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BOUNDEDNESS OF THE BERGMAN PROJECTIONS
ON LP SPACES WITH RADIAL WEIGHTS
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ABSTRACT. Necessary as well as sufficient conditions are given for the Bergman
projections to be bounded operators on LP spaces on the unit disc.

Let w be a continuous positive function on [0, 1) such that lim, 1o w(r) = 0.
Denote by du(z) the measure du(z) = w(|z|) dA(z), where dA(z) is Lebesgue’s
measure (dA(z) = dxdy, z = ¢ +iy) on the unit disc D. Denote by LP(D,du) (or
LP(D) for short), 1 < p < oo the set of all complex measurable functions f for
which || fll, = ([, |f(z)|pdu(z))1/p < oo and by LE(D,dp) (or LE(D) for short)
the subspace of the space LP(D) comprising the functions that are analytic on D.

If p=2, L2(D) is a Hilbert subspace of L?(D) and it is called Bergman space.
Let P denote the orthogonal projector of LQ(D) on L2(D) (Bergman projection).

Let {5,}2%, be defined by 6, = (27 [} ¥ 1w (r) dr)"/. Then, the sequence of
functions {z"/8,},~ is an orthonormal basis of L2 2(D) and so the corresponding
Bergman reproducing kernel is given by K(z,£) = >~ Z”En/ 62 (2,6 € D). Let

o= [ 5] (k= 1,2,,m), @) = [y 2 w()dt (A € (0,+00)), G\) =
O+ g

00

0 = / (o) oy = GO e (o) Pl e (=1 241=1).

Operator P : L?(D) — L2(D) acts in the following way:

/Kzg du(¢), z € D.

We will use the same notation: f € LP(D), Pf = [, K(-,&)f(£) du(§), 1 < p < co.
The same notation, P, will be used for this mapping.
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In this paper we consider conditions for w so that P is a bounded operator on
LP(D) (1 <p < o0).

The boundedness of the Bergman projection is a fact of fundamental impor-
tance. In the case of the unit disc, boundedness of the Beergman projection was
studied in [3], [8] and it immediately gives the duality between the Bergman spaces.
Also, the boundedness of the Bergman projection is used to establish correspond-
ing theorems that concern duality and interpolation of analytic Besov spaces [8,
Th.5.3.6, Th.5.3.8, pp. 94-97]

1. The Main Result
Let w € C[0,1), w > 0 in [0,1), lim,,;_gw(r) = 0 and let the function
T :[0,1) — R be defined by T(r) = sup,,>or" /6%, r € [0,1). Assume that for
some ¢o € (0,1) all the functions H} have uniformly bounded number of zeroes

on the interval (1,+4o0) for all I}', I C [co,1]. The main result is given by the
following Theorem:

THEOREM 1.1. (a) The necessary condition for operator P to be bounded on
LP(D) (1 <p < o0) is:
1

1 1 1
1 - /p . /a 11
(1.1)  sup - 2P w(z) do 2" w(z)de | <oo, —+-=1
m>0 02, ) P q

0
(b) If condition (1.1]) holds, then the condition

1
sup w(z)/P fT(my)w(y)l/q dy < +oo
0

(1 2) oe<1
. 1
sup w(x)/? [ T(xy)w(y)'/? dy < +oo
0<z<1 0

is sufficient for the Bergman projection P to be a bounded operator on LP(D)
(1<p< o).

REMARK 1.1. From condition (1.1)) it follows that Vr € [0,1) and Vm > 0:

1 1 1/p 1 1/q
52(/7"(7””“)/2111(90) dx) : (/r(m‘IH)/Qw(m) dx)
VG

T
) 1 1/p 1 1/q
< 62</xmp+1w(x) dx) . (/xmq+1w(z) dac) <My (< +400)
AV v
1



BOUNDEDNESS OF THE BERGMAN PROJECTIONS 7

Therefore if condition (1.1) holds, then the sufficient condition (1.2)) can be
1.3))

replaced (keeping in mind ([1.3])) by more operative condition:

1 q
sup w(m)l/pf(”i)l/dy < 400
0<z<1 0 w(t) dt

ESH

(1.2')
f w(y)'/P
sup w(z)t/? [ % dy < +o0
0<z<1 O [ w(tyadt
VT

ExamMPLE 1.1. Let w(r) = (1 — r?)*L(:2z), a > 0, where L is a slowly
varying nondecreasing C'! function. In a similar way as in [I] we can show that for
the function K(\) = fol 2 *w(z)dz, A > 0, there holds K()\) < /\Lﬁ‘rl, A — oo e,
there exists constants C7, Cs > 0 independent of A such that C; < K()) )f&)l Cy
for A > Ag. From that it follows directly that the weight w satisfies the necessary
condition of Theorem 1. Let us prove that w satisfies the sufficient conditions of
Theorem 1. It is enough to check the conditions in . We want to prove that

1 1

(1.4) s () / w”%y)( /

0 Ty
In a similar way we can prove that

1
sup w'/i(a) [ wl/p<y><
o<1

0

—1
w(t) dt) dy < oo.

—1
w(t) dt) dy < 0.

I

Since
1 1
/ (t)dt 1/(1 - t)aL(L) dt
v 2 1—¢
r r2
1T L) 1 1
u a+1
= — d ~ 1— 2 L<7)’ 1—
2 / yarz Y 2(a+1)( T) 1—17r2 "
1/(1-r2)
(here we used the asymptotic formula fwoo ULQ(ZZ du ~ @ +L1()?a+1 ), we conclude that
(1.4) is true if
1
y)/ad
(1.5) sup w( 1/p/ a+1 Y < 00
0<z<1 J L(1/(1 = zy))
is true. After the change of variables z = e™%, y = e~ in (|1.5)) we obtain
oo —v\ ,—V
(1.6) sup w (e_“)l/p / u;iel e dv < o0.
u>0 (]_ —e*(uJF”)) L(l/(]_ —e*(uJF”)))
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Since L is a slowly varying function, we have

L(1/(1—e™24)) . (1—e24)"

li =1
w0t (2u)® L(1/u)
—u _una+1
LD/ ) (e
u—0+ utLL(1/u)
and so, inequality (1.6)) is satisfied if
1 1/q
ar, 1
(1.7) sup (uaL(l/u))l/p/ (v oz+(1v)) —dv <0
ot 0™ ()

is true. Let

! ar (1)\1/4
A = st/ [ L )ff;?( e
U v utov

It is clear that inequality (|1.7)) is true if the function A is bounded in a neighborhood
of the point u = 0. After changing variables v = u - t, t € (0, 1) we obtain

u

1/u 1/p 1/q
_ /e (L(x) " (L (7))
Afu) = / T ees dt.

0 u  t+1

Let % = A. Then the boundedness of function A in a neighborhood of the point
u = 0 is equivalent to the boundedness of function \ — A (%) in a neighborhood
of A = +o0.

Ift= %, we get

N N e) RNt e O A PN
A5)= [Ty [os [
/X % 1

= H1(\) + Ha(N).

Now, we prove that H; and Hs are bounded functions in a neighborhood of A\ =
+o00. From s < 1 it follows sA < A and we have L(As) < L(\) (L non-decreases)
and

to/p =1 ds

(L+t)+t L(X- sj—l) .

() < LY /

1/A
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After changing variables t = Hil, we obtain from the previous inequality
1/2
Hi(\) < LV / po=1(1 = gyo/a 9L
L(At)
A/(A+1)
1/2
< L(N) / to‘/p_li (change At = &)
L(At)
A/ (A+1)
%
_ L(A) / ga/pfl df
A L(&)
A/ (A1)
O [oekt L) e
L(\ gamw— L(\ / gomr—
= d¢ + d€ = R1(A) + Ra(N).
\e/P / L(f) 5 G L(g) g 1( ) 2( )
/(A1) 1

It is clear that limy— 1o, R1(A) = 0 and it follows that Ry is a bounded function in
a neighborhood of A = +o00. Since L is a slowly varying function we have
AL (N)

=0
Ao L(N)

and hence
xr

L ap—1
(x)/t it =72

T—1>I-Poo xa/p L(t) A

From the previous equality follows that there exists limy_ o R2(A) and is finite.
So, H; is a bounded function in a neighborhood of A = +oc.
If 1 < s < oo, then 3 < =27 <1 and we have L(3) < L(A:%;) and

+1 s+1
HQ(AK(L(A))W 70 - (L(Xs))9ds.
L2 ] (4™

Having in mind that limy_. % =1 and

+o0 +oo
ap—1 L) 1/q a/p—1
lim 5 ( ( S)) ds = / (Sids

A—o00 / (1+S)0¢+1 1+S)a+1

[6, Th. 2.6, pp. 63—64], we obtain
+

1/p > ap—1 T afp—1
lim (L) / ( i (L(\s))Y9ds = / L ds < oo
1

A—oo L(A/2) 1+5)**! /(49

So, H, is also a bounded function in a neighborhood of A = +oco. (In the case
L(\) =1 the corresponding result is derived in [3] p. 10].)
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If, for instance L(z) = (Inz)® (8 > 0, x > 1), then the functions H}, (which
correspond to the weights w(z) = (1 — x2)a (In(1/(1—2%)))?) satisfy the condition
on uniform boundedness of the number of zeroes on (1,400). (This follows from
[2] Theorem 1.7, pp. 76-78].)

EXAMPLE 1.2. Let w(r) = (1—-r?)%exp (-B/(1 - 7%)*), A€ R, B> 0, a > 0.
In [1] it was demonstrated that for the function ®(\) = fol r*w(r) dr the following
asymptotic formula holds:

(1.8) PN\ ~C-A\P exp(—E - /\o‘/(o‘+1)), A — 00.
(C, D, E are constants that depend only on A, B and «; E > 0).

From (1.8)) it follows that the necessary condition (1.1]) is not satisfied (except
p = g = 2). This means that the corresponding Bergman projection is not bounded
on LP(D) for any p # 2.

COROLLARY 1.1. If function w satisfies conditions (1.1) and (1.2)) (i.e., (L.1)
and (L.2)), then the dual of the space LE(D), (1 < p < o0) is the space Li(D),
under the integral pairing

/f du(z), f € LE(D), g € LYD), (%+$:1>

Note that the identification isomorphism (LE(D))* = Li(D) need not be iso-
metric for p #£ 2.

2. Proof

In the proof of the main result we use the following two Theorems:

THEOREM 2.1 (Marcinkiewicz’s Theorem [7, pp. 346-348]). Let Ao, A1 ... be a

sequence such that for a constant M holds: 25;;_1 [Aj=Ajg1] S M and |N)| <
forallv=0,1,2,.... Then for any p > 1

Z)\cl, ve

v2>20

) Z c, et

v>0

p

Here A(p) is a constant that depends only on p and || - ||, is a norm in the space
L?(0,2m).

THEOREM 2.2 (Schur’s test [3 p.9]). Denote by R} (p > 1) the space R™ with
the norm ||z|l, = /> i, |zit|]”, © = (z1,...,2,) and let
ey cii?
C, = : :R? — R,

P P
() (n) (n)

Cn1 Cn2 ’ Cnn
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If there exists a constant A (A < 0o) which does not depend on n such that

(n)
e S <0 1@3§n2\cku <
then for any n € N and any x € R} holds ||Cpz||, < X[z, .

LEMMA 2.1. Let {jmn},., be the positive zeroes of the Bessel function of the
first kind Jp, (m = 0,+1, i2 ) Then, for any m € Z and o, 3 > 0, the system
of functions {J (JmnT) ﬁ} is complete in LP(0,1), (1 < p < o0).

PRrOOF. It is sufficient to prove the lemma for m > 0 since (— )mJ_m =Jn
for all m € Z. Suppose that m > 0 and that the system {J JmnT) ﬁ}
is not complete in LP(0,1). This would mean that there exists functlon g e L‘I(O 1)
(% + % = 1) such that

(2.1) /g(r) r“w(r)BJm(jmnr) dr=20
0

for all n = 1,2,3,... and g # 0 in L9(0,1). Let us show that g = 0 almost
everywhere on [0, 1] (i.e., g =0 in L%(0,1)). Define the function

1
G (A / g(r Im(Ar)dr, XeC.
0
As all the zeros of the function A — J,,(\)/A™ are real and simple, from ([2.1])

it follows that G,, is an entire function. Furthermore, its order of growth is not
bigger than 1. From the asymptotic formula (see [6])

1 mmn w 1
Im(2) = \/ﬁ[cos (z —5 Z) +O(;)}, |z| = o0, |argz| < m—¢
it follows that
(2.2) lim Gy, (re® /1) = 0.

THOO

From (2.2), by the Phragmen-Lindeloéf and Liouville Theorem, it follows that
Gm(A) =0 ie.,
1

/9(7”) 7w (r)? Jp (Ar) dr = 0.

0
Now by representing function J,, by the power series and applying the Miintz—Szasz
theorem, we get g(r) = 0 almost everywhere on [0, 1]. O

LEMMA 2.2. Let z = re® and frn(2) = Jon(Gmnr)e™ (m € Z, n € N). For

any 1 < p < oo the system of functions {fmn}meZ, nen 8 complete in LP (D).

PROOF. It follows by the standard method, from Lemma 1 and the complete-
ness of the system {eimx}mez in L9(0,27). O
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Let A,,,: LP(0,1) — LP(0,1), (m > 0, 1 <p<oo) be linear operators defined by
1

Anflz) = g @) [y )iy (53 =1).

m
0

LEMMA 2.3. The Bergman projection P is a bounded operator on LP(D)
(1 < p < o0) if and only if there exists a constant ¢, (depending only on p) such
that

1 27 1 2w
(2.3) // Z emT A, D, d:r dy < / Z emrP,, dm dy
m=0 0o o m=0
for any (finite) choice of functions ®,, € LP(0,1).
PrOOF. By the direct evaluation one gets

0, m <0

2.4 Pfmn =4 2

( ) ( f )(Z) ;T mf,,,m—i—lw(r) Jm(jmn)dr7 m 2 0.
5m 0

Let

m,n

be a finite sum. Since, according to Lemma 2, the system { fmn}mez, nen is complete
in LP(D), it follows that P is a bounded operator if and only if there exists a
constant B(p) (which depends only on p) such that the inequality

(2.6) IPfll, < B@) I,
holds for any choice of function f of type (2.5). Expanding (2.6]) (keeping in mind

and (12.5| . we get

1 27 1

p
(2.7) // Z Z 27TCmn r)l/p 1/p/ym+1 I (Jmny) dy| drdf
n m20 m 0
1 2x »
)p//ZeZmQZcmn ]mnr 1/pw(r)1/p dr do.
0 0
Letting
(2.8) = Con P ()P T (),
we get

1
r’m )
> 2mCmn sy w(r) /Pt / " w(y) T (Gmny) dy = A @ (r)
n m
0
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and hence, the inequality (2.7) becomes
1 27 1 27

(2.9) //‘Zeimumcpm() drdf < B(p //

m=0
Since the system of functions {r*/Pw(r)/?J,, (jmnr)} _, is complete in L?(0,1) for

every m € Z (Lemma 1), then (2.6) implies (2.9) not only for functions of type (2.8))
but also for arbitrary ®,, € LP(0,1) (because all the operators A,, are bounded

™m0 @, () Cdrdo.

and the sums in (2.9)) are finite)

Conversely, i holds for arbitrary (finite) choice of ®,, € LP(0,1), then
by choosing ®,,, as in we get that holds for functions f of type (2.5]).
Since the system {fnn},,cz nen 18 complete in LP(D), (by Lemma 2) holds
for every f € LP(D) and, hence, P is a bounded operator. Therefore, P is bounded
on LP(D) if and only if holds for any (finite) choice of ®,, € LP(0,1). Let us
now show that is equivalent with the following inequality:

1 27 1 27

(2.10) / / S 04,8, ()| drdd < / / ‘Zequ)m(r)
00

m=0 m=0
for any (finite) choice of ®,,, € LP(0,1) (where ¢, depends only on p). By letting

®,, =0 for m < 0 in (2.9), we obtain (2.10) with ¢, = B(p).
Conversely, suppose that - ) holds. By the Riesz Theorem [7], the following

inequality holds

2

’ Z ez mO(I)
0 m=0

(one may put K;(p) = 1/sin(7/p) based on Hollenbeckaerbltsky result [4]), then

by integrating (over r) the previous inequality we obtain

P
drdf.

sz(I) 0

1 27 1 27

(2.11) / / Dm0, (r) dr df < K1 (p)? / / ‘Z o, (1)
m2=0 0 0 m
So, from and (| it follows that (2.9) holds with B(p) = ¢, - K1(p) Thus,

Lemma 3 is proven. (I

P
drdf.

LEMMA 2.4. The sequence (0"%)°_ (n €N, m >0, v,k € {1,2,...,n}) has

mk/m=0
a uniformly bounded number of the intervals of monotonicity.

PROOF. Since
1 1

—1
a1k — Ok = n(/ 2?3y (x) do /x2m+1w(x) dx) - ®(m) - Hy,(m)
0 0

we have, by the hypothesis on zeroes of the functions H}},, that the sequence

(07 _,, has uniformly bounded number of the intervals of monotonicity, for all
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n, k,v such that I}', I C [co, 1]. If at least one of the intervals I}*, I"* is contained
in [0, ¢}, then

H2() < (co — GOV) / () (w0 (@)Y (g wly))Vde dy.

IpxIy

Having in mind that the function A — G(A) is increasing and that limy_, 1 o G(A) =
1, we have H}’,(A\) < 0 for all A > Xg = Ao(co). Hence, the sequence (67)7°_,
decreases for m > [Ao] + 1 and so it has uniformly bounded number of the intervals

of monotonicity O

LEMMA 2.5. Let

k/n v/n
2
%:(g'n' / 2Py () Py / Yy G () 1y
" =1/ w=1)/n

(mneN, m>=0, vke{l,2,...,n}). Then

H Z O™ Gy €™ cky Z G € (p>1),
m>0 m>0 P
where

k/n v/n

c,(cﬁ) = 4Ny - A(p) - / dx / Tt(zy) w(z)Pw(y)? dy
(k—1)/n (v—1)/n
and A(p) is the constant from Theorem 2 (No does not depend on n, k,v).

PROOF. It is sufficient to show that the sequence {0/} °_ satisfies the condi-
tions of Theorem 2. By Lemma 4, there is a positive number Ny such that sequence
{63, has the number of the intervals of monotonicity not greater than Ny for
n € N and every k,v € {1,2,...,n}.

Let s € N. Then the following holds

25t _1
D 165 = 614l < 2N sup |67
Jj=2°
k/n v/n m
= sup 4Nymn / dx / %w(x)l/pw(y)l/qxl/pyl/qdy
m=0 m
(k=1)/n  (v=1)/n
k/n v/n

<atomn [ dn [ TG ) )
(k-T)/n  (=1)/n
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The proof of the Lemma is completed by applying Theorem 2 with
k/n v/n
M = 4Nymn / dx / T (zy) w(z)Pw(y) '/ 9dy. O
(k—1)/n  (v—1)/n
LEMMA 2.6. Let {agsg} be complex numbers (0 < m < N, 1 <k < n). If the

condition (L.2)) is satisfied, then there exists a constant B, (which depends only on
p) such that

nQﬁN

. (Z enu a(n zmw> ‘pd:ﬂ < BSZ/‘Z asr'r;’zeima: pd:L'
v=1 v m=0

=0

(2.12)

PrROOF. According to Lemma 5, the following holds

N
A,y €
m=0

(n)
Cry )
p

N
(2.13) H > o aln) e

(neN, v, ke{l,2,...,n}) and so we obtain

n N n »
(3 a0 = 0SS ot )
=1 *m=0 k=1ly=1 p
(2.14) according to Minkowski inequality
< i( - (n) zmx ) Z(ZC (n) mna: >p
= = = p k=1 ‘=1 p

accordlng to (2.13]).
According to Theorem 3, putting z, = HZ —0 a'm) e””xH (v=12,...,n),
one gets

n

(2.15) Z(Z (n)

k=1 “v=1

P

(n) eime
E amu

(n) eime
E Ay €

m=0

p) <APZ

v=1 p

where

A =sup max{ max Z c,w , max c(”)}
1

n>1 1<k 1<y <nk

Let us estimate A. Since

v/n 1

Z c(n) = 4NomA(p)n / dy / T(zy) w(z)Pw(y)/? d,

w-1)/n 0
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by the Mean Value Theorem (for integrals), we get

v/n 1 1
1
/ dy / T(wy) w()Pw(y) ! 1de = — / T(20,) w(z)/Pw(6,) " 1de,
(v—1)/n 0 0
where ”T_l <6, < %, and hence, it follows

n 1
S el = ANgmA(p) w(6,) 9 / T(260,) w(z)"/Pdx
0

1
< 4Ny A(p) sup w(y)l/q/T(xy)w(a:)l/pdx.
o<y<1 A

Similarly, we obtain

n 1
ZC](JIL/) < 4Ny A(p) sup w(x)l/p/T(xy)w(y)l/qdy,
0

byt 0<z<1

Therefore,

1
supw(x)'/? [ T(zy) w(y)'/1dy
A < B, = 4NgmA(p) max { “<! °

sup w(y)'/ fT(xy)w(x)l/pdz
y<l1 0

From ([2.14) and (2.15) it follows that (2.12)) holds with the constant

1
sup w(x)'/? [ T(zy) w(y)'/1dy
B, = 4Nym A(p) max { “<! 9
supw(y)/ [ T(zy) w(x)/Pdx
0

y<l1
3. Proof of Theorem 1

Necessity. If P : LP(D) — LP(D) (1 < p < o0) is a bounded operator,
according to Lemma 3 inequality ([2.3)) holds for any (finite) choice of ®,,, € L?(0, 1).
Letting in ([2.3) all the functions ®,,, except one, to be zero, one gets

1
| Ay (y)| da dy < & / / |0y (y)|” da dy
0 0

o _
o\:‘m

Le., [[Ax®r|l, < cp[|Pkll, for each @, € LP(0,1) (k= 0,1,...). From this we obtain

(3.1) 1Ak, < ep
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for each £ =0,1,... (Here ||S||, denotes the norm of operator S on space LP(0, 1)).

Since
1

9 1/p 1 1/q
[ Akll, = 6—7; </ 2P y(z) d:v) : (/ 2kl (z) dx)
k

0 0

from (3.1)), the necessary condition of Theorem 1 follows (i.e., inequality ([1.1])).

Sufficiency. Let conditions and of Theorem 1 hold. To establish the
boundedness of operator P it is sufficient to prove inequality (2.3) in the case when
functions ®,, are continuous on [0,1]. (If - ) holds when <I>m are continuous,
then it will also hold for ®,,, € L?(0, 1) because operators A, are bounded and

the space C0,1] is dense in L?(0,1).).
Consider functions G,,, € C[0,1], m =0,1,... N and let

a= max max |Gn,(z)|
o<m<N 0<z<1

Let aggll %ef G (£) and

(n)

a,,;, 0<z< %
n 1 2
afn%, ssr <z
B () =

(n) k=1 k
Uiy~ ST <y
a(”) n—1 <r<gn
mmn sy n ~ ~X n

It is clear that the sequence of functions {@%L) (x)}zc:l converges uniformly

n [0,1] towards Gy, (x). Note that maxogz@@g,?)(xﬂ <aforn>1andm e

{0,1,...,N}. Let

k/n 1
Vi = [ e e [y e ) dy
(k=1)/n 0

Then the inequality (2.12)) (Lemma 6) can be written as

wem (e

1

p

n 2 N
(3.2) Z/’ eime V(” da.
k=17 'm=

Since

" k/n 2 N

12n o p p
//‘ Z gime Amq)%l)(y)‘ de dy = Z / dy/’ Z eime Am‘l)sg) (y)' dz
o o m=0

kzl(krfl)/n 0 m=0
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and since the continuity of function y +— fozﬂ ’Z;V@:o eime A, i (y) ’pdx (on [0,1])
implies that there exist points &, such that % <k < % (k=1,2,...,n) and

k?/’l’b 27 N » 1 27 N »
[ o ‘Z o At )| do = [ 'Z e A (€| da,
(k—l)/n 0 m=0 0 m=0
we obtain

p
dx.

m N
dxdy—z /‘Z l77L.KA (I)n) §nk)

(3.3) /1 / ‘Z ™ A, (y
0 0

Functions x + 2™ 1/Pw(x)!/P /52, are continuous [0,1] (and even uniformly con-
tinuous; we define w at = 1 as w(1) = 0 for each m = 0,1,..., N, and so, for a
given € > 0 there exists a natural number ng such that for n > ng

(3.4)
mty 1/p ki ; -t
Sae "W (Enk) T U;g"k) - 6% / 2™t P ()P | < 5(27ra . /yl/qw(y)l/qdy>
" " (k<1)/n 0

for each m =0,1,...,N and each k € {1,2,...,n}.

Since
1
2T m "
B () = 55 7w () / Y™ (y) R (y) dy
" 0
from (3.4) we get
(3.5) | A @ (g) — V| < &

forn 2 ng, m € {0,1,...,N} and k € {1,2,...,n}.
Let n > ng. From

dx

SHy R,
=1 0

n 2T"N

- i/‘z Wv<")+z ¢ (A (i) (”))‘ dz,
0

m=0 m=0
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using the inequalit al + < 2P (lalP + = 1, we get
ing the inequality (Ja| + [b])? < 2P~ (|af? + [b]?), p > 1, we g

n 2 N

S |5 e

k=1 0 m=0

<2p1li;< / S ey s 4 / ’Ze"’” (An®l) () Vﬁ))‘pdfﬂ
k=1 0 'm= 0

da; + (N +1)PeP . 27 . 2771

< 2P~ 1 Z /‘ zmwv("

(using the inequality (3.5)) in the last line).
Therefore, for n > ng we have:

p
dx

P
< PreP (N +1)P + 20~ 12 /‘Zeimwvyfﬁf) dx
m=0
From (3.2) and (3.6) we obtain (for n > ng)

Ex [l

dx

dx

< 2PmeP (N +1)P + 2P~ 1sz /‘ gime (n)

p
sy e

1 27
=27 eP (N4 1)P +2071BP //
0 0

If n > ng, the previous inequality and (3.3]) give

o J8
0o o0 ™%

m=0

r
e Ay ®GD (y)| dady

127rN

P
< 2PmeP (N4 1) + 2?*135// > emrap) (y)’ dx dy.

Since the sequence {<I>£,’Z ) }Zozl converges uniformly towards G, on [0, 1], then, due

to the boundedness of the operators A,,, we get Amq)%l)(y) — AnGn(y), n — oo,
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and so, taking the limit as n — oo in (3.7)) we obtain

dx dy

1 27

N P
<2p7r£p(N—|-1)p+2p_lB£//‘Z7eim’”Gm(y) dz dy.
o o m=0

Keeping in mind that € > 0 is arbitrary, then, as ¢ — 0 we obtain
1 2w

1 27 N »
g sisfocnern ]
o o m=0 0 0

Consequently inequality (2.3) holds (with ¢, = 2'~/?. B,) if the functions ®,, are
continuous which proves Theorem 1. O

P
dz dy.

N .
Z gima Gm (y)
m=0

REMARK 3.1. The necessary condition for the boundedness of the Bergman
projection P on LP(D) can be expressed as sup,,> [[®m|, - [[®mll, < oo where
®,,(2) = 2™/, and can be obtained if we apply operator P to the functions
fm(2) = |z|m/(p_1) el (z =re?), m=0,1,2,....

REMARK 3.2. It would be interesting to find a weight w that satisfies the
necessary but does not satisfy the sufficient condition of Theorem 1. Such a

weight should tend to 0 (when r — 1—) faster then r — (1 — rz)A but slower

then (1 — TQ)AeXp(—B (1-72)""), A,B,a > 0. That is connected with non-
trivial analysis of the asymptotic behavior (when A — +00) of the function A +—
fol r*w(r) dr which will be the subject of further investigations.
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