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Abstract. We study the semiparallel lightlike hypersurface of an indefinite
cosymplectic space forms which are tangent to the structure vector field.

1. Introduction

In the theory of submanifolds of semi-Riemannian manifolds it is interesting to
study the geometry of lightlike submanifolds due to the fact that the intersection
of normal vector bundle and the tangent bundle is nontrivial making it more in-
teresting and remarkably different from the study of nondegenerate submanifolds.
The geometry of lightlike hypersurfaces and submanifolds of indefinite Kaehler
manifolds was studied by Duggal and Bejancu [5]. On the other hand, lightlike hy-
persurfaces of indefinite Sasakian manifolds was studied in [3, 6], whereas lightlike
hypersurfaces in indefinite cosymplectic space form was studied in [7].

The basic Gauss, Codazzi–Mainardi and Ricci equations give that the extrinsic
conditions parallel, semiparallel and pseudo-parallel imply the correspondent in-
trinsic conditions symmetry, semisymmetry and pseudo-symmetry, respectively [1].

We study semiparallel lightlike hypersurface of an indefinite cosymplectic space
form and we prove:

Theorem 1.1. Let M be a semiparallel lightlike hypersurface of an indefinite
cosymplectic space form M̄(c) of constant curvature c, with ξ ∈ T M . Then either
c = 0, or M is (φ̄(T M⊥), D ⊕ D′) mixed totally geodesic. Moreover, if c = 0, then
either M is totally geodesic or C(E, A∗

EP X) = 0, for any X ∈ Γ(T M).
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2. Preliminaries

An odd-dimensional semi-Riemannian manifold M̄ is said to be an indefinite
almost contact metric manifold if there exist structure tensors {φ̄, ξ, η, ḡ}, where φ̄
is a (1,1) tensor field, ξ a vector field, η a 1-form and ḡ is the semi-Riemannian
metric on M̄ satisfying

φ̄2 X̄ = −X̄ + η(X̄)ξ, η ◦ φ̄ = 0, φ̄ξ = 0, η(ξ) = 1(2.1)
ḡ(φ̄X̄, φ̄Ȳ ) = ḡ(X̄, Ȳ ) − εη(X̄)η(Ȳ ), η(X̄) = εḡ(X̄, ξ), ḡ(ξ, ξ) = ε, ε = ±1

for any X̄, Ȳ ∈ Γ(T M̄), where Γ(T M̄) denotes the Lie algebra of vector fields on
M̄ .

An indefinite almost contact metric manifold M̄ is called an indefinite cosym-
plectic manifold if [4] (∇̄X̄ φ̄)Ȳ = 0, and ∇̄X̄ξ = 0 for any X̄, Ȳ ∈ T M̄ , where ∇̄
denotes the Levi–Civita connection on M̄ .

A plane section Π in TxM̄ of a cosymplectic manifold M̄ is called a φ̄-section
if it is spanned by a unit vector X̄ orthogonal to ξ and φ̄X̄, where X̄ is a non-null
vector field on M̄ . The sectional curvature K(Π) with respect to Π determined
by X̄ is called a φ̄-sectional curvature. If M̄ has a φ̄-sectional curvature c which
does not depend on the φ̄-section at each point, then c is a constant in M̄ and
M̄ is called an indefinite cosymplectic space form, which is denoted by M̄(c). The
curvature tensor R̄ of M̄(c) is given by [4]

R̄(X̄, Ȳ )Z̄ = c

4
{

ḡ(Ȳ , Z̄)X̄ − ḡ(X̄, Z̄)Ȳ + η(X̄)η(Z̄)Ȳ − η(Ȳ )η(Z̄)X̄(2.2)

+ḡ(X̄, Z̄)η(Ȳ )ξ − ḡ(Ȳ , Z̄)η(X̄)ξ + ḡ(φ̄Ȳ , Z̄)φ̄X̄

−ḡ(φ̄X̄, Z̄)φ̄Ȳ − 2ḡ(φ̄X̄, Ȳ )φ̄Z̄
}

for any X̄, Ȳ , Z̄ ∈ Γ(T M̄).
Let (M, g) be a hypersurface of a (2n + 1)-dimensional semi-Riemannian man-

ifold (M̄, ḡ) with index s, 0 < s < 2n + 1 and g = ḡ|M . Then M is a lightlike
hypersurface of M̄ if g is of constant rank (2n − 1) and the normal bundle T M⊥

is a distribution of rank 1 on M [5]. A nondegenerate complementary distribu-
tion S(T M) of rank (2n − 1) to T M⊥ in T M , that is, T M = T M⊥⊥S(T M), is
called screen distribution. The following result (cf. [5, Theorem 1.1, p. 79]) has an
important role in studying the geometry of lightlike hypersurfaces.

Theorem 2.1. Let (M, g, S(T M)) be a lightlike hypersurface of M̄ . Then, there
exists a unique vector bundle tr(T M) of rank 1 over M such that for any nonzero
section E of T M⊥ on a coordinate neighbourhood U ⊂ M , there exists a unique
section N of tr(T M) on U satisfying ḡ(N, E) = 1 and ḡ(N, N) = ḡ(N, W ) = 0, for
each W ∈ Γ(S(T M)|U ).

Then, we have the following decomposition:
(2.3) T M = S(T M)⊥T M⊥, T M̄ = S(T M)⊥(T M⊥ ⊕ tr(T M)).

Throughout this paper, all manifolds are supposed to be paracompact and
smooth. We denote by Γ(E) the smooth sections of the vector bundle E, and by
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⊥ and ⊕ the orthogonal and the nonorthogonal direct sum of two vector bundles,
respectively.

Let ∇̄, ∇ and ∇t denote the linear connections on M̄ , M and vector bundle
tr(T M), respectively. Then, the Gauss and Weingarten formulae are given by

∇̄XY = ∇XY + h(X, Y ), for all X, Y ∈ Γ(T M),(2.4)
∇̄XV = −AV X + ∇t

XV, for all V ∈ Γ(tr(T M)),(2.5)

where {∇XY, AV X} and {h(X, Y ), ∇t
XV } belong to Γ(T M) and Γ(tr(T M)), re-

spectively and AV is the shape operator of M with respect to V . Moreover, in view
of decomposition (2.3), equations (2.4) and (2.5) take the form

∇̄XY = ∇XY + B(X, Y )N(2.6)
∇̄XN = −ANX + τ(X)N(2.7)

for any X, Y ∈ Γ(T M) and N ∈ Γ(tr(T M)), where B(X, Y ) and τ(X) are local
second fundamental form and a 1-form on U , respectively. It follows that

B(X, Y ) = ḡ(∇̄XY, E) = ḡ(h(X, Y ), E), B(X, E) = 0, τ(X) = ḡ(∇t
XN, E).

Let P denote the projection of T M on S(T M) and ∇∗, ∇∗t denote the induced
linear connections on S(T M) and T M⊥, respectively. Then from the decomposition
of tangent bundle of lightlike hypersurface, we have

∇XP Y = ∇∗
XP Y + h∗(X, P Y )(2.8)

∇XE = −A∗
EX + ∇∗t

XE(2.9)

for any X, Y ∈ Γ(T M) and E ∈ Γ(T M⊥), where h∗, A∗ are the second fundamental
form and the shape operator of distribution S(T M) respectively.

By direct calculations using Gauss–Weingarten formulae (2.8) and (2.9), we
find

g(AN Y, P W ) = ḡ(N, h∗(Y, P W )), ḡ(AN Y, N) = 0;(2.10)
g(A∗

EX, P Y ) = ḡ(E, h(X, P Y )), ḡ(A∗
EX, N) = 0;(2.11)

for any X, Y, W ∈ Γ(T M), E ∈ Γ(T M⊥) and N ∈ Γ(tr(T M)).
Locally, we define on U

(2.12) C(X, P Y ) = ḡ(h∗(X, P Y ), N), and λ(X) = ḡ(∇∗t
XE, N).

Hence, h∗(X, P Y ) = C(X, P Y )E, and ∇∗t
XE = λ(X)E. On the other hand, by

using (2.6), (2.7), (2.9) and (2.12), we obtain
λ(X) = ḡ(∇XE, N) = ḡ(∇̄XE, N) = −ḡ(E, ∇̄XN) = −τ(X).

Thus, locally (2.8) and (2.9) become
∇XP Y = ∇∗

XP Y + C(X, P Y )E, and ∇XE = −A∗
EX − τ(X)E.

Finally, (2.10) and (2.11), locally become
g(AN Y, P W ) = C(Y, P W ), ḡ(AN Y, N) = 0;
g(A∗

EX, P Y ) = B(X, P Y ), ḡ(A∗
EX, N) = 0.
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In general, the induced connection ∇ on M is not a metric connection. Since ∇̄ is
a metric connection, we have

0 = (∇̄X ḡ)(Y, Z) = X(ḡ(Y, Z)) − ḡ(∇̄XY, Z) − ḡ(Y, ∇̄XZ).
If R̄ and R are the curvature tensors of ∇̄ and ∇, then using (2.6) in the

equation R̄(X, Y )Z = ∇̄X∇̄Y Z − ∇̄Y ∇̄XZ − ∇̄[X,Y ]Z, we obtain

(2.13) R̄(X, Y )Z = R(X, Y )Z + B(X, Z)AN Y − B(Y, Z)AN X

+
{

(∇XB)(Y, Z) − (∇Y B)(X, Z) + τ(X)B(Y, Z) − τ(Y )B(X, Z)
}

N.

A hypersurface M is semiparallel if its second fundamental form h satisfies,
(2.14) (R(X, Y ) · h)(X1, X2) = −h(R(X, Y )X1, X2) − h(X1, R(X, Y )X2) = 0
for any X, Y, X1, X2 ∈ Γ(T M), where R is the curvature tensor field of M .

3. Proof of the theorem

Let (M̄, φ̄, ξ, η, ḡ) be an indefinite cosymplectic manifold and (M, g) be its
lightlike hypersurface, tangent to the structure vector field ξ with ḡ(ξ, ξ) = ε = +1.
If E is a local section of T M⊥, then ḡ(φ̄E, E) = 0 implies that φ̄E is tangent to
M . Thus φ̄(T M⊥) is a distribution on M of rank 1 such that φ̄(T M⊥) ∩ T M⊥ =
{0}. This enables us to choose a screen distribution S(T M) such that it contains
φ̄(T M⊥) as vector subbundle.

Now, we consider a local section N of tr(T M). Then φ̄N is tangent to M and
belongs to S(T M) as ḡ(φ̄N, E) = −ḡ(N, φ̄E) = 0 and ḡ(φ̄N, N) = 0. From (2.1),
we have

ḡ(φ̄N, φ̄E) = ḡ(N, E) − η(N)η(E) = ḡ(N, E) = 1.

Therefore, φ̄(T M⊥) ⊕ φ̄(tr(T M)) is a direct sum but not orthogonal and is a non-
degenerate vector subbundle of S(T M) of rank 2.

It is known [2] that if M is tangent to structure vector field ξ, then ξ belongs
to S(T M). Since ḡ(φ̄E, ξ) = ḡ(φ̄N, ξ) = 0, there exists a non degenerate invariant
distribution D0 of rank (2n − 4) on M such that
(3.1) S(T M) =

{
φ̄(T M⊥) ⊕ φ̄(tr(T M))

}⊥D0⊥〈ξ〉 and φ̄(D0) = D0,

where 〈ξ〉 = span ξ. Moreover, from (2.3) and (3.1), we obtain

T M =
{

φ̄(T M⊥) ⊕ φ̄(tr(T M))
}⊥D0⊥〈ξ〉⊥T M⊥.

Now, we consider the distributions D and D′ on M as follows
D = T M⊥⊥φ̄(T M⊥)⊥D0, D′ = φ̄(tr(T M)).

Then D is invariant under φ̄ and T M = D ⊕ D′⊥〈ξ〉.
If P1 and Q denote the projection morphisms of T M on D and D′ and U =

−φ̄N , V = −φ̄E are local lightlike vectors, respectively, then we write
(3.2) X = P1X + QX + η(X)ξ
for X ∈ Γ(T M), where QX = u(X)U , and u is a differential 1-form locally defined
on M by u(·) = g(V, ·). From (3.1) and (3.2), we obtain φ̄X = φX + u(X)N and
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φ2X = −X + η(X)ξ + u(X)U , for each X ∈ Γ(T M), where φ is a tensor field of
type (1, 1) defined on M by φX = φ̄P1X .

Putting (2.2), (2.6), (2.13) into (2.14), by a straightforward calculation we
obtain

0 = c

4
[

g(Y, X1)B(X, X2) − g(X, X1)B(Y, X2) + η(X)η(X1)B(Y, X2)

− η(Y )η(X1)B(X, X2) + ḡ(φ̄Y, X1)B(φX, X2)
− ḡ(φ̄X, X1)B(φY, X2) − 2ḡ(φ̄X, Y )B(φX1, X2)

]
− B(X, X1)B(AN Y, X2) + B(Y, X1)B(AN X, X2)

+ c

4
[

g(Y, X2)B(X, X1) − g(X, X2)B(Y, X1) + η(X)η(X2)B(Y, X1)
− η(Y )η(X2)B(X, X1) + ḡ(φ̄Y, X2)B(φX, X1)

− ḡ(φ̄X, X2)B(φY, X1) − 2ḡ(φ̄X, Y )B(φX2, X1)
]

− B(X, X2)B(AN Y, X1) + B(Y, X2)B(AN X, X1).
Putting above X = E and using the fact that B(E, ·) = 0, we get

0 =
c

4
[
ḡ(φ̄Y, X1)B(φE, X2) + u(X1)B(φY, X2) + 2u(Y )B(φX1, X2)

]
(3.3)

+ B(Y, X1)B(AN E, X2) + c

4
[
ḡ(φ̄Y, X2)B(φE, X1) + u(X2)B(φY, X1)

+ 2u(Y )B(φX2, X1)] + B(Y, X2)B(AN E, X1).

Putting X2 = E into (3.3) we get 3
4 cu(Y )B(V, X1) = 0. If we put here Y = U , we

find

(3.4) 3
4

cB(V, X1) = 0.

From (3.4), we get c = 0 as B(V, X1) �= 0, for each X1 ∈ Γ(D ⊕ D′). If c �= 0,
then (3.4) implies that B(V, X1) = 0, for each X1 ∈ Γ(D ⊕ D′). Hence M is
(φ̄(T M⊥), D ⊕ D′)-mixed totally geodesic.

On the other hand, suppose that c = 0; then from (3.3), by putting X1 = X2,
we obtain
(3.5) B(Y, X1)B(AN E, X1) = 0.

If B(Y, X1) = 0 for each Y, X1 ∈ Γ(T M), then M is totally geodesic. If B(Y, X1) �=
0, then (3.5) imply that B(AN E, X1) = 0, that is C(E, A∗

EP X1) = 0, for any
X1 ∈ Γ(T M). This finishes the proof of our Theorem. �

From Theorem 1.1 and the fact that C(E, A∗
EP X) = Ric(E, X), X ∈ Γ(T M),

where Ric denotes the Ricci tensor of M , we have the following characterization
(cf. [5, Theorem 2.2, p. 88]):

Corollary. Let (M, g, S(T M)) be a semiparallel lightlike hypersurface of an
indefinite cosymplectic space form M̄(c) of constant curvature c = 0, with ξ ∈ T M ,
such that Ric(E, X) �= 0, for any X ∈ Γ(T M) and E ∈ Γ(T M⊥). Then following
assertions are equivalent:

(i) A∗
W X = 0, for any W ∈ Γ(T M⊥) and X ∈ Γ(T M).

(ii) There exists a unique torsion free metric connection ∇ induced by ∇̄ on M .
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(iii) T M⊥ is a parallel distribution with respect to ∇.
(iv) T M⊥ is a killing distribution on M .

Hereafter, (R2m+1
q , φ̄, ξ, η, ḡ) will denote the manifold R2m+1

q with its usual
cosymplectic structure given by

η = dz, ξ = ∂z,

ḡ = η ⊗ η −
q/2∑
i=1

dxi ⊗ dxi + dyi ⊗ dyi +
m∑

i=q

dxi ⊗ dxi + dyi ⊗ dyi,

φ̄

( m∑
i=1

(Xi∂xi + Yi∂yi) + Z∂z

)
=

m∑
i=1

(Yi∂xi − Xi∂yi),

where (xi, yi, z) are Cartesian coordinates.

Example. Let M̄ = (R7
2, ḡ) be a semi-Euclidean space, where ḡ is of signature

(−, +, +, −, +, +, +) with respect to the canonical basis

{∂x1, ∂x2, ∂x3, ∂y1, ∂y2, ∂y3, ∂z}.

Consider the hypersurface M of R7
2, defined by

X(u, v, θ1, θ2, s, t) = (u, u, v, θ1, θ2, s, t).

Then a local frame of T M is given by

Z1 = ∂x1 + ∂x2, Z2 = ∂x3, Z3 = ∂y1,

Z4 = ∂y2, Z5 = ∂y3, Z6 = ξ = ∂z.

Hence, T M⊥ = span{Z1} and φ̄(T M⊥) = span{−Z3 − Z4} which implies
that φ̄(T M⊥) ∈ Γ(S(T M)). Thus D = T M⊥⊥φ̄(T M⊥)⊥D0 is invariant under φ̄,
where D0 = span{Z2, Z5}. Now, tr(T M) is spanned by N = 1

2 (−∂x1 + ∂x2) and
D′ = φ̄(tr(T M)) = span{ 1

2 (Z3 − Z4)}. Hence T M = D ⊕ D′⊥〈ξ〉.
Using (2.4) and (2.5) we obtain

(3.6) h(Zi, Zj) = 0, and ∇̄Zi N = 0, for i, j = 1, . . . , 6.

From (3.6) and (2.14), it is easy to see that M is semiparallel hypersurface of M̄ .
Moreover, using (3.6), M is totally geodesic hypersurface and c = 0 as M̄ = R7

2 is
a semi-Euclidean space, which supports Theorem 1.1.
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