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ABSTRACT. In the first part of the paper [5], we gave a new definition of
real or complex 2-normed algebras and 2-Banach algebras. Here we give two
examples which establish that not all 2-normed algebras are normable and a
2-Banach algebra need not be a 2-Banach space. We conclude by deriving a
new and interesting spectral radius formula for 1-Banach algebras from the
basic properties of 2-Banach algebras and thus vindicating our definitions of
2-normed and 2-Banach algebras given in [5].

1. Introduction

This paper being the sequel to our earlier paper, for notations and definitions,
we refer to the said paper [5].

In the next section we give two examples. The first example establishes that not
all 2-normed algebras are normable and the other shows that a 2-Banach algebra
need not be a 2-Banach space. In Section 3, some basic properties of a 2-Banach
algebra are derived. As it turns out, these properties as well as their proofs go
almost parallel to the case of an 1-Banach algebra. In Section 4, we derive, from
the results obtained in Section 3, a new and interesting spectral radius formula for
an 1-Banach algebra. The results in Sections 2 and 4 vindicate our definitions of a
2-normed and 2-Banach spaces given in [5].

2. Examples

THEOREM 2.1. There exist 2-normed algebras (with or without unity) which
are not normable.

PROOF. Let (E,|.,.]|) be a 2-normed space which is not normable (for the
existence of such a space, see Gahler [1]). We define for z,y € E, zy = 0 and
E becomes an algebra. Let a1,as be any two linearly independent elements of E
(dim E > 2). Then, ||zy,a:|| = Oz, a:| ||y, a:|]| for i = 1,2 and for all z,y € E
and (E,|.,.||) becomes a 2-normed algebra with respect to aj,as without unity
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and (E,||.,.||) is not normable. Let (E’,|.,.||) be the algebra after augmentation
of unity. Then as we have observed in [5], (E’,|.,.]|) is @ 2-normed algebra with
respect to ap, ag with unity and as (E, ||.,.||) is not normable, (E’,||.,.]|) is also not

normable and we have the theorem.

We conclude this section by giving an example which shows that a 2-Banach
algebra need not be a 2-Banach space. Let I = [0, 1],

112131234151
AOO: I:{]—a_a_a_v_7_7_a_a_a_7_7_7_a'~'}: i:‘ Nv
@n 233145555667 {rizie )
Ae = {re; : 1 € N}, A, = {r1,...,7,} and define sequence of functions {a,} and
{én} on I by

. k) .
otherwise, 0, otherwise

an(x):{(l), itz =r, %(m)z{L if o ¢ (A UA)

Let &(I) = the set of all bounded K-valued functions on I having at most
countably many points of discontinuity in I. Then the sequences {a,} and {¢,}
are in §(J). In §(7), let ||.|| be the sup 1-norm and |.,.|| be the 2-norm defined
by, for f,g € S(I), |f,9ll = sup, yer [f(2)g9(y) — f(y)g(z)[. The space I(I) is an
algebra over K with unity with pointwise addition and multiplication. We also have
for each n € N and for each f € S(I), fan = anf = f(rn)an.

We prove the following lemmas.

LEMMA 2.1. The 2-normed space (3(I),|.,.]|) is a 2-normed algebra with re-
spect to ay,aq (or any pair of distinct elements in {a,}).

Proor. For f € (1) we have for n € N, || f, an| = sup,c; 4y, [f(x)]. There-

fore, for each f,g € S(I), and n € N,
I£g.anll = sup_|f@)g@)| < (s [f@I)( suwp_|g(@)]) = |f.aul g, anl
TFETn, x€EL TH#Tn, TE THETn, TE

and the lemma is proved. O
LEMMA 2.2. The 1-normed space (3(I),|.]|) is an 1-Banach space.

PrOOF. Let {f,} be a Cauchy sequence in (I(I),||.||). Then for each z € I,
{fn(z)} converges to some f(z) in K, and hence {f,} converges to f uniformly in
I. To prove the lemma it is required to show that f € $(I). Let F,, be the set of
all points of discontinuity of f,, in I and F be the set of all points of discontinuity
of f in I. We prove that F' C |J F,, and the lemma will be established. If z¢ € F,
then there exists an € > 0 such that for all § > 0, there exists an x5 € I such that

(*) lzo — x5| <6 and [f(z0) — f(z5)] 2 €
As {fn} converges to f uniformly in I, there exists an N € N such that
(i) |[fn(x) — f(z)| <e/3 for alln > N, for all x € I.

If possible, let zg ¢ |J F,,. Then z¢ ¢ Fn and so, as fy is continuous at xg, we
have a dg > 0 such that for |x — x¢| < 0o, x € I,

(i) |fn(x) = fn(xo)| < e/3.
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Then, for |z — z5,| < do,
|f (o) = flws,)| < [f (o) — fv(wo)l + | fv (o) — fiv(wso)| + | fnv(ws,) — flas,)| <e
by () and () and this contradicts (). Hence x € |J F}, and the lemma follows. [

LEMMA 2.3. A sequence {fn} is Cauchy in (3(I),].,.||) with respect to a1, asz
(or any pair of distinct elements in {an}) (that is, imy, n—yoo || fm — fn,aill = 0,
fori=1,2) if and only if {fn} is Cauchy in (I(I),||.|).

PROOF. As for each f € S(I), ||f,anll = sup,er 4opr,

f(z)|, we have, for i =

1,2
ol = fusail =0 tim ( sup |fn(o) = fulo)]) =0
e tim (s |fu(@) = fa@)]) =0 Tmfm = full =0
MN—00 \ pe ptr; m,n—00
and the lemma is proved. O

LEMMA 2.4. A sequence {f,} in S(I) is convergent to an f in (S(1),].||) #f

{fn} is convergent to f in (S(I), ||.,.||) with respect to a1,as (or any pair of distinct
element in {an}) (that is, lim, oo || fu — f,ail =0 fori=1,2).

ProOF. Follows as in Lemma O

LEMMA 2.5. The 2-normed space (3(I),|.,.||) is a 2-Banach algebra with re-
spect to ay,aq (or any pair of distinct elements in {a,}).

ProOF. Follows from Lemmas 211 222] and 241 O

LEMMA 2.6. The sequence {¢y} is Cauchy in (3(I),].,.]])-
PROOF. Define functions by, by on I by

L ifreAd 1, ifxe (A, ~{1/2
)= b BEEA gy = b e e 2D
0, otherwise 0, otherwise.

Now for f € (1), we have,

1, b1l = max { sup | (rae), sup £ (r2x) = F(ran)
keN k,leN

If.bol =max{ sup [f(ra)l, sup |f(rar) = flran)l}-

kEN, k>2 k,lEN, k,I>2N
Now for each m,n € N and for i = 1,2 we have ||¢n, — ¢, b;|]| = 0 and hence
{én} is Cauchy in (I(I),||.,-||), and the lemma is proved. O

LEMMA 2.7. The sequence {¢y} is not Cauchy in (S(I), ||.||)-
Proor. We have, for m,n e N, m <n, A,, C A,, and for x € I,

1, ifed (AnUA,), o€ (A, UA,)

0, otherwise.
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As for each pair of m,n € N, m < n and n sufficiently large, there exists an x € T
such that z ¢ (A, UA.) but z € (A, UA,), we have ||¢p, — ¢n|| = 1 and the lemma

is proved. ([
LEMMA 2.8. The 2-normed space (3(I),]|.,.]]) i not a 2-Banach space.
Proor. If (3(1), ||, .]|) is a 2-Banach space, then by Lemma[Z0as the sequence
{én} is Cauchy in (3(I),].,.]]), there is a ¢ in I(I) so that lim,—, e [|pn — ¢, f|]| =0
for each f € $(I) and hence, in particular, lim, o ||¢n—¢, a;|| = 0 fori = 1,2. But
then by Lemma 24 {¢,} is convergent to ¢ in (I(I), ||.||) contradicting Lemma 27
and the proof is complete. (I

The Lemmas and [Z8 imply that the 2-normed space ((I),|.,.||) is a
2-Banach algebra with respect to a1, as (or any pair of distinct elements in {a,})
though the 2-normed space (3(I), ||, .||) is not a Banach space, and we have the
following.

THEOREM 2.2. A 2-Banach algebra need not be a 2-Banach space.

3. 2-Banach algebras: Some basic properties

Let (E,||.,.]|) be a 2-Banach algebra with respect to a1, as over K with unity
(If E is without unity we augment unity as in [5]) a1, a2 € A, where A is an algebra
with unity over K, F is a subalgebra of A and (A4, ||.,.||) is a 2-normed space. As we
have seen in [5] (E, ||.,.]|) is a topological vector space, the topology being induced
by the 2-norm ||.,.|| in E. In this section the topological concepts like closed/open
sets, continuity etc. in E, are all meant for the topological vector space (E,||.,.||)-
In this context, the following proposition is useful.

PROPOSITION 3.1. Let (E,||.,.||) be a 2-normed linear space over K, X be a
nonempty subset of E. Then X is open if and only if for each ag € X, there exists
€ao > 0 and b € E such that for each ¢ € E with py(c) = ||b,c|| < &4, implies
ag+ce X.

Proor. For a proof see [4]. O

Before we proceed further, let us agree with the following notations. For a
2-Banach algebra (F, ||., .||) with unity e with respect to a1, as over K, G(E) denotes
the group of all invertible elements of E. For a € F, o(a), wa and r(a) denote the
spectrum, resolvent and spectral radius of a respectively.

THEOREM 3.1. Let (E,|.,.||) be a 2-Banach algebra with unity e over K with
respect to ay, as.
(i) If a € E is such that ||a,a;|| <1 fori=1,2, then e —a € G(E) and if ¢
be a nontrivial K-homomorphism on E, |¢(a)| < 1.
(ii) The group G(E) is open in (E,||.,.||), and the mapping f : G(E) — G(E)
defined by f(a) =a~t, a € G(E) is a homeomorphism on G(E).
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PRrROOF. (i) For each a € E, associate a sequence {s,(a)} in E defined by
sp(a) =e+a+a®+---+a" Now if ||a,a;]| < 1,i=1,2 we have for n € N, n > 2,
1 =1,2:

la™, aill < lla™ ™ aill la, aill < [la" 7%, aill la,ail* < - < la, ai|" = 0 as n— oc.
So,

< e aill + -+ a7, ag

< llasa|™* 4+ lay a7

la, s+

K———fori=1,2;n,peN, n>2, —0asn,p— .
1= [la, a4l

But (E, ||.,.]|) being 2-Banach algebra with respect to a1, as there exists an s(a) in
E such that lim,_ ||sn(a) — s(a),a;|| = 0.

Now, sp(a)(e —a) = e —a"™! = (e — a)sp(a) for all n € N and therefore for
i=1,2,

Is(a)(e = a) = e, ail| = ||s(a)(e — a) = sn(a)(e — a) — ", ay]
<|I(s(a) = sn(a))(e = a),as]| + [la™*", ai
< ls(a) = su(a),ail lle = a, ail| + [la"*, a4

becomes zero as n — oo. Hence |[[s(a)(e —a) — e,q;|| = 0 for ¢ = 1,2 and so
s(a)(e — a) = e. Similarly, (e — a)s(a) = e and therefore, s(a) = (e — a)~! and
e—a € G(E). (We call the series s(a) = e +a+a®+ - -, the associate series of a).

To prove the second part of (i), let, if possible, ¢ be a nontrivial K-homo-
morphism on E, |¢(a)] > 1. Let A € K be such that ¢(a) = A. Then |A| > 1
and ¢(A"ta) = 1 and so ¢(e — A~ta) = 0 as ¢ being nontrivial, ¢(e) = 1. Let
b=e—A"'a. Then ¢(b) = 0. But as |A\| > 1 and ||a,a;|| < 1 for i = 1,2, we have
A= a,a;]| < 1fori=1,2 and hence b = e — A~la € G(E). But then ¢(b) # 0 and
we have a contradiction and (i) is completely proved.

(ii) To see that G(FE) is open, let a € G(E). Note that, as aj,as are linearly
independent, for a € F, ||a,a;|| = 0 for ¢ = 1,2 if and only if a = 0, see [5]. Take
o = 3 (max;—12{||a™*, a;[|}) 7. Then for b € E with ||, a;]| < &4, i = 1,2, we have
| —a=tb,a;l| < |la™, a;l| ||b, a;]| < &, which implies, e + a~'b € G(E) by (i), and as
a+b=a(e+a~1b), we have a + b € G(E) which using Proposition 31 proves that
G(FE) is open.

To prove that f is a homeomorphism, let b € F, a € G(F) and ||b—a, a;|| < €4,
for i = 1,2; then, as a + (b — a) = b and G(E) is open, b € G(E). Write ¢ =
a”!(b—a). Then for i = 1,2, |lc,a;|| < [[a™*, a; [|b — @, a;|| < 3 and hence by (i),
e+ c € G(E). We also have, for each n € N, s,(—c)(e +¢) = e — (—=1)"1c"*! and
s(—c)=(e+¢) 1 € G(E) and for i = 1,2,
lle; all (L — e, ail[")

L=, ai
<2l aill(1 = le;aill™) - (as fle,aill <1/2)

Isn(=c) = e,aill < llesaill + lle,all® + - + lle, as|" =
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and so ||s(—c)—e, a;]| < 2||c,a;]| fori =1,2. Sinceb"!—a=! =[(e+c)t —ela™! =
[s(—c) — e]a™!, we have for i = 1,2:

1£(0) = f(a),aill = 167" = a7 sl = [[(s(=¢) = e)a™", ai
< lls(=¢) = e,aill la™h asll <27 asll 16— a, sl la™*, as

=2[la™", al|?[|b - a, ai.

Hence, || f(b) — f(a),a;|| < 2|la™t, a;||?||b — a,a;| for i = 1,2; whenever b € E with
b — a,a;|| < e,. But this proves that f is continuous on G(E). As f is one to
one on G(E), f~* = f. The mapping f is a homeomorphism on G(E) and (ii) is
proved. This completes the proof of the theorem. O

THEOREM 3.2. Let (E,|.,.||) be a 2-Banach algebra with unity e over K with
respect to ai,as, and a € E. Then,

(i) o(a) is closed in K,
(i) r(a) < maxi=12{[|a, ail|},
(111) o(a) is compact in K,
o(a) is nonempty if K= C, and
1
() ) = i s ]

PROOF. (i) For a € E define f, : K — E by fo()\) = e —a for A € K. Then f,
is continuous on K, and so f;}(G(E)) is open in K as G(FE) is open in (E, |.,.||) by
Theorem Il We claim that Q, = £, }(G(E)). To prove the claim, let A € Q,; then
Ae —a € G(E) and so f,(\) € G(E) which implies A € f,1(G(E)). Conversely, let
A € f7YG(E)). Then f,(A) = Ae —a € G(E) and so A ¢ o(a) and the claim is
proved. This proves that o(a) is closed.

(if) Write k = max;=1 2 ||a, a;]| and let, if possible, r(a) > k. Then there exists
A € o(a) such that |[A| > k, and therefore |[A\"'a,q;]] < 1 for i = 1,2. But this
implies by Theorem 3] e — A"'a € G(E) and hence A ¢ o(a), and (ii) is proved.

(iii) Combining (i) and (ii), we get (iii).

(iv) For a € E, define a mapping R, : Q, — G(E) by R,(\) = (Ae —a)7!,
A€ Q. Let A € Qq, 0 = [max;—12 [|[Ra(N), a;]]] 7. Let p € Q, be such that

1
(3.1) A=l < 56,

and b = (u — A)Rq(A). Then, as ||bya;|| < 1 fori = 1,2, e —b € G(E), by
Theorem 31l For ¢ = 1,2 we have
16, ail|*(1 — [Ib, as]|")

1= 16, a4l

lsn(0) — € = b, aill < [1b,aall* + -+ + [1b, 0" =

(see the proof of Theorem [B1]) and so, for ¢ = 1,2,

1, ai*

(3.2 (e—b)"t—e—bai =|s(b) —e—b,a] < ——"—, i=1,
) = < ol
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Now,
Ra(p) = Ra(N) + (1 = A)(Ra(N)?
= [(ne —a)"'(Ae —a) — e+ (1 — A)Ra(M)]Ra (M)
= [[(Ae —a)"H{(r = Ve + (e —a)}] 7" — e+ (1 = N)Ra ()] Ra(N)
— e+ (1= NRa)} " = e+ (3 = NRa(V]Ra(N).
Therefore, for i = 1, 2,
[Ra (1) = Ra(N) + (1 = M) (Ra(N)?, ai|
< e+ (n=NRa(N} ! = e+ (1= N Ra(N), as| [|Ra(N), ai|

(O = W] [ Ra (), ] |
S T 10— TR0, ]| el (by @2)

1
<2Ap = AP [Ra(N), ail® < 5 8l Ra(N), i (by B.1))

as [[b, aill = [u = A Ra(N), aill < 3
Therefore, for i = 1,2, for u € Q,, p # A and |u— A < %5,
HRa(u) — Ra(N)
w—A
Ra(p#)—=Ra(})
H—A

+ (Ra(N)?, aif| < 20 = Al Ra(N), ai*.

So, lim,, exists in the topological linear space (E,|.,.||) and equals
to —(R4(N))? for A € Q, and we conclude that R, is analytic in €2,,.

Now, if possible, let o(a) be empty. Then 2, = K = C and R, is an entire
function. Let A\ € C be such that k < ||, that is, [A"ta,a;|| < 1 for i = 1,2; k be
as in (ii). Then by TheoremB.I] e —A"1a € G(E) and as s(A"ta) = (e—A"la)~! =
e+ (A "ta)+ (A ta)? + - -, we have

(3.3) R.A) =X e—-X"ta) ' =xte+ A 2a+ 232

Let T', be the circle on the complex plane with center at origin and radius 7,
where k < r. Then the series on the right-hand side of [B3]) converges uniformly
on I';. and so term by term integration over I',. is allowed to the right hand-side of
the series in ([3.3]), and we conclude that for n =0,1,2,... and for r > k,

1
3.4 "= A"Ro(A) dA
(3.0 =5 | V)
and in particular

1
3.5 = — Ry (A) dA.
(35) o= gt B

But as R, is entire, by Cauchy theorem, the integral on the right-hand side of (3.3])
is zero, which is a contradiction and the proof of (iv) is complete.

(v) Let a € E. Then for r > r(a) also (34) holds. The continuity of R, in I',
implies that for 7 > r(a), B(r) = max;_; 5 ge[o,2x] | Ra(re?), a;|| is finite. Hence
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by B4) we have max;—1 2{||a", a;||} < r" "1 B(r) for all n € N, which then implies
that

1/n
(3.6) lim sup [ ?)E{Ha”,ajﬂ}} < r(a)
i=1,

n—oo
Again, for A € o(a), as we have, for all n € N,
Ne—a"=MXe—a)N"le+ N 204+ X" 2 a0,

we see that A"e — a" ¢ G(FE) and hence \" € g(a™) for all n € N. Then by (ii) we
have for all n € N, |A"| < r(a™) < [max,=12{]|a", a;||}]. Hence, for all A € o(a),

and for all n € N, |A] < [max;j—1 2{|a”, aj||}]1/n implying,
1/n
(37) (o) < Jim inf (e, al}|

Now (B0) and (B7) implies that lim, o [maxj:1,2{||a",aj||}]1/n exists and
equals to r(a). This establishes (v) and the proof of the theorem is complete. O

4. Spectral radius formula for 1-Banach algebras

The following theorem contains a new spectral radius formula for 1-Banach
algebras.

THEOREM 4.1. Let (E, ||.||) be an 1-Banach algebra with unity e over C, dim E
> 2 such that a nontrivial C-homomorphism on E exists. Then there exists an
1-Banach algebra (B, ||.||1) of which (E, ||.||) is a closed subalgebra, the 1-norm ||.||1

on B when restricted on E becomes the 1-norm ||.|| on E and a1,a2 € B such that
foralla e E,
(4.1)
1/n
_ n|l/n N n N n .
r(a) = lim [l Jim lim:%{ o |p(a™)¥(ai) — ¥(a )¢>(az)IH
lloll=lwl=1

ProOF. Follows from Lemma 5.4, Theorem 5.1 of [5] and Theorem B2l O

We conclude this section by stating the following 2-norm version of the Gelfand—
Mazur theorem [2] [3].

THEOREM 4.2. There does not exist a 2-Banach division algebra over C.

PROOF. If possible, let (E,|.,.]|) be a 2-Banach division algebra on C with
respect to ai,as. Then dim E' > 2. For each 0 # a € E, we claim that o(a) is a
singleton. To prove this claim, we observe that o(a) is nonempty by Theorem
and if A1, Ao € o(a), A1 # Az, then as A\je — a and Aye — a both are noninvertible,
we have \ie —a = Ase — a = 0 as E is a division algebra. So, A\; = A2, and our
claim is proved. Now for each a in E, let o(a) = {A(a)} and by definition of o(a),
a = Ma)e, that is, E is generated by e and hence dim F = 1 and the theorem
follows. O
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