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BETWEEN FOURIER COEFFICIENTS
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AND EXPONENTIAL SUMS
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Communicated by Aleksandar Ivié

ABSTRACT. We consider certain specific exponential sums related to holomor-
phic cusp forms, give a reformulation for the Lehmer conjecture and prove that
certain exponential sums of Fourier coefficients of holomorphic cusp forms con-
tain information on other similar non-overlapping exponential sums. Also, we
prove an Omega result for short sums of Fourier coefficients.

1. Introduction

Holomorphic cusp forms can be represented as Fourier series
oo
F(z) = Z a(n)n"=2e(nz),
n=1
where Im 2z > 0, e(z) = €>™®, and the numbers a(n) are called normalized Fourier
coefficients and k is the weight of the form; see e.g. [1] or [13] for an account of
the theory of holomorphic modular forms. For properties of exponential sums and
related techniques, see [10].
It is of interest to consider exponential sums of the normalized Fourier coefhi-
cients:
AM, A a) = Z a(n) e(na)
M<n<M+A
with 0 < A < M and « € R. For similar exponential sums involving the divisor
function d(n) = >, 1, the notation D(M, A, ) will be used. Wilton’s estimate
17
Z a(n) e(na) < MY?log M
n<M
from the year 1929 is a classical result. This estimate is nearly sharp, only the
logarithm can be removed and that was done by Jutila in 1987 [11]. Therefore,
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moving the focus to short sums was a logical next step. Karppinen and Ernvall-
Hytonen [5] proved that, for 1 < A < M3/4,

AME, when 1 < A <« M?/%
AL/6)[1/3+e when M?/5 < A < M5/®
A(M, A o) < AM—9/48+57 when M5/% « AM11/16

M~VAA + MY/2-1/324¢  when M1/16 « AMB/A,

In this article, we will consider the sum

Z c(n)e(%)w(n),
M<n<M+A
where ¢(n) is either a(n) or d(n), k € N, and w is a smooth weight function. In
particular, we will show a connection between this sum with ¢(n) = a(n) and the
coefficient a(k). For k = 1, such a relation was established in [5] for ¢(n) = a(n)
and in [4] for ¢(n) = d(n). We will also show that this sum contains information
about similar shifted (not necessarily overlapping) sums.
Also, we will show the Q-result

Z a(n) = Q(MY*4),
M<n<M+cVM
where the Q-symbol is to be understood in the following way: f = Q(g) if f = o(g)
does not hold. The question of good 2-results has been earlier tackled by several
mathematicians, Joris [9], Redmond [16], Corradi and Katai [2], to mention a few.
In 1989, Ivi¢ and Hafner [6] proved the existence of a positive constant D such that

loglog M)*/4
Z a(n)n(’{*l)ﬂ o (Mn/21/4 exp <D (loglog M) 3/4>>’
ot (logloglog M)

where 23 means the following: f= Q4 (g) iflimsup f/g>0 and liminf f/g<0. One
year later appeared Ivié’s paper [8] in which he showed that there are A, B, Ty > 0
such that, for T > Ty, every interval [T,T + AvVT | contains ¢; and ¢, for which
A(l,t1 —1,0) > Bt}/4 and A(l,t2 —1,0) < —Bt§/4. Very recently, Ivié [7] proved
an -result for short sums:

AM, A1) =Q(VA)

when M¢ < A < MY/2-¢_ The result in this article extends this result by treating
the “missing" case A =< M1/,

The author would like to thank professors Jutila and Ivi¢ for valuable insight
and comments.

2. Preliminaries
Let us begin with
DEFINITION 2.1. Given X,Y,Z € R we write
dX,Y,Z)={zxeC: ye[X,Y]:|lz—y|l < Z}.
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Now we may state a lemma [12] Lemma 6] which will be used repeatedly in
this article:

LEMMA 2.1. Let A be a function which is compactly supported in a finite inter-
val [My, M2] and at least P > 0 times differentiable. Assume also that there exist
two natural numbers Ag and Ay such that for any non-negative integer v < P and
for any x € [My, Ms],

AW (z) < AgAT”.
Also, let B be a function which is real-valued on [My, M), and regular throughout
the complex domain d(My, Ms, p); and assume that there exists a quantity By such
that

0 < By < |B'(2)]

for any point x in the domain. Then we have

/Oo A(z) e(B(z)) da < AO(AlBl)‘P(l + %)P(M2 — My).

3. Connecting exponential sums and individual coefficients

The following theorem was proved in [5]:

THEOREM 3.1. Let M'Y/?19 < A < AM3/*, where 0 < A\ < 1 is a constant. Let
w be a smooth weight function on the interval [M, M + A] which equals 1 on the
interval [a,b] C [M, M + A] where a — M = M +A —b = A= with § a sufficiently

small fized positive real number. Assume further that « = M~Y2. Then

Z a(n) w(n) e(an)| = AM ™4,
M<n<M+A

The symbol =< has to be understood in the following way: f =< g if f = O(g)
and g = O(f).

However, the following more general theorem holds:

THEOREM 3.2. Let M2t « A < AM3/* and 0 < T < M3/, where 0 < X <
1/\/E 1s a constant, 6 an arbitrarily small fixed positive number, k a positive integer,
and let w be a smooth weight function on the interval [M, M + A] such that w is a
constant function 1 on the interval [a,b] C [M, M + A] where a — M, M + A —b =
A0 with § < % a sufficiently small fixed positive real number. Then

> c(n)w(n —T) %%)

M+T<n<M+T+A

= Ce(k)k™1/4 /M+T e V4w(z —T) e(\/\/%x . 2\/@) dr 4+ O(1),

where c(n) = a(n) or d(n) and C is a constant depending only whether c(n) equals
d(n) or a(n) and on the weight of the form.

M+T+A

Notice that the size of the integral is =< M~'/4A. This can be easily proved
using the fact that the exponential part is stationary.
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PROOF OF THEOREM [3.2] The proof for c¢(n) = a(n) with k =1 and T = 0
can be found in [5] and the proof for both ¢(n) = d(n) and ¢(n) = a(n) with k =1
and T = 0 can be found in [4] and the proof of the above formula is similar. As
the case with ¢(n) = a(n) is easier and similar to the case ¢(n) = d(n), we are only
going to prove the latter case.

Let us first use a Voronoi type summation formula [10, Theorem 1.7]

D (M +T,A, \/\/%) = /AZ;TJFA(Iogx +2y)w(x —T) e(\\/ﬁ%) dx
+ i d(n) / oy (/) + Ko (4T ) bl — T) e(m> iz,

VM

where Yy and K, are Bessel functions in the standard notation. The following
estimate is well known (see formula (5.16.5) of [14])

Koy(z) ~ ,/% e %, when z — oo.

Therefore, the integral corresponding to the K-function yields

)

1 M+T+A
< m/ $71/4€74ﬂmd1} < 77,73/2.
n M+T

M+T

-/]LM+T+A 4K (4my/naz ) w(z — T) e<

1+T

Hence, the corresponding sums converges to O(1) (as a function of M). Let us
now move to the Y-Bessel function. We write it first using Hankel functions [14,
(5.6.1)]:
1 1 2
Yo(z) = 5 (HV (2) - Hy?(2)).

The asymptotic expansions for the Hankel functions [14} (5.11.5)] give

1) Y@= (2) T (1t 1 0(127).

The first step to treat these terms is first to integrate and then sum over the O-term:

o0 MAT+A
S d(n) /

(nz) " 4dx < Z d(n)n=*AM™/* <« 1.
n=1 M+T

n=1
Use Lemma to treat the integral over the second term in (3.1)), except in the
case of n = d, with the following choices: My — M; = A, o M, A = A9,

B < \/L% and Ay = n=3/4M—3/%. We obtain

=3

/M+T+A(nx)3/4 ¢ (f/ﬁk + 2\/%>w(x —T)dx

M+T
<« A—PO=0)+1  —P/2=3/4 rP/2-3/4

< n~P/2-3/4 )~ P(1/246)(1-8)+P/2-1/4+6  , —P/2-3/4



FOURIER COEFFICIENTS OF CUSP FORMS AND EXPONENTIAL SUMS 101

Therefore, the series converges and produces an error term of size O(1). When
n = k, use integration over the absolute values to obtain the same estimate. Let
us now treat the integral corresponding to the first term in the asymptotic Expan-
Sion . When n # k, we obtain by use of Lemma the estimate

< AA=8)(1=P) —P/2-1/4rP/2-1/4
<« M—PU/240)(1=8)+P/24+1/4+0,, ~P/2=1/4 o [ —P/2-1/4

when P is sufficiently large. When n = k, the first term in the asymptotic expansion
for Hél) also gives the same estimate. Hence, we have now derived

\/E M+T+A
D (M +T,A, \/M) — / (27 +loga — cd(k)k~ 4z Vie(—2vka ))
M+T
ok

x w(x —T)e<m>dﬂc+0(l),

where ¢ is a constant. Write ¢(z) = w(z — T)(Inz 4+ 27). Now ¢P)(z) <
AU=9(=P)  Using Lemma we obtain

MA+T+A
/ q(x) 6<M >dx < A=) (e=P)+1rP/2
MAT VI

< MP/2+0=0)(e=P)+1/240 1
This proves the theorem. ]

As a simple corollary, we obtain

COROLLARY 3.1. With the assumptions of the previous theorem and supposing,
moreover, that a(k) =0, we have

> a(n)w(n)e<\/‘% > =0(1).

M<n<M+A

On the other hand, if a(k) # 0, then

vk _
a(n)w(n)e| ——n) < M~V4A.
B0 (o)

In other words, the Lehmer conjecture for the eigenfunctions of the Hecke
operators is equivalent to the corresponding sums being large.

REMARK 3.1. Notice that if a(k) # 0, then

S ()

for some A’ € (0,A]. Otherwise, it would follow from partial summation that the
estimate for the smoothed sum would be o(M~1/%A).

> MUVAA
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THEOREM 3.3. With the assumptions of Theorem[3.2], the following holds:

\/ETL \/%n
cn)wn)e| — | — c(n)w(n —T)e| ~——
M@;MM ( \/M> M+T<n<ZM+T+A ( VM >
TA(T + A) n AA+T)
MT7/4 M5/4

PROOF. Using Theorem[3.2] we see that it is sufficient to consider the difference

/MM+A aV4w(x) e ( \/\% x— 2\/@) dzx

MEa _ VE(z +T)
— X /’LU.’K e\ ———x — X xZ.
/M (z +T) V4w(x) < Nili 24/ k( +T))d

We first use the Taylor expansion to treat the terms 2~/4 and (z + T)~'/%:

a =MV O(M T e — M),

Hence,
/MMM(ZSB (\/\% —2W> +T 1/4 \/E(xMTx—z k:(x—i—T)))dw
:M1/4/MM+Aw(x)< ({Mx—%ﬁ) (W 2 k(x+T))>dx

ro(28sD)

Let us now consider the difference

(32 (A )

Vi \f (x4+T)
= —oVka +2\/ x—l—T)—l
‘ ( vM vM
Since |e® — 1| < |y|, it is sufficient to consider the exponent to obtain an upper
bound for the difference of the exponent functions, and thereby for the original

integral expression:

B VE(z+T) (A+T)
’f Wk — i +2/k( +T‘<< .

We obtain B
/MMM(%Q@@% Qr) (H(T;M (@%Tug mm))dx

TA(T+A)  AA+T)

M7/4 + M5/4 0
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4. An Omega-result for short sums of Fourier coefficients
THEOREM 4.1. Let ¢ > 0 be an arbitrary real number. Then
Z a(n) = Q(M1/4).
M<n<M+cvVM

Before proving the theorem, let us prove a lemma:

LEMMA 4.1. Write D = Kc*, where K is a sufficiently large constant. Write
||z|| to denote the distance from x to the mearest integer. Let b be a sufficiently
large constant. Then it is possible to choose an integer k € [b=1D,bD] such that
the following two conditions are satisfied: (1) ||C\/EH > D4 (2) a(k) #£0.

PROOF. First, consider the difference

vVk+1—cVk = D~ /2,

C
CVE+VEFI

Therefore, the values ||C\/EH are somewhat uniformly distributed on the interval
[0,1). Tt is now easy to conclude that only =< D34 of k € [b='D,bD] satisfy the
condition ||C\/EH < D74, Since a(k) < k° by Deligne’s estimate [3], we obtain

Z |a(k)\2 <<D3/4+6.
b~ ' D<k<bD,
leVE||<D~1/4

The Rankin—Selberg mean value theorem (see e.g. Rankin [15]) gives the estimate
Y lak)P +0(DY**) = D,

b~ D<Lk<LD,
levVE||>D~1/4

which proves the existence of a coefficient satisfying both conditions. O
We may now turn to the proof of the actual theorem.

PROOF OF THEOREM [4.1]l Take k as in Lemma .1l From the first condition
we obtain
3 (WE) ‘ ' 1—e(leVM|VEM=Y2 + VEM~1/?)
e — =
vM 1 —e(\/EM_l/Q)

> M1/2,

0<h<eV M

since the denominator is =< M~Y2yk =< M~'/2 as k is a constant, and the nomi-
nator is < 1 by condition (1) of Lemma From Remark we know that there
exists A/ < AM3/4, where A € (0,1) is a constant, such that

‘ > am) e<\/]€[> ‘ > MY2,

M<n<M+A v
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Multiplying these two sums together, we obtain
) ()
M < el — a(n)el — .
(X (B5)( X ame(B
0<h<evVM M<n<M+A
Change the variable m = h 4+ n and estimate further:

s () > aln)

M<m<M+A +evV M ne[M,M+A'IN[m—cvVM,m]

E A T

MAcvVM<<m<M+A' m—cvVM<n<m

s AR s e

M<m<M+cv M ne[M,M+A’'IN[m—cvV M,m)]

IR

MA4A"<m<M+A"+cvV M ne[M,M+A’'IN[m—cvV M,m)]

We may now use the well-known estimate (see [10]) >°, <5, a(n) < M/3% to treat
the second and third term and then use the triangle inequality to the first term to
obtain

+ M5/8,

< >

M+cVM<m<M+AAM3/4

> aln)

m—cvVM<<n<m

Therefore the mean of the sums |35 a7, a(n)| is > M'/* and hence,
at least one of them has to be > M'/4. This proves the theorem. O
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