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ON APPROXIMATION
OF THE RIEMANN-STIELTJES INTEGRAL
AND APPLICATIONS
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ABSTRACT. Several inequalities of Griiss type for the Stieltjes integral with
various type of integrand and integrator are introduced. Some improvements
inequalities are proved. Applications to the approximation problem of the
Riemann—Stieltjes integral are also pointed out.

1. Introduction

In 2002, Guessab and Schmeisser [3], incorporate the mid-point and the trape-
zoid inequality together, and they proved the following companion of Ostrowski’s
inequality:

THEOREM 1. Assume that the function f : [a,b] — R is of r-H-Hélder type,
where v € (0,1] and H > 0 are given, i.e., |f(t) — f(s)] < H|t — s|", for any
t,s € [a,b]. Then, for each x € [a,(a +b)/2|, one has the inequality

(1.1) f(l‘)+f(;l+b—x B _a/ oy

T+1 _ r+1 _ r+1
gH[Q a) ' 4 (a + b — 2z)

2r(r+1)(b—a)
This inequality is sharp for each admissible x. FEquality is obtained if and only if
f=xHf,+c, withc € R and

(x —t)", a x
fot) = §t(t — )", z<t<(atb)/2
fela+b—2x), (a+b)/2<t<D

In [11] Dragomir proved the following companion of the Ostrowski inequality
for mappings of bounded variation.
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146 ALOMARI

THEOREM 2. Let f : [a,b] = R be a mapping of bounded variation on [a,b).
Then we have the inequalities:

(12) fl@)+fla+b—=) / fit dt‘ [ ’x—(3a+b)/4”\a/(f),

2 b—a

for any x € [a,(a +b)/2], where \/Z(f) denotes the total variation of f on [a,b].
The constant 1/4 is best possible.

Also, Dragomir in [12] proved some companions of Ostrowski’s integral inequal-
ity for absolutely continuous mappings. Among others, our interest is incorporated
in the following result:

THEOREM 3. Let f: 1 CR — R be an absolutely continuous function on [a, b
such that f' € L[a,b]. Then for all x € [a, (a + b)/2] we have the inequality

flx)+ fla+b—12x) 1 /b
1. —
s : = | s
1 z— (3a+b)/4\> )
< |l =42 —m— bh—
[8+ (=FEE) 60 r
By Guessab—Schmeisser functional we mean the functional

o @+0)/2 £(2) + fla+b— x) u((a+b)/2) — u(a
GgS(fiu) ~—/a 5 du(x) — — / 1@

provided that the Stieltjes integral f: 2(f(@)+ f(a+b—=x)) du(z), and the Riemann

integral f f(t)dt exist.

Motlvated by Guessab—Schmeisser companion of Ostrowski’s inequality (1.1} .,
the author of this paper, has established the functional GS(f; ) in [I], and he has
proved the following results in estimating GS(f;u).

THEOREM 4. Let f : [a,b] — R be an r-H-Hdlder type mapping on [a,b], where
r and H > 0 are given, and u : [a,b] — R be a mapping of bounded variation on
[a,b]. Then the following inequality holds

(at+b)/2

H T
(14) GS(fiw)l < 50— \/ ().

THEOREM 5. Let f : [a,b] — R be an r-H-Holder type mapping on [a,b], and

u : [a,b] = R be an L-Lipschitzian mapping on [a,b], where r and H,L > 0 are
given. Then the following inequality holds

LH
(1.5) |g8(f,u)| < m

In this paper we point out several bounds for the functional GS(f;u) with vari-
ous type of integrand and integrator. Improvements bounds for GS( f; u) are proved.

(b—a)
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Finally, we apply the obtained results to approximate the Riemann—Stieltjes inte-
gral

5 du(x)

in terms of the Riemann integral f; f(t)dt

/(“+b)/2 fl@)+ fla+b—x)

2. The case of bounded variation integrators
2.1. The case of bounded variation integrands.

THEOREM 6. Let u : [a,b] = R be a mapping of bounded variation on [a,b] and
f i [a,b] = R be continuous and of bounded variation on [a,b]. Then we have the
inequality:
1 b (a+b)/2
(2.1) gs(fwl <5V V(W)

a a

PROOF. Using the fact that for a continuous function p : [a,b] — R and a
function v : [a,b] — R of bounded variation, one has the inequality

[ v vlo)] < sup ol I\/

te(a,b]

(2.2)

As u is of bounded variation on [a,b] and f is continuous, by (2.2) we have

(at+d)/2 _ b
gs(rl=| [ [HEHLEEEZ - [ s i aute)
fl@)+ flatb—z) iy “*Wz
gwe[aiggw/zl 2 —a/ 1) di -

Since f is of bounded variation, then using the companion of Ostrowskl type in-
equality (1.2), we may state that

X a — X b
RS ETES N

sup

w€la,(a+b) /2] 2

b
< sup Llle’x 3a+b/4”v \/

z€(a,(a+b)/2]

It follows that
(a+b)/2

V @

a

b (a+b)/2
<3V V@

and the theorem is proved. U

GS(fiu)l < sup 5 —

z€la,(a+b)/2]

f@)+ fla+b—1x) 1 /bf(t)dt

w\»—‘
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REMARK 1. If \/("T0/2(y) = Vl()a+b)/2(u)7 then 1] becomes
b

b
G5(f)l < 3 V() V)

a
COROLLARY 1. Let u be as in Theorem [6l
(1) If f : [a,b] — R be an L-Lipschitzian mapping on [a,b], then
(a+b)/2

Lb—a) \/ (u).

a

N |

GS(f;u)l <

1 (a+b)/2
() 1 f € CDla.t], then |GS(fu) < 5\ ()17

a

3)If f : [a,b] — R be a monotonic mapping, then
(a+b)/2

V@ -Ire) - fa),

a

where ||-||1 is the Ly norm, namely || f'|l1,[q,5 = fab | £/ (¥)|dt.

1,[a,b]"

1

GS(fiu)] < 5

COROLLARY 2. Let f be as in Theorem [0}
(1) If u: [a,b] = R be an K-Lipschitzian mapping on [a,b], then
b

1
GS(f5w)| < 7K (b~ a)\a/(f)~
b
(2) 1 u € COlab], then [GS(f; )| < 3 N ()~ I o2

a

(3) If u: [a,b] = R is a monotonic mapping, then

a+b

98 (f3u)| < ;\Z/m Ju(*57) —uta).

where || - ||1 is the Ly norm, namely |[u'[]1 [a,(a+b)/2] = f(a+b)/2 |u’ (t)|dt.

a

REMARK 2. In Corollary[l] we have the following cases:
(1) If f is L-Lipschitzian mapping on [a,b] and
(a) u is K-Lipschitzian mapping on [a, ], then

(2.3) GS(f)| < TKL(O — a)”
(b) u € CW[a,b], then
1 A
(2.4) IGS(f;u)| < §L(b —a) [[u'[|1,[a,(a+b)/2)-

(¢) u is monotonic on [a, b], then

(2.5) GS(f;u)] < %L(b—a) u((a+0)/2) = u(a)|.
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(2) If f € CW[a,b], and
(a) u is K-Lipschitzian mapping on [a, b], then

1
(2.6) GS(f;u)l < 7K (b= a)ll Il jap-
(b) u € CW[a,b], then we have the inequality:

1
(2.7) GS (5l < 1M fa el 11 o () 21

(¢) u is monotonic on [a, b], then

1,[a,b] ‘U(a i b) - U(a)’~

Lo
(28) GS(fi)| < 5If :

(3) If f is monotonic on [a, b], and
(a) u is K-Lipschitzian mapping on [a, b], then

(29) GS(fu)| < 7K~ a)l£(b) — f(a)].
(b) u € CM]a,b], then

(210) GS(f; )] < GLFG) — F@) I ety
(¢) u is monotonic on [a, b], then

(2.11) G5(7u)| < 3170) ~ @) [u(“22) ~ u(a)]

REMARK 3. In Corollary [2] we have the following cases:
(1) If w is K-Lipschitzian mapping on [a, b] and
(a) f is L-Lipschitzian mapping on [a, b], then inequality (2.3]) holds.
i

(b) f € CM]a,b], then inequality (2.6) holds.
(c) f is monotonic on [a, b, then inequality holds.
(2) If u € CM][a, b], and
(a) f is L-Lipschitzian mapping on [a, b], then inequality holds.
(b) f € CMla,b], then inequality holds.
(c) f is monotonic on [a, b], then inequality holds.
(3) If w is monotonic on [a, b], and
(a) f is L-Lipschitzian mapping on [a, b], then inequality holds.
(b) f € CMla,b], then inequality holds.
(c) f is monotonic on [a,b], then inequality holds.

2.2. The case of r-H-Holder type integrands.

THEOREM 7. Let u : [a,b] — R be a mapping of bounded variation on [a,b] and
f:a,b] = R be of r-H-Hélder type mapping on [a,b]. Then
(a+b)/2
(2.12) IGS(f;u)| < o+ 1)
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PROOF. As u is of bounded variation on [a,b] and f is of r-H-Hoélder type on

[a’a b]7 by " we have

gt =| [ [P = L i

(a+b)/2

V @

Using the companion of Ostrowski’s type inequality (1.1)), we may state that

forfb=n L [l

< sup

w€la,(a+b)/2] 2

T L

sup
z€la,(a+b)/2]

r+1 _ r+1 _ r+1 _ r
<H sup [2 (z a) + (a+ b —21x) } <H (b—a) '
w€[a,(a+b)/2] 27(r+1)(b—a) 27(r +1)

It follows that

(a+b)/2
f(@)+ fla+b—x) I
gS(fiuw)| < sup - f(t)dt u
| ( )l z€[a,(a+b)/2] 2 b—a a ( ) \a/ ( )
(a+b)/2
(b—a)
<
ST+ V.
and the theorem is proved. O

REMARK 4. Inequality {i improves inequality 1D by the constant 2%7 and
therefore, (2.12) is better than (|1.4]).

COROLLARY 3. Let u : [a,b] = R be a mapping of bounded variation on [a,b)
and f : [a,b] = R be of L-Lipschitzian type mapping on [a,b]. Then

(a+b)/2

L(b—a) \/ (u).

a

GS(f;u)] <

g

COROLLARY 4. Let f : [a,b] — R be of r-H-Hdélder type mapping on [a, b].
(1) If w is K-Lipschitzian on [a,b], then |GS(f;u)| < %(b —a)rtL,
(2) Ifue C(l)[a,b], then |GS(f;u)] < %(b —a)" ||u’||17[a,(a+b)/2].

(3) If u is monotonic on [a,b], then |GS(f;u)| < WH-H)(b_ a)" |u(%$2) — u(a)|.
Therefore, we may deduce the following result.

COROLLARY 5. Let f : [a,b] = R be L-Lipschitzian mapping on [a,b].
(1) If w is K-Lipschitzian on [a,b], then |GS(f;u)| < $KL(b— a)?.
(2) If u € CWVa,b], then |GS(f;u)| < 1L(b = a) |41, a,(a+b) /2

(3) If u is monotonic on [a,b], then |GS(f;u)| < TL(b— a)|u(“7b) — u(a)|.



ON APPROXIMATION OF THE RIEMANN-STIELTJES INTEGRAL 151

2.3. The case of absolutely continuous integrands.

THEOREM 8. Let u : [a,b] — R be a mapping of bounded variation on [a,b] and
f:[a,b] = R is absolutely continuous on [a,b]. Then

(a+b)/2

G= ) loofary V (W)

a

PROOF. As u is of bounded variation on [a,b] and f is continuous, by (2.2) we
have

gstrl=| [ e R e L0

GS(f5u)] <

N

2
_ b (a+b)/2
< sup f@)+ flatb—z) 1 / f(0) dt \/ ().
z€a,(atb)/2] 2 b—aJ, a

Since f is absolutely continuous on [a,b], then using the companion of Ostrowski
type inequality (|1.3), we may state that

CESETEE Ry

sup
wela,(a+b)/2] 2
<m —(3a+10b)/4

b—a

1
< sup [ +2

2 1
(b=a)llf llos,fape] < = (0=a)llf' lloc,a,b]-
z€la,(a+b)/2] L8 )} bl = g o)

It follows that

(a+b)/2
f@)+ fla+b—1x) 1 b
GS(fiu)| < sup - f(t)dt (u)
€a,(a+b)/2] 2 b—a/, \a/
1 (a+b)/2
< 7 (0= a)llf lloo o) \V (w),
and the theorem is proved. O

COROLLARY 6. Let f be as in Theorem[8]
(1) If u is K-Lipschitzian on [a,b], then |GS(f;u)| < 2K (b— a)?(|f'[loo,fa.b-
(2) If ue CWla,b], then |GS(fiu)| < 10— a)lf lloo,fab - 10111 far(ats)/2)-
(3) Ifu is monotonic on [a,b], then |GS(f;u)| < §(b—a)llf']lco,(a,p) | u () — u(a)|.

3. The case of Lipschitzian integrators

3.1. The case of bounded variation integrands.

THEOREM 9. Letu : [a,b] — R be an K -Lipschitzian on [a,b] and f : [a,b] — R
be of bounded variation on [a,b]. Then |GS(f;u)] < SK(b—a) \/b (f)-

a
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PRrROOF. It is well-known that for a Riemann integrable function p : [a,b] — R
and L-Lipschitzian function v : [a,b] — R, one has the inequality

/ bp(t)dum] <t Ip(o) e

Therefore, as u is K-Lipschitzian on [a, b], by (3.1) we have

(3.1)

(a+b)/2 _ b
GS(f;u)| = {f@“f(;*b 2L f(t)dt}du(x)
(a+b)/2 x)+ fla+b—x)
K/ 2 b—a/f t) dt\d

Since f is of bounded variation, then using the companion of Ostrowski type in-
equality (1.2), we may state that

(a+d)/2 b
fl@)+ fla+b—x) 1
/a : —b_a/ F(1) di\de

Yo [ [ B 2 20

It follows that
(a+b)/2
oSl < K [
a

5 b
< TGK(b_a)\!(f)

and the theorem is proved. O

dzx

2 b—a

fl@)+ fla+b—2x) 1 /bf(t)dt

COROLLARY 7. Let u be as in Theorem [l
(1) If f is L-Lipschitzian on [a,b], then |GS(f;u)| < = KL(b— a)?.
(2) If f € CW[a,b], then |GS(fiu)] < K (b —a)|lf |1 fap)-
(3) If f is monotonic on [a,b], then |GS(f;u)| < K (b—a)-|f(b) — f(a)l.

3.2. The case of r-H-Holder type integrands.

THEOREM 10. Let u : [a,b] — R be an K-Lipschitzian on [a,b] and f : [a,b] —
R be of r-H-Hdolder type mapping on [a,b]. Then

(b _ CL)T+1

2r(r+1)(r+2)°
PROOF. As u is K-Lipschitzian on [a,b] and f is continuous, by (3.1)) we have

(a+b)/2 _ b
IGS(f;u) K/ +f(;+b a —bia/ f(t) dt|dx

(3.2) |GS(f;u)| < KH
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Using the companion of Ostrowski type inequality (1.1)), we may state that
(a+b)/2 b 1 b
[ LGRS (ELEL R Ty e
o —a

5 _
(a+b)/2 r41 o\l _ r4+1
<H/ 2tz —a)" + (a+b—22) i
2r(r+1)(b—a)

(b—a)™+!
2r(r+1)(r+2)

X

It follows that

(a+b)/2 _ 1 b
1GS(f;u) K/ Dt flatb-z) / f(t) dt|dz
2 b—a o
_ r+1
< KHM,
2r(r+1)(r+2)
and the theorem is proved. O

REMARK 5. Inequality 1) improves inequality 1' by the constant 2%, and
therefore ([3.2)) is better than (1.5)).

COROLLARY 8. Let u be as in Theorem [10, and f [a,b] — R be of L-
Lipschitzian type mapping on [a,b]. Then |GS(f;u)| < KL(b —a)?.

3.3. The case of absolutely continuous integrands.

THEOREM 11. Let u : [a,b] — R be a mapping of bounded variation on [a,b]
and f : [a,b] = R be absolutely continuous on [a,b]. Then

GS(Fu)| < 7550~ ) o -

PROOF. As u is K—Lipschitman on [a,b] and f is continuous, by (3.1)) we have

(a+b)/2 _
sl <k [ [{ESRmn /)f 1) did

Using the companion of Ostrowski’s type inequality ( -, we may state that

(@21 f(@) + flatb—2) 1 [
/a - _a/f(t)dtdac

2
(a+b)/2 11 z— (3a+b)/4\2 1
<=0 oo | [8 #2(T ) e < -1 o

It follows that
(a+b)/2
G5 (f5u) K/

*K( — )2 (| ']l oo, (.0

and the theorem is proved. U

z)+ fla+b—x) 1t
5 _b—a/a f(t) dt|dx
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4. A Numerical quadrature formula
for the Riemann—Stieltjes integral

In this section, we use the results from the previous sections to approximate the
Riemann—Stieltjes integral fa(aer)/z [W] du(z), in terms of the Riemann

integral f: f(t)dt
THEOREM 12. Let f,u be as in Theorem [6] and consider
In={a=x0 <21 < - <wp_1 <xpn =b},

be a partition of [a,b]. Denote h; = x;y1 —x;, i =1,2,...n— 1. Then we have

(a+b)/2 T a _
ay [ IR ) - a () + Rl )
where,
S u(migr +30)/2) —uw) | [Eeted/?
(12)  A(foudy) = Y I Zx/ J(t)dt
i=0 g T

and the remainder R, (f,u,I}) satisfies the estimation

Tita (a+b)/2
LACRNAES S RV VAT

i=0,n—1

a

PROOF Applying Theorem |§| on the intervals [z;,;41], 1 = 1,2,---n — 1, we

(17+1 11)/ _
‘/ AL gy

1 Tit1 (Tit1+xi)/2

U((Tit1 + T4 —u(x; (Tit1t+zi)/2
((@it1 + h3/2) ( )/z f(t)dt'<2\/(f) Vo ().

Summing the above inequality over i from 0 to n — 1 and using the generalized
triangle inequality, we deduce that

a —1 rmign Tip1tai)/2
/a< +b)/2 f(:v)+f(;+b—x)du(x) G| < ;z_% [ y ( y >/(u)}
1 1 l n 1(3?7+1-;-33 )/2
ram {Vols Ve
1 Tit1 (a+b)/2
:,;ﬁﬁ{VUﬁ V),

X a

and the theorem is proved. U
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THEOREM 13. Let f,u be as in Theorem[10] and Ij, as above. Then

(a+b)/2 _
/ f(x) +f(§+b ”f)du(x) = A (f,u, In) + R (f,u, In)

where, A, (f,u,Iy) is defined in and the remainder R, (f,u,I}) satisfies the
estimation

KH

O s T )

(W) (b—a)

where, v(h) = max;_g—{hi}.

PROOF. Applying Theorem [10]on the intervals [z;, z;41], 4 =1,2,...n—1, we
get

/(m+1+m)/2 f(x) + f(a Lh 1’) du(x)
T 2
u((Tig1 4 35)/2) — u(;) [@EirrFeo/2 K )
a hi /961 f(t)d‘gwwhiJrl

Summing the above inequality over ¢ from 0 to n — 1 and using the generalized
triangle inequality, we deduce that

(a+b)/2 fx)+ fla+b—2x) KH n—1
—A )| 577 i
‘ [ x dul@) = Anllu )| < 5y gy 2T
KH S
2 (r+1)(r +2) L—rgixl{ }} z::o
KH
<————[w(h)] (b—a),
TSV R
and the theorem is proved. .

REMARK 6. In order to approximate the Riemann—Stieltjes integral (4.1)), one
may state several interesting error estimations for the remainder R, (f,u, I}) under
various assumptions using the inequalities from Sections 2 and 3. We omit the
details.
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