4.
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Similarly, replacing 𝑡+𝐺 by 𝑡 in the exponential factor in 𝐻(𝑡+𝐺,𝑛), we make a
total error which is ≪𝜀 𝑇 1+𝜀. Therefore (3.8) and (3.12) give

(3.13)
∫︁ 2𝑇

𝑇

(︁
𝐼1(𝑡+𝐺,𝐺)− 𝐼1(𝑡, 𝐺)

)︁2
𝑑𝑡 = 𝑂(𝑇𝐺1/2𝐿3/2)

+ 2
√

2𝜋𝐺2
∑︁

𝑛6𝑇𝐺−2𝐿

𝑑2(𝑛)√
𝑛

∫︁ 2𝑇

𝑇

𝑡−1/2 exp
(︂
−2𝐺2

(︁
arsinh

√︀
𝜋𝑛/2𝑡

)︁2
)︂

×
(︁

sin 𝑓(𝑡+𝐺,𝑛)− sin 𝑓(𝑡, 𝑛)
)︁2
𝑑𝑡 (𝑇 𝜀 6 𝐺≪

√
𝑇 ).

In a similar vein we simplify (3.13), by using
arsinh 𝑧 = 𝑧 +𝑂(|𝑧|3) (|𝑧| < 1).

Thus we may replace the exponential factor in (3.13) by exp(−𝜋𝑛𝐺2/𝑡), making
an error which is absorbed by the 𝑂-term in (3.13). Next we use the identity(︁

sin𝛼− sin 𝛽
)︁2

= (2 + 2 cos(𝛼+ 𝛽)) sin2 1
2 (𝛼− 𝛽) (𝛼 = 𝑓(𝑡+𝐺,𝑛), 𝛽 = 𝑓(𝑡, 𝑛)).

Analogously to the treatment of the sum in (3.10) with 𝑚 ̸= 𝑛, we use the
first derivative test to show that the contribution of the terms with cos(𝛼 + 𝛽)
is 𝑂(𝑇𝐺1/2𝐿3/2). Therefore (3.13) reduces to

(3.14)
∫︁ 2𝑇

𝑇

(︁
𝐼1(𝑡+𝐺,𝐺)− 𝐼1(𝑡, 𝐺)

)︁2
𝑑𝑡 = 𝑂(𝑇𝐺1/2𝐿3/2)

+ 4
√

2𝜋𝐺2
∑︁

𝑛6𝑇𝐺−2𝐿

𝑑2(𝑛)√
𝑛

∫︁ 2𝑇

𝑇

𝑡−1/2 exp
(︂
−𝜋𝑛𝐺

2

𝑡

)︂
sin2

(︂√︂
𝜋𝑛

2𝑡 𝐺
)︂
𝑑𝑡,

since

sin2 1
2 (𝛼− 𝛽) = sin2

(︂√︂
𝜋𝑛

2𝑡 𝐺
)︂

+𝑂
(︁

(𝐺2𝑛1/2 +𝐺𝑛3/2)𝑇−3/2
)︁
.

In the integral on the right-hand side of (3.14) we make the change of variable√︂
𝜋𝑛

2𝑡 𝐺 = 𝑦, 𝑡 = 𝜋𝑛𝐺
2

2𝑦2 , 𝑑𝑡 = −𝜋𝑛𝐺
2

𝑦3
𝑑𝑦.

The main term on the right-hand side of (3.14) becomes then

(3.15) 8𝜋𝐺3
∑︁

𝑛6𝑇𝐺−2𝐿

𝑑2(𝑛)
∫︁ √𝜋𝑛

2𝑇 𝐺

√
𝜋𝑛
4𝑇 𝐺

(︂
sin 𝑦
𝑦

)︂2
𝑒−2𝑦2

𝑑𝑦

= 8𝜋𝐺3
∫︁ √𝜋𝐿

2

√
𝜋

4𝑇 𝐺

∑︁
max

(︀
1, 2𝑇𝑦2
𝜋𝐺2

)︀
6𝑛6min

(︀
𝑇𝐺−2𝐿, 4𝑇𝑦

2
𝜋𝐺2

)︀ 𝑑2(𝑛) ·
(︂

sin 𝑦
𝑦

)︂2
𝑒−2𝑦2

𝑑𝑦

= 8𝜋𝐺3
∫︁ 1

2
√
𝜋𝐿

√
𝜋

2𝑇 𝐺

∑︁
𝑇𝑦2
𝜋𝐺2 6𝑛6 2𝑇𝑦2

𝜋𝐺2

𝑑2(𝑛)
(︂

sin 𝑦
𝑦

)︂2
𝑒−2𝑦2

𝑑𝑦 +𝑂(𝑇 1/2𝐺2𝐿4).
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At this point we invoke (see [8] for a proof, and [16] for a slightly sharper result)
the asymptotic formula

(3.16)
∑︁
𝑛6𝑥

𝑑2(𝑛) = 𝑥
3∑︁
𝑗=0
𝑑𝑗 log𝑗 𝑥+𝑂𝜀(𝑥1/2+𝜀) (𝑑3 = 1/(2𝜋2)).

By using (3.16) it follows (𝑎𝑗 , 𝑏𝑗 , 𝑏′𝑗 , 𝑑𝑗 denote constants which may be explicitly
evaluated) that the last main term in (3.15) equals

8𝜋𝐺3
∫︁ 1

2
√
𝜋𝐿

√
𝜋

2𝑇 𝐺

{︃
𝑇𝑦2

𝐺2

3∑︁
𝑗=0
𝑏𝑗 log𝑗

(︁𝑇𝑦2
𝐺2

)︁
+𝑂𝜀

(︂
𝑇 1/2+𝜀𝑦

𝐺

)︂}︃(︂
sin 𝑦
𝑦

)︂2
𝑒−2𝑦2

𝑑𝑦

+𝑂(𝑇 1/2𝐺2𝐿4)

= 8𝜋𝑇𝐺
∫︁ ∞

0
sin2 𝑦

(︂ 3∑︁
𝑗=0
𝑏′𝑗 log𝑗

(︂√
𝑇𝑦

𝐺

)︂)︂
𝑒−2𝑦2

𝑑𝑦 +𝑂𝜀(𝑇 1/2+𝜀𝐺2)

= 𝑇𝐺
3∑︁
𝑗=0
𝑎𝑗 log𝑗

(︁√𝑇
𝐺

)︁
+𝑂𝜀(𝑇 1/2+𝜀𝐺2).

Coupled with (3.14)–(3.15) this proves Theorem 1 with

𝑎3 = 8𝑏′3𝜋
∫︁ ∞

0
𝑒−2𝑦2

sin2 𝑦 𝑑𝑦 > 0.

Namely by using (3.4) we have∫︁ ∞
0
𝑒−2𝑦2

sin2 𝑦 𝑑𝑦 = 1
4

∫︁ ∞
−∞
𝑒−2𝑦2

(1− cos 2𝑦) 𝑑𝑦

= 1
4 Re

{︃∫︁ ∞
−∞
𝑒−2𝑦2

(1− 𝑒2𝑖𝑦) 𝑑𝑦
}︃

=
√
𝜋

4
√

2

(︂
1− 1√

𝑒

)︂
,

and the other constants 𝑎𝑗 in (2.4) can be also explicitly evaluated. This finishes
then the proof of Theorem 1.

4. A generalization of the mean square result

In Theorem 1 we considered the mean square of 𝐼1(𝑡 + 𝐺,𝐺) − 𝐼1(𝑡, 𝐺) (see
(2.4)), over the “long" interval [𝑇, 2𝑇 ] . However, already M. Jutila [13] (see (1.8)
and (1.9)) considered the mean square of Δ(𝑥 + 𝑈) − Δ(𝑥) and 𝐸(𝑡 + 𝑈) − 𝐸(𝑡)
over the “short" interval [𝑇, 𝑇 + 𝐻]. Therefore it seems also natural to consider
the mean square of 𝐼1(𝑡 + 𝑈,𝐺) − 𝐼1(𝑡, 𝐺) over the short interval [𝑇, 𝑇 + 𝐻] for
suitable 𝑈 = 𝑈(𝑇 ). It turns out that this problem is more complicated, because
of the presence of two parameters 𝑈 and 𝐺, and not only 𝑈 as in (1.8) and (1.9).
Our assumption will be henceforth that

(4.1) 𝑇 𝜀 6 𝑈 = 𝑈(𝑇 ) 6 𝐺 = 𝐺(𝑇 ) 6 1
2

√
𝑇 , 𝑇 𝜀 6 𝐻 = 𝐻(𝑇 ) 6 𝑇, 𝐻𝑈 ≫ 𝑇 1+𝜀.
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The method of proof will be analogous to the proof of Theorem 1, only it will be
technically more involved, and the final result will not have such a nice shape as
(2.5). We shall thus only sketch the salient points of the evaluation of

(4.2) 𝐽(𝑇 ) = 𝐽(𝑇 ;𝐺,𝐻,𝑈) :=
∫︁ 𝑇+𝐻

𝑇

(︁
(𝐼1(𝑡+ 𝑈,𝐺)− 𝐼1(𝑡, 𝐺)

)︁2
𝑑𝑡,

subject to the condition (4.1), without formulating a theorem.
To obtain an upper bound for 𝐽(𝑇 ) we recall (3.2), which gives now

𝐼1(𝑡+ 𝑈,𝐺)− 𝐼1(𝑡, 𝐺)(4.3)

= 2√
𝜋𝐺2

∫︁ 𝐺𝐿
−𝐺𝐿
𝑢𝑒−(𝑢/𝐺)2

(︁
𝐸(𝑡+ 𝑢+𝐺)− 𝐸(𝑡+ 𝑢)

)︁
𝑑𝑢+𝑂

(︁𝑈𝐺
𝑇

)︁
= 2√
𝜋𝐺2

∫︁ 𝐺𝐿
−𝐺𝐿
𝑢𝑒−(𝑢/𝐺)2

(︁
𝐸(𝑡+ 𝑢+𝐺)− 𝐸(𝑡+ 𝑢)

)︁
𝑑𝑢+𝑂(1),

since 𝑈 6 𝐺≪
√
𝑇 . First we square (4.3), integrate over [𝑇, 𝑇 +𝐻] and use (1.9)

for 𝐸(𝑡) to obtain

(4.4) 𝐽(𝑇 ) =
∫︁ 𝑇+𝐻

𝑇

(︁
𝐼1(𝑡+ 𝑈,𝐺)− 𝐼1(𝑡, 𝐺)

)︁2
𝑑𝑡≪𝜀 𝐻𝑈 log3

√
𝑇

𝑈
.

Now we use (3.7), square, integrate over [𝑇, 𝑇 +𝐻] and use (4.4). It follows that

(4.5) 𝐽(𝑇 ) =
∫︁ 𝑇+𝐻

𝑇

(︁
𝐼1(𝑡+ 𝑈,𝐺)− 𝐼1(𝑡, 𝐺)

)︁2
𝑑𝑡 = S +𝑂(𝐻

√
𝑈𝐿3/2),

where, similarly to (3.9), now we shall have

S := 2𝐺2
∫︁ 𝑇+𝐻

𝑇

{︃ ∑︁
𝑛6𝑇𝐺−2𝐿

(−1)𝑛𝑑(𝑛)𝑛−1/2
[︁
𝑢(𝑡+ 𝑈, 𝑛)𝐻(𝑡+ 𝑈, 𝑛)

− 𝑢(𝑡, 𝑛)𝐻(𝑡, 𝑛)
]︁}︃2

𝑑𝑡.

Proceeding as in the proof of (3.10)–(3.13) we shall obtain

(4.6) S = 2
√

2𝜋𝐺2
∑︁

𝑛6𝑇𝐺−2𝐿

𝑑2(𝑛)√
𝑛

∫︁ 𝑇+𝐻

𝑇

𝑡−1/2 exp
(︃
−2𝐺2

(︂
arsinh

√︂
𝜋𝑛

2𝑡

)︂2)︃

×
(︁

sin 𝑓(𝑡+ 𝑈, 𝑛)− sin 𝑓(𝑡, 𝑛)
)︁2
𝑑𝑡+𝑂(𝐻

√
𝑈𝐿3/2) +𝑂𝜀(𝑇 1+𝜀).

Using again the identity(︀
sin𝛼− sin 𝛽

)︀2 = (2 + 2 cos(𝛼+ 𝛽)) sin2 1
2 (𝛼− 𝛽) (𝛼 = 𝑓(𝑡+ 𝑈, 𝑛), 𝛽 = 𝑓(𝑡, 𝑛))

and simplifying the exponential factor in (4.6) by Taylor’s formula, we have that
(4.7)

S = 4
√

2𝜋𝐺2
∑︁

𝑛6𝑇𝐺−2𝐿

𝑑2(𝑛)√
𝑛

∫︁ 𝑇+𝐻

𝑇

𝑡−1/2 exp
(︂
−𝜋𝑛𝐺

2

𝑡

)︂
sin2 1

2 (𝛼− 𝛽) 𝑑𝑡+𝑂𝜀(𝑅),
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where 𝑅 := 𝐻
√
𝑈𝐿3/2 + 𝑇 1+𝜀. Note that

sin2 1
2 (𝛼− 𝛽) = sin2

(︂√︂
𝜋𝑛

2𝑡 𝑈
)︂

+𝑂
(︁

(𝑈2𝑛1/2 + 𝑈𝑛3/2)𝑇−3/2
)︁

in the relevant range, and the total contribution of the 𝑂–terms above will be
𝑂𝜀(𝑇 𝜀𝐻). In the integral in (4.7) we make the change of variable, similarly as was
done on the right-hand side of (3.14),√︂

𝜋𝑛

𝑡
𝐺 = 𝑦, 𝑡 = 𝜋𝑛𝐺

2

𝑦2
, 𝑑𝑡 = −2𝜋𝑛𝐺2

𝑦3
𝑑𝑦.

The main term in (4.7) becomes, after changing the order of integration and sum-
mation, 𝑂𝜀(𝑇 𝜀𝑅) plus

8𝜋
√

2𝐺3
∫︁ √𝜋𝐿𝑇/(𝑇+𝐻)

𝐺
√
𝜋/𝑇

∑︁
𝑇𝑦2
𝜋𝐺2 6𝑛6 (𝑇+𝐻)𝑦2

𝜋𝐺2

𝑑2(𝑛) sin2
(︂
𝑈

𝐺
√

2
𝑦

)︂
𝑦−2𝑒−𝑦

2
𝑑𝑦.

For the sum over 𝑛 we use again the asymptotic formula (3.16). We obtain that

S = 8𝜋
√

2𝐺3
∫︁ √𝜋𝐿𝑇/(𝑇+𝐻)

𝐺
√
𝜋/𝑇

{︃
𝑥𝑃3(log 𝑥)

⃒⃒⃒⃒𝑥=(𝑇+𝐻)𝑦2/(𝜋𝐺2)

𝑥=𝑇𝑦2/(𝜋𝐺2)
+𝑂

(︂
𝑇 1/2+𝜀𝑦

𝐺2

)︂}︃

× sin2
(︂
𝑈

𝐺
√

2
𝑦

)︂
𝑦−2𝑒−𝑦

2
𝑑𝑦 +𝑂𝜀(𝑇 1+𝜀) +𝑂(𝐻

√
𝑈𝐿3/2),(4.8)

where (cf. (3.16)) 𝑃3(𝑧) =
∑︀3
𝑗=0 𝑑𝑗𝑧

𝑗 . The main term in (4.8) equals

(4.9) 8
√

2𝐺
∫︁ √𝜋𝐿𝑇/(𝑇+𝐻)

𝐺
√
𝜋/𝑇

𝑥𝑃3

(︂
log
(︂
𝑥𝑦2

𝜋𝐺2

)︂)︂ ⃒⃒⃒⃒𝑥=𝑇+𝐻

𝑥=𝑇
sin2

(︂
𝑈

𝐺
√

2
𝑦

)︂
𝑒−𝑦

2
𝑑𝑦

= 8
√

2𝐺
∫︁ ∞

0
𝑥𝑃3

(︂
log
(︂
𝑥𝑦2

𝜋𝐺2

)︂)︂ ⃒⃒⃒⃒𝑥=𝑇+𝐻

𝑥=𝑇
sin2

(︂
𝑈

𝐺
√

2
𝑦

)︂
𝑒−𝑦

2
𝑑𝑦

+𝑂𝜀(𝑇 𝜀−3/2𝐻𝑈2𝐺2).

In view of (4.1) the last 𝑂–term is ≪𝜀 𝑇 1/2+𝜀𝑈2, so that (4.9) gives

S = 8
√

2𝐺
∫︁ ∞

0
𝑥𝑃3

(︂
log
(︂
𝑥𝑦2

𝜋𝐺2

)︂)︂ ⃒⃒⃒⃒𝑥=𝑇+𝐻

𝑥=𝑇
sin2

(︂
𝑈

𝐺
√

2
𝑦

)︂
𝑒−𝑦

2
𝑑𝑦

+𝑂𝜀(𝑇 1+𝜀) +𝑂𝜀(𝑇 1/2+𝜀𝑈2) +𝑂(𝐻
√
𝑈𝐿3).

This can be rewritten as

(4.10) S = 𝐺
∫︁ ∞

0

{︃
𝑥

3∑︁
𝑘=0
𝐴𝑘(𝑦) log𝑘

(︂√
𝑥

𝐺

)︂}︃ ⃒⃒⃒⃒𝑥=𝑇+𝐻

𝑥=𝑇
sin2

(︂
𝑈

𝐺
√

2
𝑦

)︂
𝑒−𝑦

2
𝑑𝑦

+𝑂𝜀(𝑇 1+𝜀) +𝑂𝜀(𝑇 1/2+𝜀𝑈2) +𝑂(𝐻
√
𝑈𝐿3),
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where

𝐴𝑘(𝑦) = 𝐴𝑘(𝑦;𝑈,𝐺) :=
3∑︁
𝑗=0
𝑏𝑗,𝑘

(︂
log 𝑦

2

𝜋

)︂𝑗
with computable coefficients 𝑏𝑗,𝑘 (= 𝑏𝑗,𝑘(𝑈,𝐺)). This shows that the main term in
S has the form

𝐺𝑥

3∑︁
𝑘=0
𝐷𝑘 log𝑘

(︂√
𝑥

𝐺

)︂ ⃒⃒⃒⃒𝑥=𝑇+𝐻

𝑥=𝑇

with computable coefficients 𝐷𝑘 = 𝐷𝑘(𝑈,𝐺). In particular, by using (3.4) we see
that 𝐷3 is a multiple of∫︁ ∞

0
sin2

(︂
𝑈

𝐺
√

2
𝑦

)︂
𝑒−𝑦

2
𝑑𝑦 = 1

4

∫︁ ∞
−∞

(︂
1− cos

(︁√2𝑈
𝐺
𝑦
)︁)︂
𝑒−𝑦

2
𝑑𝑦

= 1
4 Re

{︂∫︁ ∞
−∞

(︂
1− exp

(︁
𝑖

√
2𝑈
𝐺
𝑦
)︁)︂
𝑒−𝑦

2
𝑑𝑦

}︂
=
√
𝜋

4

(︁
1− 𝑒−𝑈

2/(2𝐺2)
)︁
,

that is, 𝐷3 is an expression depending only on 𝑇 . For 𝑈 = 𝑜(𝐺) we have 𝐷3 =
(𝐶 + 𝑜(1))𝑈2𝐺−2 (with 𝐶 > 0 and 𝑇 → ∞). This shows that, if the parameters
𝑈,𝐺,𝐻 are suitably chosen as functions of 𝑇 , then (4.5)–(4.10) give

(4.11)
∫︁ 𝑇+𝐻

𝑇

(︁
𝐼1(𝑡+ 𝑈,𝐺)− 𝐼1(𝑡, 𝐺)

)︁2
𝑑𝑡 ≍ 𝐻𝑈

2

𝐺
log3

(︁√
𝑇
⧸︀
𝐺
)︁

(𝑇 →∞),

which is more precise than (4.4). It is clear that, in that case, (4.11) can be in fact
replaced by a true asymptotic formula (for example, 𝑈 = 𝑇 1/3, 𝐺 = 𝑇 4/9, 𝐻 = 𝑇 8/9

is such a choice) for 𝐽(𝑇 ). Such a formula can be written down explicitly, although
its form will be unwieldy, and because of this it is not formulated as a theorem.

5. The proof of Theorem 2

We assume that the hypotheses of Theorem 2 hold, namely that
(5.1) 𝑇 𝜀 6 𝑈 6 𝐺𝑇−𝜀 ≪ 𝑇 1/2−𝜀, 𝑈 = 𝑈(𝑇 ), 𝐺 = 𝐺(𝑇 ).
We start from (1.14)–(1.16) and use (1.17) to deduce that, for 𝑇 6 𝑡 6 2𝑇 , 𝑌0 =
𝑌0(𝑡;𝜅𝑗),

(5.2) 𝐼2(𝑡+ 𝑈,𝐺)− 𝐼2(𝑡, 𝐺) ∼ 𝑂(𝑈𝐺−1/2𝐿𝐶) +𝑂(1)

+ 𝐺𝜋√
2𝑡

∑︁
𝜅𝑗6𝑇𝐺−1𝐿

𝛼𝑗𝐻
3
𝑗 ( 1

2 )𝜅−1/2
𝑗 𝑒−

1
4𝐺

2 log2(1+𝑌0)(︀𝑓𝑗(𝑡+ 𝑈)− 𝑓𝑗(𝑡)
)︀
,

where
(5.3) 𝑓𝑗(𝑇 ) := sin

(︁
𝜅𝑗 log 𝜅𝑗4𝑒𝑇 + 𝑐3𝜅3

𝑗𝑇
−2 + · · ·+ 𝑐𝑁𝜅𝑁𝑗 𝑇 1−𝑁

)︁
.

Here we used the bounds
(𝑡+ 𝑈)−1/2 − 𝑡−1/2 ≪ 𝑈𝑇−3/2,

𝑒−
1
4𝐺

2 log2
(︀

1+𝑌0(𝑡+𝑈 ;𝜅𝑗)
)︀
− 𝑒−

1
4𝐺

2 log2
(︀

1+𝑌0(𝑡;𝜅𝑗)
)︀
≪ 𝑈𝑇−1𝐿2,
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which follows from Taylor’s formula, 𝜅𝑗 ≪ 𝑇𝐺−1𝐿, and (see Y. Motohashi [17])

(5.4)
∑︁

𝐾<𝜅𝑗62𝐾
𝛼𝑗𝐻

3
𝑗 ( 1

2 )≪ 𝐾2 log𝐶 𝐾.

Taylor’s formula yields, for a fixed integer 𝐿 > 1 and some 𝜃 satisfying |𝜃| 6 1,

(5.5) 𝑓𝑗(𝑡+ 𝑈)− 𝑓𝑗(𝑡) =
𝐿∑︁
𝑙=1

𝑈 𝑙

𝑙! 𝑓
(𝑙)
𝑗 (𝑡) +𝑂

(︂
𝑈𝐿+1

(𝐿+ 1)!

⃒⃒⃒
𝑓

(𝐿+1)
𝑗 (𝑡+ 𝜃𝑈)

⃒⃒⃒)︂
.

Observe that

𝑓 ′𝑗(𝑡) = cos
(︁
𝜅𝑗 log 𝜅𝑗4𝑒𝑡 + · · ·

)︁(︁
−𝜅𝑗
𝑡
− 2𝑐3𝜅3

𝑗 𝑡
−3 − · · ·

)︁
,

𝑓 ′′𝑗 (𝑡) = − sin
(︁
𝜅𝑗 log 𝜅𝑗4𝑒𝑡 + · · ·

)︁(︁
−𝜅𝑗
𝑡
− 2𝑐3𝜅3

𝑗 𝑡
−3 − · · ·

)︁2

+ cos
(︁
𝜅𝑗 log 𝜅𝑗4𝑒𝑡 + · · ·

)︁(︁𝜅𝑗
𝑡2

+ 6𝑐3𝜅3
𝑗 𝑡
−4 + · · ·

)︁
,

and so on. Since 𝑈 ≪ 𝐺𝑇−𝜀, this means that for 𝐿 (= 𝐿(𝜀)) sufficiently large the
last term in (5.5) makes, by trivial estimation, a negligible contribution (i.e., ≪ 1).
Each time the derivative is decreased by a factor which is

≪ 𝑈𝜅𝑗𝑇−1 ≪ 𝑈𝑇𝐺−1𝐿𝑇−1 ≪ 𝑈𝐺−1𝐿≪𝜀 𝑇−𝜀/2.

This means that in (5.5) the term 𝑙 = 1, namely 𝑈𝑓 ′𝑗(𝑡) will make the largest
contribution. This contribution is, on squaring (5.2) and integrating,

≪ 𝐺
2𝐿

𝑇
max

𝐾≪𝑇𝐺−1𝐿

∫︁ 5𝑇/2

𝑇/2
𝜙(𝑡)

⃒⃒⃒∑︁
(𝐾)

⃒⃒⃒2
𝑑𝑡.

Here 𝜙(𝑡) (> 0) is a smooth function supported on [𝑇/2, 5𝑇/2] such that 𝜙(𝑡) = 1
when 𝑇 6 𝑡 6 2𝑇 and 𝜙(𝑟)(𝑡)≪𝑟 𝑇−𝑟 for 𝑟 = 0, 1, 2, . . ., and∑︁

(𝐾) := 𝑈
∑︁

𝐾<𝜅𝑗6𝐾′62𝐾
𝛼𝑗𝐻

3
𝑗 ( 1

2 )𝜅−1/2
𝑗 𝑒−

1
4𝐺

2 log2(1+𝑌0(𝑡;𝜅𝑗))

×
(︁𝜅𝑗
𝑡

+ 2𝑐3
𝜅3
𝑗

𝑡3
+ · · ·

)︁
cos
(︁
𝜅𝑗 log 𝜅𝑗4𝑒𝑡 + · · ·

)︁
.

When
∑︀

(𝐾) is squared, we shall obtain a double sum over 𝐾 < 𝜅𝑗 , 𝜅𝑙 6 𝐾 ′, with
the exponential factors (both of which are estimated analogously)

exp
(︀
𝑖𝑓𝑗(𝑡)− 𝑖𝑓𝑙(𝑡)

)︀
, exp

(︀
𝑖𝑓𝑙(𝑡)− 𝑖𝑓𝑗(𝑡)

)︀
,

in view of (5.3). The first one yields the integral

𝐼 :=
∫︁ 5𝑇/2

𝑇/2
𝑒−

1
4𝐺

2 log2(1+𝑌0(𝑡;𝜅𝑗))𝑒−
1
4𝐺

2 log2(1+𝑌0(𝑡;𝜅𝑙))𝐹 (𝑡;𝜅𝑗 , 𝜅𝑙)𝑡𝑖𝜅𝑙−𝑖𝜅𝑗𝑑𝑡,

where for brevity we set

𝐹 (𝑡;𝜅𝑗 , 𝜅𝑙) := 𝜙(𝑡) exp
{︁
𝑖
(︁
𝑐3(𝜅3

𝑗 − 𝜅3
𝑙 )𝑡−2 + · · ·+ 𝑐𝑁 (𝜅𝑁𝑗 − 𝜅𝑁𝑙 )𝑡1−𝑁

)︁}︁
.
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Integration by parts shows that

𝐼 = −
∫︁ 5𝑇/2

𝑇/2

{︀
𝑒−...𝑒−...𝐹 (𝑡;𝜅𝑗 , 𝜅𝑙)

}︀′ 𝑡𝑖𝜅𝑙−𝑖𝜅𝑗+1

𝑖𝜅𝑙 − 𝑖𝜅𝑗 + 1𝑑𝑡,

and {︀
𝑒−...𝑒−...𝐹 (𝑡;𝜅𝑗 , 𝜅𝑙)

}︀′ ≪ 1
𝑇

+ |𝜅𝑗 − 𝜅𝑙|𝐾
2

𝑇 3 .

Therefore if integration by parts is performed a sufficiently large number of times
(depending on 𝜀), then the contribution of 𝜅𝑗 , 𝜅𝑙 which satisfy |𝜅𝑗 − 𝜅𝑙| > 𝑇 𝜀 will
be negligibly small, since the integrand is decreased each time by a factor which is,
for |𝜅𝑗 − 𝜅𝑙| > 𝑇 𝜀,

≪ 𝑇

|𝜅𝑗 − 𝜅𝑙 + 1|

(︂
1
𝑇

+ |𝜅𝑗 − 𝜅𝑙|𝐾
2

𝑇 3

)︂
≪ 𝑇−𝜀,

and the exponential factor remains the same. To complete the proof of Theorem 2
we use the bound, proved by the author in [5],

(5.6)
∑︁

𝐾6𝜅𝑗6𝐾+1
𝛼𝑗𝐻

3
𝑗 ( 1

2 )≪𝜀 𝐾1+𝜀.

From (5.6) and the preceding discussion it follows that∫︁ 5𝑇/2

𝑇/2
𝜙(𝑡)

⃒⃒⃒∑︁
(𝐾)

⃒⃒⃒2
𝑑𝑡

≪ 𝑈
2𝐾2

𝑇 2 𝑇
∑︁

𝐾<𝜅𝑗6𝐾′

𝛼𝑗𝜅
−1/2
𝑗 𝐻3

𝑗 ( 1
2 )

∑︁
|𝜅𝑗−𝜅𝑙|6𝑇 𝜀

𝛼𝑙𝜅
−1/2
𝑙 𝐻3

𝑙 ( 1
2 )

≪𝜀
𝑈2𝐾2

𝑇
𝐾𝑇 𝜀𝐾2𝐾−1 ≪𝜀 𝑈2𝑇 3+𝜀𝐺−4,

which gives for the integral in (2.6) the bound

𝑇𝑈2𝐺−1𝐿𝐶 + 𝑇𝐿8 + 𝑇 2+𝜀(𝑈/𝐺)2.

However, it is clear that in our range 𝑇𝑈2𝐺−1𝐿𝐶 ≪ 𝑇 2+𝜀(𝑈/𝐺)2 holds. Moreover
(5.1) implies that

𝑇 2+𝜀(𝑈/𝐺)2 ≫ 𝑇 2+4𝜀𝐺−2 > 𝑇 1+4𝜀,

so that the bound in (2.6) follows. Thus Theorem 2 is proved, but the true order of
the integral in (2.6) is elusive. Namely in the course of the proof we estimated, by
the use of (5.6), trivially an exponential sum with 𝛼𝑗𝐻3

𝑗 ( 1
2 ). This certainly led to

some loss, and for the discussion of bounds for exponential sums with Hecke series,
of the type needed above, the reader is referred to the author’s recent work [9].
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