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EMERGING PROBLEMS IN APPROXIMATION
THEORY FOR THE NUMERICAL SOLUTION

OF THE NONLINEAR SCHRÖDINGER EQUATION

L. Fermo, C. Van der Mee, and S. Seatzu

Abstract. We present some open problems pertaining to the approximation
theory involved in the solution of the Nonlinear Schrödinger (NLS) equation.
For this important equation, any Initial Value Problem (IVP) can be theo-
retically solved by the Inverse Scattering Transform (IST) technique whose
main steps involve the solution of Volterra equations with structured kernels
on unbounded domains, the solution of Fredholm integral equations and the
identification of coefficients and parameters of monomial-exponential sums.
The aim of the paper is twofold: propose a method for solving the above
mentioned problems under particular hypothesis; arise interest in the issues
illustrated to achieve an effective method for solving the problem under more
general assumptions

1. Introduction

The class of Nonlinear Partial Differential Equations (NPDEs) of integrable
type is important in mathematics as in several applicative areas of physics, biol-
ogy and engineering [1–3, 9, 12]. For this special class of NPDEs, the nonlinear
Schrödinger (NLS) equation, which arises in modeling electromagnetic waves in
optical fibers as well as waves on the surface of deep water, has a special role in
mathematics [4, 11, 13, 15]. Firstly, we recall that the NLS equation is expressed
as

(1.1) iut + uxx ± 2|u|2u = 0, u = u(x, t), x ∈ R, t > 0

where i denotes the imaginary unit, the subscripts x and t denote the partial
derivatives with respect to position x and time t and the sign ± depends on the
symmetry properties of the model we are addressing. In particular, the plus sign
appears in the focusing case and the minus sign in the defocusing case, which
represent the two most important situations.

2010 Mathematics Subject Classification: 41A46, 65R20, 35P25.
The research was partially supported by the National Group for Scientific Computing and

the National Group for Mathematical Physics of the National Institute for Advanced Mathematics
(INdAM-GNCS, INdAM-GNFM) and by Autonomous Region of Sardinia under grant L.R.7/2007
“Promozione della Regione Scientifica e della Innovazione Tecnologica in Sardegna”.

125



126 FERMO, VAN DER MEE, AND SEATZU

We are interested in the initial value problem (IVP) for the NLS, that is in
considering (1.1), given the initial solution

u0(x) = u(0, x), x ∈ R, u0 ∈ L1(R).

Following the path of the IST [2], its solution can be obtained by solving, in order,
the following three problems:

(a) determine the initial scattering data, given its initial solution;
(b) propagate the initial scattering data in time;
(c) solve two systems of integral equations whose kernels codify the initial

scattering data evolved in time.

From the numerical point of view, the problem of most interest is the first one,
as effective methods to solve the two other problems have been developed recently,
under the assumption that the initial scattering data are known [5]. Some attempts
to approximate the solution of (1.1), following the path of the IST, have been made
in [6] under assumptions too restrictive in many applicative areas.

Let us now illustrate the organization of the paper. In Section 2 we discuss
the Zakharov–Shabat (ZS) system, which gives a complete characterization of the
scattering data associated to the NLS we want to compute, that is the transmission
coefficient, the reflection coefficients (from the left and from the right), the bound
states and the norming constants. Section 3 is devoted to the introduction and
characterization of the auxiliary functions whose approximation is basic to evaluat-
ing all of the scattering data mentioned above. In Section 4 we introduce the initial
Marchenko kernels, which codify the scattering data and that can be computed by
solving Volterra integral equations. In Section 5 we propose a numerical method to
compute the scattering data in the reflectionless case. In Section 6 we present the
numerical results which confirm the effectiveness of the method in this particular
case. Section 7 is devoted to conclusions and perspectives.

2. Initial scattering data

The characterization of the initial scattering data is based on the spectral anal-
ysis of the ZS system associated to the NLS equation, which in turn is represented
by an ordinary differential equation of first order [2].

In fact, assuming that u0 ∈ L1(R), it can be expressed in the following way:

(2.1) iJ
∂X

∂x
(λ, x) − V(x)X(λ, x) = λX(λ, x), x ∈ R

where λ ∈ C is a spectral parameter,

J =

(

1 0
0 −1

)

, V(x) =

(

0 iu0(x)
±iū0(x) 0

)

.

Here the bar is used to denote complex conjugation.
The initial scattering data are the entries of the so-called scattering matrix and

the coefficients and parameters of two spectral sums. Denoting by

S(λ) =

(

T (λ) L(λ)
R(λ) T (λ)

)

,
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the scattering matrix, T (λ) represents the (initial) transmission coefficient, while
L(λ) and R(λ) stand for the initial reflection coefficients from the left and from the
right, respectively. If T (λ) has no poles in the complex upper half plane C+, there
are no spectral sums to identify.

Otherwise, denoting by λ1, . . . , λn the so-called bound states that is the finitely
many poles of T (λ) in C+ and by m1, . . . , mn the corresponding multiplicities, we
have to identify the coefficients {(Γℓ)js, (Γr)js} as well the parameters {n, mj, λj}
of the initial spectral sums from the left and from the right

Sℓ(α) =

n
∑

j=1

e−λjα

mj−1
∑

s=0

(Γℓ)js
αs

s!
, α > 0(2.2)

Sr(α) =

n
∑

j=1

eλjα

mj−1
∑

s=0

(Γr)js
αs

s!
, α 6 0

where the coefficients (Γℓ)js and (Γr)js are the so-called norming constants from
the left and from the right, respectively, and 00 = 1.

In the IST technique, a crucial role is played by the initial Marchenko kernels
from the left Ωℓ(α) and from the right Ωr(α), which are connected to the above
spectral coefficients and spectral sums as follows

Ωℓ(α) = ρ(α) + Sℓ(α), for α > 0

Ωr(α) = ℓ(α) + Sr(α), for α 6 0

where

ρ(α) =
1

2π

∫ +∞

−∞

R(λ)eiλαdλ = F−1{R(λ)}

is the inverse Fourier transform of the reflection coefficient from the right R(λ) and

ℓ(α) =
1

2π

∫ +∞

−∞

L(λ)e−iλαdλ =
1

2π
F{L(λ)},

apart from the factor 1/2π, is the Fourier transform of the reflection coefficient
from the left L(λ).

We note that Ωℓ(α) and Ωr(α), respectively, reduce to

(a) Sℓ(α) and Sr(α) if the reflection coefficients vanish (reflectionless case);
(b) ρ(α) and ℓ(α) if there are no bound states.

3. Auxiliary functions

Let us now introduce, for y > x, the two pairs of unknown auxiliary functions

K̄(x, y) ≡

(

K̄up(x, y)
K̄dn(x, y)

)

, K(x, y) ≡

(

Kup(x, y)
Kdn(x, y)

)

,

and, for y 6 x, the two other pairs of unknown auxiliary functions

M̄(x, y) ≡

(

M̄up(x, y)
M̄dn(x, y)

)

, M(x, y) ≡

(

Mup(x, y)
Mdn(x, y)

)

.
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Each of these pair of functions, given the initial solution, is the solution of a system
of two structured Volterra integral equations [7,8,14].

More precisely, in the focusing case, which is the case we are addressing in this
paper, for y > x, the unknown pair (K̄up, K̄dn) is the solution of the system

(3.1)

K̄up(x, y) = −

∫ ∞

x

u0(z)K̄dn(z, z + y − x) dz,

K̄dn(x, y) = 1
2 ū0(1

2 (x + y)) +

∫ (x+y)/2

x

ū0(z)K̄up(z, x + y − z) dz,

as well as the pair (Kup, Kdn) it is of the system

(3.2)

Kup(x, y) = − 1
2 u0(1

2 (x + y)) −

∫ (x+y)/2

x

u0(z)Kdn(z, x + y − z) dz,

Kdn(x, y) =

∫ ∞

x

ū0(z)Kup(z, z + y − x) dz.

Similarly, for y 6 x, the unknown pair (Mup, Mdn) is the solution of the system

(3.3)

Mup(x, y) =

∫ x

−∞

u0(z)Mdn(z, z + y − x) dz

Mdn(x, y) = − 1
2 ū0(1

2 (x + y)) −

∫ x

(x+y)/2
ū0(z)Mup(z, x + y − z) dz

as well as the pair (M̄up, M̄dn) it is of the system

(3.4)

M̄up(x, y) = 1
2 u0(1

2 (x + y)) +

∫ x

(x+y)/2
u0(z)M̄dn(z, x + y − z) dz

M̄dn(x, y) = −

∫ x

−∞

ū0(z)M̄up(z, z + y − x) dz.

From the computational point of view, it is important to note that each auxil-
iary function is uniquely determined on the bisector y = x, by the initial solution
or its partial integral energy.

In fact, setting y = x in each of the four Volterra systems, we immediately
obtain

K̄dn(x, x) =
1

2
ū0(x) K̄up(x, x) = −

1

2

∫ ∞

x

|u0(z)|2 dz,(3.5)

Kup(x, x) = −
1

2
u0(x), Kdn(x, x) = −

1

2

∫ ∞

x

|u0(z)|2 dz,(3.6)

Mdn(x, x) = −
1

2
ū0(x), Mup(x, x) = −

1

2

∫ x

−∞

|u0(z)|2 dz,(3.7)

M̄up(x, x) =
1

2
u0(x), M̄dn(x, x) = −

1

2

∫ x

−∞

|u0(z)|2 dz.(3.8)

Remark 3.1. If u0(x) is real we need to solve uniquely (3.1) and (3.3) as
Kup(x, y)= −K̄dn(x, y) and Kdn(x, y)= K̄up(x, y) as well as M̄up(x, y)= Mdn(x, y)
and M̄dn(x, y) = −Mup(x, y).
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4. Initial Marchenko kernels and scattering matrix

Once the auxiliary functions have been computed, both Ωℓ and Ωr can be
approximated by solving a Volterra integral equation. In fact, using the strong
connection between Ωℓ and the function pairs (K̄up, K̄dn) and (Kup, Kdn) as well as
that between Ωr and the function pairs (M̄up, M̄dn) and (Mup, Mdn), we have [14]

K̄dn(x, y) + Ωℓ(x + y) +

∫ ∞

x

Kdn(x, z)Ωℓ(z + y) dz = 0, for y > x > 0,(4.1)

Mdn(x, y) − Ωr(x + y) −

∫ x

−∞

M̄dn(x, z)Ωr(z + y) dz = 0, for y 6 x 6 0.(4.2)

Given the auxiliary vectors K̄, K, M̄ and M, relations (4.1)–(4.2) can be
interpreted as Volterra integral equations having Ωℓ and Ωr as unknowns.

Remark 4.1. We point out that, from the computational point of view, each
initial Marchenko kernel can be treated as a function of only one variable, as we
only have to deal with the sum of the two variables.

Following the procedure proposed in [14], the entries of the scattering matrix
S(λ) can be computed as follows

T (λ) =
1

aℓ4(λ)
=

1

ar1(λ)
,(4.3)

L(λ) =
aℓ2(λ)

aℓ4(λ)
= −

ar2(λ)

ar1(λ)
,(4.4)

R(λ) =
ar3(λ)

ar1(λ)
= −

aℓ3(λ)

aℓ4(λ)
,(4.5)

where

aℓ1(λ) = 1 −

∫

R+

e−iλz

(
∫

R

u0(y)K̄dn(y, y + z) dy

)

dz,

aℓ2(λ) = −

∫

R

e2iλyu0(y) dy −

∫

R

eiλz

(
∫ z

2

−∞

u0(y)Kdn(y, z − y) dy

)

dz,

aℓ3(λ) =

∫

R

e−2iλy ū0(y) dy +

∫

R

e−iλz

(
∫ z

2

−∞

ū0(y)K̄up(y, z − y) dy

)

dz,

aℓ4(λ) = 1 +

∫

R+

eiλz

(
∫

R

ū0(y)Kup(y, y + z) dy

)

dz,

ar1(λ) = 1 +

∫

R+

eiλz

(
∫

R

u0(y)Mdn(y, y − z) dy

)

dz,

ar2(λ) =

∫

R

e2iλyu0(y) dy +

∫

R

eiλz

(
∫ +∞

z
2

u0(y)M̄dn(y, z − y) dy

)

dz,

ar3(λ) = −

∫

R

e−2iλyū0(y) dy −

∫

R

e−iλz

(
∫ +∞

z
2

ū0(y)Mup(y, z − y) dy

)

dz,
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ar4(λ) = 1 −

∫

R+

e−iλz

(
∫

R

ū0(y)M̄up(y, y − z) dy

)

dz.

Remark 4.2. If the solution is a soliton or a multisoliton, the only spectral
data to be computed are the coefficients and the parameters of the spectral sums
Sℓ(α) and Sr(α). The coefficients and parameters of Sℓ(α) can be computed by
applying the matrix-pencil method recently proposed in [10] to a sufficiently large
set of equispaced data of Ωℓ(α).

5. Computational strategy

In this section we propose a numerical procedure to evaluate the initial scat-
tering data in the case

(5.1) u0(x) = 0, for |x| > L.

We note that (5.1) can be considered acceptable whenever u0(x) → 0 for |x| → ∞,
provided that L be large enough.

Assuming for computational simplicity that the reflection coefficients are zeros,
we must solve

1. the systems of Volterra integral equations (3.1)–(3.4);
2. the Volterra integral equations (4.1)–(4.2);
3. a nonlinear approximation problem [10].

5.1. Auxiliary functions computation. Hereafter we assume u0 to be real,
though the algorithms remain essentially the same in the complex case. In this
case (Remark 3.1) we need to solve only systems (3.1) and (3.3), instead of systems
(3.1)–(3.4).

Let us first consider system (3.1) to identify the supports of K̄up(x, y) and
K̄dn(x, y).

Lemma 5.1. Under hypothesis (5.1), the following properties hold true

(1) For x > L, K̄up(x, y) and K̄dn(x, y) are both zero;

(2) If x 6 L and x + y > 2L then K̄up(x, y) = K̄dn(x, y) = 0;

(3) If x < −L and y − x > 4L then K̄up(x, y) = 0;

(4) If x < −L and x + y < 2L then K̄dn(x, y) = 0.

Proof. To prove (1) it is sufficient to note that, as y > x and then 1
2 (x+y) > 0,

u0(1
2 (x + y)) = 0 as well as u0(z) = 0 for z ∈ (x, 1

2 (x + y)). About (2), we consider

the sequence xi = ih, i = 0, ±1, ±2, ... where h = L
n , n ∈ N, and then collocate

system (3.1) in the node (xn, xn+2). Noting that both u0(1
2 (x + y)) = 0 and

u0(z) = 0 for z > xn+1, we can write:

K̄up(xn, xn+2) = −

∫ xn+1

xn

u0(z)K̄dn(z, z + 2h) dz,

K̄dn(xn, xn+2) =

∫ xn+1

xn

u0(z)K̄up(z, x2n+2 − z) dz.

(5.2)



EMERGING PROBLEMS IN APPROXIMATION THEORY 131

−6L −4L −2L 0 2L 4L 6L
−6L

−4L

−2L

0

2L

4L

6L

y−x=4L

y+x=2L

−6L −4L −2L 0 2L 4L 6L
−6L

−4L

−2L

0

2L

4L

6L

y+x=−2L

y+x=2L

Figure 1. Supports of the auxiliary functions K̄
up (to the left) and

K̄
dn (to the right)

Applying then the composite trapezoidal quadrature formula to the computation
of the two integrals, and denoting by K̄up

n,n+r and K̄dn
n,n+r, the approximate val-

ues of K̄up(xn, xn+r) and K̄dn(xn, xn+r), respectively, we obtain the nonsingular
homogeneous system

K̄up
n,n+2 +

h

2
u0(xn)K̄dn

n,n+2 = 0

−
h

2
u0(xn)K̄up

n,n+2 + K̄dn
n,n+2 = 0,

whose solution is K̄up
n,n+2 = K̄dn

n,n+2 = 0, for any fixed h value. Applying recursively

the same procedure to the nodal points (xj , x2n+2ℓ−j), with j = n−1, n−2, . . . and
ℓ = 0, 1, 2, . . . and considering that h is arbitrary, the result follows immediately.

For (3) we note that (2) implies that K̄dn(z, z + y − x) = 0, as z ∈ [−L, L] and
y − x > 4L, that is 2z + y − x > 2L.

Result (4) is immediate, as the integration domain appearing in the second
equation of (3.1) is null and u0(1

2 (x + y)) = 0. �

Taking into account the above properties, we can say that the supports of the
auxiliary functions are those represented in Figure 1.

For the numerical solution of system (3.1), the following properties are also
important

1. If x 6 −L, whatever h, K̄up(x, y) is constant on the line y = x + h. This
can be seen taking into account that supp(u0) = [−L, L] and noting that

K̄up(x, x + h) = −

∫ L

−L

u0(z)K̄dn(z, z + h) dz

only depends on h. For this reason we put K̄up(x, x + h) = Cup
K̄,h

for each

given value h.
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Figure 2. Additional properties of K̄up (to the left) and K̄dn (to
the right)

2. If x < −L and x + y > −2L, K̄dn(x, y) is constant on each line x + y =
−2(L + h) for each 0 < h < 2L. In fact, by the second equation of (3.1)
it results that

K̄dn(x, y) =
1

2
u0(−L + h) +

∫ L+h

−L

u0(z)K̄up(z, −2(L + h) − z) dz = Cdn
K̄,h.

These two results are graphically represented in Figure 2.
A visualization of the area where we need to compute K̄up and K̄dn is given by

the gray triangle represented in Figure 3. In the remaining areas of the respective
supports their values are immediately obtained by using those of the gray triangle.
The gray line shows, in particular, the values of the gray triangle we use to know
K̄up and K̄dn in the gray point of the gray area.

Fixed n ∈ N, let xi = ih, i = −n, −n + 1, . . . , n and yj = jh with h = L/n, j =

−n, −n + 1, . . . , 3n. The algorithm first requires the computation of K̄up and K̄dn

in the nodal points of the bisector (xi, yj) of the gray triangle. Recalling (3.5)

and denoting by K̄up
r,s, K̄dn

r,s and u0,r the approximation of K̄up(x, y), K̄dn(x, y) and
u0(x) in the nodal points (xr , ys), we can write:

K̄dn
n−i+1,n−i+1 =

1

2
u0,n−i+1,

K̄up
n−i+1,n−i+1 = −

1

2

∫ L

xn−i+1

|u0(z)|2 dz, i = 1, 2, . . . , 2n + 1.

The approximation of K̄up
n−i+1,n−i+1 is then obtained recursively by applying

the composite Simpson’s quadrature formula. Fixed j = 1, 2, . . . , 2n, system (3.1)
is collocated in the nodal points

Dj =
{

(xn−j−i+1, xn+j−i+1) ∈ R
2 | i = 1, . . . , 2n + 1

}

.

We note that in each collocation point we have to compute K̄up and K̄dn, given
their values in the bisector y = x. For this reason, recalling that K̄up(xi, yj) and
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Figure 3. Geometrical visualization of the computational area

K̄dn(xi, yj) are zero for xi + yj > 2L, we collocate system (3.1) following the order
depicted in Figure 4.

Our numerical algorithm is based on the approximation of integrals (3.1) by
means of the composite trapezoidal formula. In this way, following the ordering
depicted in Figure 4, for each collocation point we have only to solve recursively a
sequence of nonsingular 2 × 2 linear systems. In fact, for each collocation point, we
must solve the following system:

K̄up
n−j−i+1,n+j−i+1 + h

2 u0,n−j−i+1K̄dn
n−j−i+1,n+j−i+1

= −h(1 − δi−1,0)

i−1
∑

ℓ=1

u0,n−j−i+1+ℓK̄
dn
n−j−i+ℓ+1,n+j−i+ℓ+1

− h
2 u0,n−j−i+1K̄up

n−j−i+1,n+j−i+1 + K̄dn
n−j−i+1,n+j−i+1

=
u0,n−i+1

2
+

h

2

j
∑

ℓ=1

(2 − δℓj)u0,n−j−i+ℓ+1K̄up
n−j−i+ℓ+1,n+j−i−ℓ+1

where δij is the Kronecker symbol.
Let us now consider system (3.3) and identify the supports of the auxiliary func-

tions Mup and Mdn. Taking into account hypothesis (5.1), they are characterized
by the following

Lemma 5.2. Under hypothesis (5.1), the following statements hold true:

(1) For x < −L both Mup(x, y) and Mdn(x, y) are zero;

(2) For x > −L and x + y 6 −2L, Mup(x, y) = Mdn(x, y) = 0;

(3) If x > L and y − x < −4L then Mup(x, y) = 0;

(4) If x > L and y + x > 2L, then Mdn(x, y) = 0.
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Figure 4. Sorting visualization of collocation points in the triangle

Proof. (1) It is enough to note that 1
2 (x + y) < −L and then Mup(x, y) =

Mdn(x, y) = 0.
In order to prove (2), we observe that collocating system (3.3) in (x−n, x−n−2)

and taking into account that u0(1
2 (x + y)) = 0 and u0(z) = 0 for z < x−n, one can

write

Mup
−n,−n−2 − h

2 u0(xn)Mdn
−n,−n−2 = 0

h
2 u0(x−n)Mup

−n,−n−2 + Mdn
−n,−n−2 = 0,

whose solution is Mup
−n,−n−2 = Mdn

−n,−n−2 for any given h value. Iterating the

procedure in the nodal points (x−j , x−j−2ℓ) with j = n−1, n−2, . . . and ℓ = 1, 2, . . .
and considering that h is arbitrarily, we obtain that Mup

−j,−j−2ℓ = Mdn
−j,−j−2ℓ = 0,

for the above fixed value of j and ℓ.
Concerning (3), it is sufficient to note that, as the domain of integration is

[−L, L] and 2z + y − x < −2L, Mup(x, y) = 0 as a consequence of (2).
Finally (4) is immediate considering that Mdn(x, y) = 0 for x + y > 2L as well

as u0(1
2 (x + y)). �

A geometrical representation of these supports is given in Figure 5.
Moreover, in order to find a numerical solution of (3.3), it is important to

note that the unknown functions Mup and Mdn have also the following properties,
represented in Figure 6:

1. If x > L, whatever h, Mup is constant on the line y = x+h. This property
can immediately be verified, noting that

Mup(x, y) =

∫ L

−L

u0(t)Mdn(z, z + h) dz

only depends on h. Hence, to make evident this property, for x > L, we
write Mup(x, y) = Cup

M,h.
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Figure 5. Supports of the auxiliary functions M
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Figure 6. Additional properties of Mup (to the left) and Mdn (to
the right)

2. If x > L and x + y < 2L, Mdn is constant on each line x + y = 2(L − h),
for 0 < h < 2L. In fact using the second equation of (3.3), we have

Mdn(x, y) = −
1

2
u0(L − h) −

∫ L

L−h

u0(z)Mup(z, 2(L − h) − z) dz = Cdn
M,h.

As a result, as for system (3.1), we need only to compute the unknowns in the
gray triangle depicted in Figure 7, since in the remainder of the support we can
apply the properties discussed above.

The computational strategy developed for the numerical solution of this system
is essentially the same adopted for system (3.1). Hence, at first by using (3.7) we
compute

Mup
n−i+1,n−i+1 = −

1

2

∫ xn−i+1

−∞

|u0(z)|2dz, Mdn
n−i+1,n−i+1 = −

1

2
u0,n−i+1.
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Figure 7. Geometrical visualization of the computational area

After that, fixed j = 1, 2, . . . , 2L, system (3.3) is collocated in the nodal points

Dj =
{

(x−n+j+i−1, x−n−j+i−1) ∈ R
2 | i = 1, . . . , 2n − j + 1

}

,

and the integrals are approximated by using the composite trapezoidal rule. Oper-
ating in this way, we obtain the sequence of 2 × 2 systems

Mup
i+j−n−1,i−j−n−1 − h

2 u0,i+j−n−1Mdn
i+j−n−1,i−j−n−1

= h(1 − δi−1,0)

i−1
∑

ℓ=1

u0,i+j−n−1−ℓM
dn
i+j−n−ℓ−1,i−j−n−ℓ−1

h
2 u0,i+j−n−1Mup

i+j−n−1,i−j−n−1 + Mdn
i+j−n−1,i−j−n−1

= −
u0,i−n−1

2
−

h

2

j
∑

ℓ=1

(2 − δℓj)u0,i+j−n−ℓ−1Mup
i+j−n−ℓ−1,i+ℓ−j−n−1

that we solve recursively, by following the ordering depicted in Figure 8.

5.2. Numerical solution of Marchenko equations. Once K̄up and K̄dn

have been computed, we have to solve the integral equations (4.1) and (4.2) that,
by Remark 3.1, can be written as

K̄dn(x, y) + Ωℓ(x + y) +

∫ ∞

x

K̄up(x, z)Ωℓ(z + y) dz = 0(5.3)

Mdn(x, y) − Ωr(x + y) +

∫ x

−∞

Mup(x, z)Ωr(z + y) dz = 0,(5.4)

for y > x > 0 and y 6 x 6 0, respectively. Let us first consider (5.3). Fixed a
steplenght h and taken a set of nodal points (xi, xj) with xi = ih, i = 0, 1, . . . and
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Figure 8. Sorting visualization of collocation points in the triangle

j = i, i + 1, we collocate (5.3) in (xi, xj), taking a great advantage by the support

of K̄up and K̄dn as explained in the following

Lemma 5.3. If u0(x) = 0 for |x| > L, then Ωℓ(z) = 0 for z > 2L.

Proof. Given the steplenght h and assuming xn = nh = L, we set K̄dn(xi, xj)

= K̄dn
ij and K̄up(xi, xj) = K̄up

ij as well as Ωℓ(xi + yj) = (Ωℓ)i+j . Recalling that,

as proved in Lemma 5.1, K̄dn
n,n+m = K̄up

n,n+m = 0, m = 1, 2, . . . and using (5.3) it
is immediate to state that (Ωℓ)2n+m = 0, m = 1, 2, . . . Moreover, considering that
K̄up(x, z) = 0 for x > xn and recalling (3.5), equation (5.3) implies that

(5.5) (Ωℓ)2n = (Ωℓ)(xn, xn) = −K̄dn
n,n = − 1

2 ū0(xn).

As a result, if the support of u0 is [−L, L] then the support of Ωℓ(α) is [0, 2L].
We can similarly argue that supp(Ωr(z)) ⊂ [−2L, 0] if supp(u0) ⊂ [−L, L]. �

To compute Ωℓ in [0, 2L], first we collocate (5.3) in (xn−1, xn) and approximate
the integral by the trapezoidal rule. Proceeding in this way we obtain that (Ωℓ)2n−1

is the solution of the equation
(

1 + h
2 K̄up

n−1,n−1

)

(Ωℓ)2n−1 = −K̄dn
n−1,n + h

4 K̄up
n−1,nū0(xn).

Collocating now in (xn−1, xn−1) and adopting the same procedure, we obtain that
for h small enough (Ωℓ)2n−2 is the solution of the equation

(

1 + h
2 K̄up

n−1,n−1

)

(Ωℓ)2n−2 = −K̄dn
n−1,n−1 − h

2 K̄up
n−1,n(Ωℓ)2n−1.

Iterating the procedure we collocate (5.3) in (xn−j , xn−j+k) with j = 1, 2, . . . , n
and k = 0, 1 (if j = n, then k = 0). So we obtain that (Ωℓ)2(n−j)+k is a solution of

(5.6)
(

1 +
h

2
K̄up

n−j,n−j

)

(Ωℓ)2(n−j)+k

= −K̄dn
n−j,n−j+k −

h

2

j−1
∑

ℓ=1

K̄up
n−j,n−j+ℓ(Ωℓ)2(n−j)+k+ℓ.

As |K̄dn(x, x)| is decreasing, h can be considered sufficiently small if 1− h
2 K̄up

0,0 > 0.
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The same approach allows us to compute Ωr, that is to solve (5.4) in a sequence
of discretization points of its support xi = ih, i = 0, −1, . . . , −2n, x−n = −L. To
this end, recalling that Mup(x, z) = 0 if x + z < −2L and using (5.4), first we note
that in the bisector y = x

(Ωr)−2n = Ωr(x−n, x−n) = Mdn
−n,−n = − 1

2 ū0(x−n).

Collocating (5.4) in (x−n+1, x−n) and approximating the integral value by the
trapezoidal rule we obtain the equation

(

1 − h
2 Mup

−n+1,−n+1

)

(Ωr)−2n+1 = Mdn
−n+1,−n + h

4 Mup
−n+1,−nu0(x−n).

Iterating the procedure, we collocate (5.4) in (x−n+j , x−n+j−k) with j = 1, 2, . . . , n
and k = 0, 1 (if j = n, then k = 0), we obtain that (Ωr)2(j−n)−k is a solution of

(

1 − h
2 Mup

−n+j,−n+j

)

(Ωr)2(j−n)−k

= Mdn
−n+j,−n+j−k +

h

2

j−1
∑

ℓ=1

Mup
j−n,j−n−ℓ(Ωr)2(j−n)−k−ℓ,

for any h small enough, that is for 1 + h
2 Mup

0,0 > 0.

5.3. Bound states and norming constants. Let us give a brief description
of the matrix-pencil method that we have recently developed for the identification
of the bound states and the norming constants [10]. Setting zj = e−λj , the spectral
function sum Sℓ(α) introduced in (2.2), can be represented as the monomial-power
sum

Sℓ(α) =

n
∑

j=1

mj−1
∑

s=0

cjsαszα
j , 00 ≡ 1.

Setting M = m1 + · · · + mn, the method allows to compute the parameters
{n, mj, zj} and the coefficients {cjs} given Sℓ(α) in 2N integer values (N > M)

α = α0, α0 + 1, . . . , α0 + 2N − 1, with α0 ∈ N
+ = {0, 1, 2, . . .}.

The basic idea of the method is the interpretation of Sℓ(α) as the general

solution of a homogeneous linear difference equation
∑M

k=0 pkSk+α0
= 0 of order M

whose characteristic polynomial (Prony polynomial)

P (z) =

n
∏

j=1

(z − zj)mj =

M
∑

k=0

pkzk, pM ≡ 1

is uniquely characterized by the zj values we are looking for. The identification of
the zeros {zj} allows to compute the coefficients cjs by solving a linear system.

For the computation of {zj} and then of the bound states λj , the given data
are arranged in the two Hankel matrices of order N

(S0
ℓ)ij = Sℓ(i + j − 2), (S1

ℓ )ij = Sℓ(i + j − 1), i, j = 1, 2, . . . , N.

To these matrices we associate the M × M matrix-pencil

SMM (z) = (S0
NM )∗(S1

NM − zS0
NM )
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where the asterisk denotes the conjugate transpose. As proved in [10], the zeros
zj of the Prony polynomial, with their multiplicities, are exactly the generalized
eigenvalues of the matrix-pencil SMM (z). Then, by applying the generalized singu-
lar value decomposition to the matrices S0

NM and S1
NM , the algorithm developed

allows to compute the zeros zj and then the bound states λj , as λj = − log zj .
The vector of coefficients c = [c1 0, . . . , c1 m1−1, . . . , cn 0, . . . , cn mn−1]T is then

computed by solving (in the least square sense) the overdetermined linear system
K0

NMc = S0
ℓ where Sℓ

0 = [Sℓ(0), Sℓ(1), . . . , Sℓ(N − 1)]T and K0
NM is the Casorati

matrix associated to the monomial powers {kszk
j } for k = 1, . . . , N − 1.

If mj ≡ 1, the Casorati matrix K0
Nn reduces to the Vandermonde matrix

(V )ij = zi+1
j of order N × n associated to the zeros z1, . . . , zn. The solution of

the Casorati system allows us to immediately compute the norming constants as
(Γℓ)js = s!cjs.

The coefficients {(Γr)js} are then obtained by solving, in the least square sense,
a linear system whose vector of known data is given by Ωr(α) evaluated in a set of
N points, with a sufficiently large N > M .

6. Numerical results

In order to access the effectiveness of our method in the approximation of Ωℓ,
we adopted the following estimator for the relative error

En =
‖Ω̃ℓ,n − Ωℓ‖∞

‖Ωℓ‖∞

where Ω̃ℓ,n denotes the array of the approximated Marchenko kernel computed by
means of equations (5.6) in 2n equispaced points belonging to the interval [0, 2L],
Ωℓ is the array of the exact Marchenko kernel evaluated at the same points and
‖ · ‖∞ is the usual infinity norm. Let us now show our results in two cases in which
Ωℓ is analytically known.

Test 1. Let us consider as initial potential the soliton given by

(6.1) u0(x) =
−2ce−2ax

1 + |c|2

4p2 e−4px
, x ∈ R,

where c, a and p are real parameters [15]. In this case the Marchenko kernel on
the left is Ωℓ(x) = e−ax. Considering that u0(x) 6 10−13 if |x| > 15, in our
computation we assumed L = 15. Hence taken n and a steplenght h such that
nh = 2L, we computed Ωℓ(α) in the n points αi = ih, i = 0, 1, . . . , n and we
reported in Table 1 the relative error En for different values of n.

Test 2. Let us now take as initial potential a multisoliton represented by four
solitons which interact each other nonlinearly [14], namely

(6.2) u0(x) =

{

−2b∗[e2xA
∗

+ Qe−2xAN]−1c∗ x > 0

−2c [e−2xA + Ne2xA
∗

Q]−1b x < 0

where b and c are column and row vectors, respectively, A is a matrix with eigen-
values αj having positive real parts and N and Q are two matrices obtained by
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Table 1. Relative errors En for Ωℓ in the soliton case (left) and
in the multisoliton case (right)

n En

300 1.03e-03
600 2.62e-04
900 1.17e-04
1200 6.60e-05

n En

300 8.42e-03
600 2.08e-03
900 9.27e-04
1200 5.21e-04

solving the respective Lyapunov equations:

QA + A∗Q = c∗c, AN + NA∗ = bb∗.

In this case, it is possible to prove [14] that the initial Marchenko kernel Ωℓ is given
by Ωℓ(α) = ce−αAb, the reflection coefficients R(λ) = L(λ) = 0, the bound state
terms are λj = iaj and the norming constants Γℓ,j = bjcj .

As in the previous example we assumed L = 15 as u0(x) 6 10−13 for |x| > 15.
Moreover, for simplicity we considered A = diag([1, 2, 3, 4]), b = [1, 2, −2, −1]T ,

c = [2, 1, 1, 2], which implies that Ωℓ(α) =
∑4

j=1 bjcje−αaj . The results reported
in Table 1 show that, as expected, the relative error En decreases with respect to
n.

7. Conclusions and perspectives

The effectiveness of the numerical solution of the direct scattering problem in
the NLS, as probably in various other NPDEs of integrable type, basically depends
on the effectiveness of the numerical solution of Volterra’s systems of integral equa-
tions with structured kernels on unbounded domains and then on the identification
of parameters in monomial-exponential sums. Our experiments show that in the
reflectionless case our matrix-pencil method for the identification of spectral pa-
rameters is fully reliable whenever the relative error coming from the solution of
systems of Volterra is small enough.

A challenging mathematical problem is to develop effective algorithms to ap-
proximate quite well the reflection coefficients, that is to compute ratios (4.4)–(4.5)
or to generate alternative formula for their evaluation. This challenging task is de-
voted to another paper, as well the generation of a new family of numerical methods
for computing more efficiently the auxiliary functions and the Marchenko kernels.
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