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GROUP CLASSIFICATION OF VARIABLE

COEFFICIENT QUASILINEAR

REACTION-DIFFUSION EQUATIONS

Olena Vaneeva and Alexander Zhalij

Abstract. The group classification of variable coefficient quasilinear reaction-
diffusion equations ut = uxx + h(x)B(u) is carried out exhaustively. This
became possible due to usage of a conditional equivalence group found in the
course of the study of admissible point transformations within the class.

1. Introduction

Geometrical study of differential equations (DEs) has a long and distinguished
history dating back to the second part of the XIX century when the pioneering
works of Gaston Darboux, Sophus Lie and Élie Cartan were published. Their ideas
became a source for a number of developments including the theory of completely
integrable systems and the study of conservation laws. A brief but very nice re-
view of both classical and modern treatments of geometrical study of differential
equations is presented in [1]. One of the classical topics of such studies is Lie
(point) symmetries of differential equations. Lie proved that knowledge of continu-
ous group of nondegenerate point transformations that leave an equation invariant
allows one to reduce this equation to one with fewer independent variables. In
many cases, this reduction procedure results in construction of a group-invariant
solution in closed form. It is worthy to say that Lie symmetries give a powerful
tool for finding exact solutions for partial differential equations (PDEs), and this
is one of the most successful applications of geometrical studies of DEs [2,3]. An-
other feature of Lie symmetries is that they reveal equations which are important
for applications among wide set of admissible ones. Indeed, all basic equations
of mathematical physics, e.g., the equations of Newton, Laplace, Euler–Lagrange,
d’Alembert, Lamé, Hamilton–Jacobi, Maxwell, Schrödinger etc., have rich symme-
try properties [4]. This property distinguishes these equations from other PDEs.
Therefore, an important problem arises to single out from a given class of PDEs
those admitting Lie symmetry algebra of the maximally possible dimension. This
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problem is called the group classification problem and is formulated as follows [3,5]:
given a class of PDEs, to classify all possible cases of extension of Lie invariance
algebras of such equations with respect to the equivalence group of the class.

At this stage the modern group analysis provides us with two main approaches
for solving group classification problems. The first is algebraic one, based on sub-
group analysis of the corresponding equivalence group [6,7]. It results in complete
group classification only if the class under study is normalized [8]. Roughly speak-
ing, the class is normalized if any point transformation between two fixed equations
from the class is induced by a transformation from its equivalence group. The sec-
ond approach is based on a direct integration of determining equations implied
by the infinitesimal invariance criterion. It is usually efficient only for classes of
simple structure parameterized by a few arbitrary elements that are constants or
functions of a single variable. Obviously, normalized classes or ones of simple struc-
ture do not exhaust a set of classes of PDEs or their systems that are important
for applications. To solve more group classification problems, a number of no-
tions was introduced recently as well as new approaches were developed. These
are, e.g., notions of admissible [8] (synonym: form-preserving [9]) transformations,
generalized [10] and extended [11] equivalence groups, normalized class of DEs [8],
equivalence groupoid [12], contractions of equations and conservation laws [13,14].
Among new approaches it is worthy to mention the method of furcate split [15], the
method of mapping between classes [16], the partition of a class into normalized
subclasses [7,8], etc.

In this paper we solve the group classification problem for the class of variable
coefficient semilinear reaction-diffusion equations of the form

(1.1) ut = uxx + h(x)B(u),

where h = h(x) and B = B(u) are arbitrary smooth functions of their variables,
hBuu 6= 0. Linear equations singled out from class (1.1) by the condition Buu = 0
are excluded from consideration since group classification of all second-order linear
PDEs in two dimensions was performed by Lie (see [17]).

Equations from this class are used to model various phenomena such as mi-
crowave heating, problems in population genetics, etc. (see, e.g., [18] and references
therein). Theorems on existence and uniqueness of bounded solutions for equations
of a more general form ut = uxx + F (t, x, u) were proved in [19].

Lie symmetries of certain subclasses of (1.1) are known. The group classifica-
tion of constant coefficient equations from class (1.1) was carried out by Dorod-
nitsyn [20] (the results are adduced in handbook [5]). Class (1.1) includes the
generalized Huxley equations

ut = uxx + h(x)u2(1 − u),

whose Lie symmetries were studied in [21,22]. There exists also a certain intersec-
tion with the results on group classification of the classes

ut = uxx + H(x)um + F (x)u, m 6= 0, 1, H 6= 0, and(1.2)

ut = uxx + H(x)u2 + G(x), H 6= 0,(1.3)
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which were obtained in [16]. Note that the group classification for the general class
of (1+1)-dimensional second-order quasilinear evolution equations

ut = F (t, x, u, ux)uxx + G(t, x, u, ux), F 6= 0,

was carried out in [6]. Nevertheless those results obtained up to a very wide equiv-
alence group seem to be inconvenient to derive a group classification for class (1.1).

The structure of this paper is as follows. In the next section we investigate
equivalence transformations in class (1.1). Lie symmetries are classified in Section 3.

2. Equivalence transformations

To solve a group classification problem for a class of differential equations it
is important to describe point transformations that preserve the differential struc-
ture of the class and transform only its arbitrary elements. Such transformations
are called equivalence transformations and form a group [3]. According to Ovsian-
nikov, the equivalence group consists of the nondegenerate point transformations of
the independent and dependent variables and of the arbitrary elements of the class,
where transformations for independent and dependent variables do not involve arbi-
trary elements, i.e., they are projectible on the space of independent and dependent
variables. If this restriction is neglected, then the corresponding equivalence group
is called the generalized equivalence group [10]. If new arbitrary elements appear
to depend on old ones in a nonpoint (possibly, nonlocal) way, then the correspond-
ing equivalence group is called extended [11]. An admissible transformation is a
triple consisting of two fixed equations from a class and a point transformation that
links these equations. The set of admissible transformations of a class naturally
possesses the groupoid structure with respect to the composition of transforma-
tions, and hence it is called the equivalence groupoid of the class [12]. We look for
admissible transformations for class (1.1) using the direct method [9,14].

Consider a pair of equations from the class under consideration, i.e., equa-
tion (1.1) and the equation

(2.1) ũt̃ = ũx̃x̃ + h̃(x̃)B̃(ũ),

and assume that they are connected via a point transformation T of the general
form

(2.2) t̃ = T (t), x̃ = X(t, x), ũ = U(t, x, u),

where TtXxUu 6= 0. We can restrict ourselves by the transformations of this form
instead of general transformations t̃ = T̂ (t, x, u), x̃ = X̂(t, x, u), ũ = Û(t, x, u). It
is due to the fact that class (1.1) is a subclass of a more general class of (1+1)-
dimensional quasi-linear evolution equations ut = F (t, x, u)uxx +G(t, x, u, ux) with
F 6= 0, for which admissible transformations are proved to be of the form (2.2) [15].

We have to derive the determining equations for the functions T , X and U
and then to solve them. Simultaneously we have to find a connection between
arbitrary elements of equations (1.1) and (2.1). Substituting the expressions for
the new (tilded) variables into (2.1), we obtain an equation in the old (untilded)
variables. It should be an identity on the manifold L determined by (1.1) in the



84 VANEEVA AND ZHALIJ

second-order jet space J2 with the independent variables (t, x) and the dependent
variable u. To involve the constraint between variables of J2 on the manifold L,
we substitute the expression of ut implied by equation (1.1). The splitting of this
identity with respect to the derivatives uxx and ux gives the determining equations
for the functions T , X and U :

Uuu = 0, Xx
2 = Tt, 2

Uxu

Uu

= −XtXx

Tt

+
Xxx

Xx

,(2.3)

Tth̃B̃ − UuhB = Ut − Uxx − Xt

Xx

Ux.(2.4)

Solving at first equations (2.3) we get that Tt > 0 and

X = ε
√

Tt x + σ(t), U = U1(t, x)u + U0(t, x),

U1 = ζ(t) exp
(

−1
8

Ttt

Tt

x2 − ε

2
σt√
Tt

x

)

,

where U0, σ and ζ are arbitrary smooth functions of their variables; ε = ±1. Then
equation (2.4) can be written as

(2.5) Tth̃B̃ − U1hB =
1

∑

i=0

(

U i
t − U i

xx − 1
2

Ttt

Tt

U i
xx − ε

σt√
Tt

U i
x

)

ui,

where u1 = u, u0 = 1. Investigating (2.5) when the arbitrary elements h and B
vary, we derive the usual equivalence group of class (1.1).

Theorem 2.1. The usual equivalence group G∼ of class (1.1) consists of the
transformations

t̃ = δ2
1t + δ2, x̃ = δ1x + δ3, ũ = δ4u + δ5, h̃ =

δ4

δ2
1δ0

h, B̃ = δ0B,

where δj, j = 0, . . . , 5, are arbitrary constants with δ0δ1δ4 6= 0.

It appears that there exist point transformations between equations from (1.1)
which do not belong to G∼ and form a conditional equivalence group. Moreover,
this group is not usual but a generalized extended one.

Theorem 2.2. The generalized extended equivalence group Ĝ∼
exp of the subclass

(2.6) ut = uxx + h(x)(enu + r)

of class (1.1) is formed by the transformations

t̃ = δ2
1t + δ2, x̃ = δ1x + δ3, ũ = δ4u + ϕ(x),

h̃ =
δ4

δ2
1

exp
(

− n

δ4
ϕ

)

h, ñ =
n

δ4
, r̃ = exp

( n

δ4
ϕ

)(

r − ϕxx

δ4h

)

,

where r and δj, j = 1, . . . , 4, are arbitrary constants with δ1δ4 6= 0. The transfor-
mation component for r can be interpreted as the constraint for ϕ,

ϕxx = δ4h
(

r − r̃ exp
(

− n

δ4
ϕ

))

.
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Theorem 2.2 implies that class (2.6) reduces to the class ũt = ũxx + h̃(x)enũ

by the transformation t̃ = t, x̃ = x, ũ = u + ϕ(x), where h̃(x̃) = e−ϕ(x)h(x)
and ϕxx = rh(x). Class (2.6) is normalized. Therefore, the equivalence group of
class (2.6) with r = 0 can be found by setting r̃ = r = 0 in transformations from
the group Ĝ∼

exp.

Corollary 2.1. The usual equivalence group G∼
exp of the class

ut = uxx + h(x)enu

consists of the transformations

t̃ = δ2
1t + δ2, x̃ = δ1x + δ3, ũ = δ4u + δ5x + δ6,

h̃ =
δ4

δ2
1

exp
(

− n

δ4
(δ5x + δ6)

)

h, ñ =
n

δ4
,

where δj, j = 1, . . . , 6, are arbitrary constants with δ1δ4 6= 0.

In the course of the study of Lie symmetries we will use the derived equivalence
transformations for the simplification of calculations and for presenting the final
results in a concise form.

3. Lie symmetries

We study Lie symmetries of equations from class (1.1) using the classical ap-
proach [3] in a combination with the method of furcate split [15]. We search for
vector fields of the form

Q = τ(t, x, u)∂t + ξ(t, x, u)∂x + η(t, x, u)∂u

that generate one-parameter Lie symmetry groups of a fixed equation L from
class (1.1). These vector fields form the maximal Lie invariance algebra Amax =
Amax(L) of the equation L. Any Lie symmetry generator Q satisfies the infinite-
simal invariance criterion, i.e., the action of the second prolongation Q(2) of Q on
the equation L results in the condition identically satisfied for all solutions of L.
Namely, we require

(3.1) Q(2)(ut − uxx − h(x)B(u)
)∣

∣

L
= 0.

After elimination of ut by means of (1.1), equation (3.1) can be regarded as a
polynomial in the variables ux, uxx and utx. The coefficients of different powers of
these variables should be zeros. This results in the determining equations for the
coefficients τ , ξ and η. Solving these equations implies that τ = τ(t) and ξ = ξ(t, x),
which agrees with the general results on point transformations between evolution
equations [9]. The remaining determining equations have the form

2ξx = τt, ηuu = 0, 2ηxu = ξxx − ξt,(3.2)

ηhBu = (−ξhx + (ηu − τt) h) B + ηt − ηxx.(3.3)

Integrating equations (3.2) we get the following expressions for ξ and η:

ξ = 1
2 τt x + σ(t), η =

(

− 1
8 τttx

2 − 1
2 σtx + ζ(t)

)

u + η0(t, x),
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where σ, ζ and η0 are arbitrary smooth functions of their variables. Then equa-
tion (3.3) becomes

(3.4)
((

1
8 τttx

2 + 1
2 σtx − ζ

)

u − η0)

hBu =
((

1
8 τttx

2 + 1
2 σtx − ζ + τt

)

h

+
(

1
2 τtx + σ

)

hx

)

B +
(

1
8 τtttx

2 + 1
2 σttx − ζt − 1

4 τtt

)

u − η0
t + η0

xx.

It is called the classifying equation and should be solved simultaneously with respect
to remaining uncertainties in the coefficients of infinitesimal generator Q, i.e., the
functions τ , σ, ζ and η0, and arbitrary elements of the class, namely, h and B.

In order to find the common part of Lie symmetries for all equations from
class (1.1), we split it with respect to the arbitrary elements in equation (3.4).
This results in τt = ξ = η = 0.

Proposition 3.1. The intersection of the maximal Lie invariance algebras of
equations from class (1.1) (called the kernel algebra) is the one-dimensional algebra
A∩ = 〈∂t〉.

The next step is to classify possible extensions of A∩ using the method of furcate
split [14, 15]. For any operator Q from Amax the substitution of its coefficients
into (3.4) gives an equation on B of the general form

(au + b)Bu = pB + qu + r,(3.5)

where a, b, p, q and r are constants which are defined up to a nonzero multiplier.
The set V of values of the coefficient tuple (a, b, p, q, r) obtained by varying of an
operator from Amax is a linear space. Note that (a, b) 6= (0, 0) and the dimension
k = k(Amax) of the space V is not greater than 2. Otherwise the corresponding
equations imply that either B is linear in u or the system is incompatible. The
value of k is an invariant of the transformations from G∼. Therefore, there exist
three G∼-inequivalent cases for the value of k: k = 0, k = 1 and k = 2. We consider
these possibilities separately.
I. The condition k = 0 means that (3.4) is not an equation with respect to B but
an identity. Therefore, B is not constrained and τtt = σt = ζ = η0 = 0. We obtain
that τ = c1t + c2, σ = c3 and the classifying equation on h has the form

(3.6)
(

1
2 c1x + c3

)

hx + c1h = 0,

where c1, c2, and c3 are arbitrary constants. If h is arbitrary we get the kernel
algebra A∩ presented by Case 0 of Table 1. It follows from (3.6) that the extensions
are possible in two cases: either h = δ(x+β)−2 or h = δ, where β and δ are arbitrary
constants, δ 6= 0. Up to G∼-equivalence β can be set to zero value and δ to ±1
depending on its sign. These two cases are presented by Cases 1 and 2 of Table 1.
II. If k = 1, then we have, up to a nonzero multiplier, exactly one equation of the
form (3.5) with respect to the function B. The integration of this equation up to
G∼-equivalence gives three cases

1. B = um + β1u + β2, 2. B = eu + β1u + β2, 3. B = u ln u + β2,

where β1, β2 and m are arbitrary constants, m 6= 0, 1. The next step is to substitute
each of the three derived forms of B into equation (3.4) and subsequently to split
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it with respect to linearly independent functions of the variable u. Let us consider
these cases separately.
II.1. Let B = um + β1u + β2. If m 6= 2 then splitting equation (3.4) leads to the
condition η0 = 0 and the three classifying equations on the function h

(

1
2 τtx + σ

)

hx + ((1 − n)W + τt) h = 0, β2
((

1
2 τtx + σ

)

hx + (W + τt) h
)

= 0,

(1 − β1)
(

1
2 τtx + σ

)

hx + (W + (1 − β1)τt) h − Wt + 1
4 τtt = 0,

where W = 1
8 τttx

2 + 1
2 σtx−ζ, Wt = ∂W

∂t
. The study of compatibility of this system

shows that if β2 6= 0, then τ = c1t + c2, σ = c3, ζ = 0 and the classifying equation
on h is of the form (3.6). Therefore, this is a subcase of the case k = 0 considered
above.

If m 6= 2 and β2 = 0, then class (1.1) takes the form (1.2) with H(x) = h(x)
and F (x) = β1h(x). Using the results of [16] we derive that extension of A∩ is
possible if β1 = 0 and the function h takes one of the forms presented by Cases 3,
4 and 5 of Table 1. If β1 6= 0, then the cases of extension of A∩ are subcases of
Cases 1 and 2 of Table 1.

If B = u2 + β1u + β2, then β1 can always be set to zero by the translation
u 7→ u − β1/2 and then class (1.1) coincides with (1.3), where H(x) = h(x) and
G(x) = β2h(x). Using the results derived in [16] we obtain that the cases of Lie
symmetry extension are either presented by Cases 1 and 2 of Table 1 if β2 6= 0 or
by Cases 3–5 of Table 1 if β2 = 0.
II.2. If B = eu + β1u + β2, then the classifying equations imply τtt = σt = ζ = 0.
We obtain τ = c1t + c2, σ = c3 and the system of equations on h

((

1
2 c1x + c3

)

hx + c1h
)

β1 = 0, η0h +
(

1
2 c1x + c3

)

hx + c1h = 0,
((

1
2 c1x + c3

)

hx + c1h
)

β2 + η0h β1 + η0
xx − η0

t = 0.

If β1 6= 0, then η0 = 0 and the classifying condition on h is exactly equation (3.6).
This case can be included in the general case with arbitrary B. If β1 = 0, then
β2 can be set to zero using the transformation from the conditional equivalence
group Ĝ∼

exp. Therefore, η0 = c4x + c5, where c4 and c5 are arbitrary constants and
the remaining classifying equation on h takes the form

(3.7)
(

1
2 c1x + c3

)

hx + (c4x + c5 + c1)h = 0.

Combined with the multiplication by a nonzero constant, each transformation from
the equivalence group G∼

exp is extended to the coefficient tuple of the above equation
in the following way

c̃1 = κ c1, c̃3 = κ
(

c3δ1 − 1
2 c1δ3

)

, c̃4 =
κ

δ1

(

c4 + 1
2 c1δ5

)

,

c̃5 =
κ

δ1

(

c5δ1 + c3δ1δ5 − c4δ3 − 1
2 c1δ3δ5

)

.

Here κ is an arbitrary nonzero constant. Using these transformations we derive the
following statement.



88 VANEEVA AND ZHALIJ

Table 1. The group classification of the class ut = uxx + h(x)B(u), hBuu 6= 0.

no. B(u) h(x) Basis of Amax

0 ∀ ∀ ∂t

1 ∀ δx−2 ∂t, 2t∂t + x∂x

2 ∀ δ ∂t, ∂x

3 um δxs ∂t, 2(m − 1)t∂t + (m − 1)x∂x − (s + 2)u∂u

4 um δex ∂t, (1 − m)∂x + u∂u

5 um δ ∂t, ∂x, 2(m − 1)t∂t + (m − 1)x∂x − 2u∂u

6 eu δxs ∂t, 2t∂t + x∂x − (s + 2)∂u

7 eu δe±x2

∂t, ∂x ∓ 2x∂u

8 eu δ ∂t, ∂x, 2t∂t + x∂x − 2∂u

9 u ln u δ ∂t, ∂x, eδtu∂u, eδt(∂x − δ
2 xu∂u)

Here δ, m and s are arbitrary constants, m 6= 0, 1, s 6= 0, δ = ±1 mod G∼.

Lemma 3.1. Up to G∼
exp-equivalence the parameter tuple (c1, c3, c4, c5) can be

assumed to belong to the set {(1, 0, 0, c̄5), (0, 1, ±2, 0), (0, 1, 0, 0), }, where c̄5 is an
arbitrary constant.

The integration of equation (3.7) up to G∼
exp-equivalence leads to the forms of

h presented in Cases 6–8 of Table 1. In Case 6 we used the notation s = −2(c̄5 +1).
II.3. If B = u ln u + β2, then η0 = 0 and the remaining classifying conditions are

(

1
2 τtx + σ

)

hx + τth = 0,
(

1
8 τttx

2 + 1
2 σtx − ζ

)

h = 1
8 τtttx

2 + 1
2 σttx − ζt − 1

4 τtt,

β2
((

1
2 τtx + σ

)

hx +
(

1
8 τttx

2 + 1
2 σtx − ζ + τt

)

h
)

= 0.

Investigation of this system implies that if β2 6= 0 or β2 = 0, but hx 6= 0, then
τtt = σt = ζ = 0. Therefore τ = c1t + c2, σ = c3 and the classifying equation on h
is (3.6). In other words, we get nothing but subcases of Cases 1 and 2 of Table 1.
At the same time, if β2 = 0 and h = δ = const, then the classifying equations lead
to the conditions τt = σtt − δσt = ζt − δζ = 0. Therefore τ = c1, ξ = c2 + c3eδt,
η =

(

− δ
2 c3x + c4

)

eδtu and we have an extension of A∩ on three Lie symmetry
operators (Case 9 of Table 1).
III. Let k = 2. We choose a basis {(ai, bi, pi, qi, ri), i = 1, 2} of the space V of the
tuples (a, b, p, q, r) associated with Amax. The system on B is of the form

(a1u + b1)Bu = p1B + q1u + r1,

(a2u + b2)Bu = p2B + q2u + r2.

The determinant of the matrix M =
(

a1 b1

a2 b2

)

is nonzero, since otherwise B is linear
in u. Therefore, the system can be rewritten in the form

uBu = p′

1B + q′

1u + r′

1,

Bu = p′

2B + q′

2u + r′

2,
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where
(

p′
1

p′
2

)

= M−1
(

p1

p2

)

,

(

q′
1

q′
2

)

= M−1
(

q1

q2

)

,

(

r′
1

r′
2

)

= M−1
(

r1

r2

)

;

M−1 is the inverse of the matrix M . Studying the latter system we get that it is
compatible only if B is either linear or quadratic. The case B is quadratic in u
is considered already in the course of the study of the case B = um + β1u + β2.
So, the case k = 2 does not lead to a new case of Lie symmetry extension for
equations (1.1) with Buu 6= 0.

The group classification problem for class (1.1) is solved exhaustively. The
results are summarized in Table 1. It is important to note that group classification
of subclass (2.6) is carried out up to the Ĝ∼

exp-equivalence, whereas all other cases
are classified up to the usual G∼-equivalence.

4. Conclusion

In this paper we solve the group classification problem for the class of (1+1)-
dimensional quasilinear diffusion equations with a variable coefficient nonlinear
source (1.1) which arise as mathematical models in problems of mathematical biol-
ogy and other applied areas [18]. The results of group classification can be applied
for searching closed form solutions via the classical reduction method. The know-
ledge of Lie symmetries is also necessary for finding nonclassical symmetries (called
also Q-conditional symmetries or reduction operators) of equations (1.1). This will
be the subject of a forthcoming paper.
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