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SEGAL’S MULTISIMPLICIAL SPACES

Zoran Petrić

Abstract. Some sufficient conditions on a simplicial space X : ∆op → Top
guaranteeing that X1 ≃ Ω|X| were given by Segal. We give a generalization
of this result for multisimplicial spaces. This generalization is appropriate for
the reduced bar construction, providing an n-fold delooping of the classifying
space of a category.

1. Introduction

This note makes no great claim to originality. It provides a complete inductive
argument for a generalization of [17, Proposition 1.5], which was spelled out, not
in a precise manner, in [2, paragraph preceding Theorem 2.1]. The authors of [2]
did not provide the proof of this generalization. Some related, but quite different,
results are given in [4] and [3].

The main result of [5] reaches its full potential role in constructing a model for
an n-fold delooping of the classifying space of a category only with the help of such
a generalization of [17, Proposition 1.5]. The aim of this note is to fill in a gap in
the literature concerning these matters.

Segal, [17, Proposition 1.5], gave conditions on a simplicial space X : ∆op →
Top guaranteeing that X1 ≃ Ω|X |. His intention was to cover a more general
class of simplicial spaces than we need for our purposes, therefore he worked with
nonstandard geometric realizations of simplicial spaces. We generalize his result,
in one direction, by passing from simplicial spaces to multisimplicial spaces, but
staying in a class appropriate for the standard geometric realization. Our result is
formulated to be directly applicable to the reduced bar construction of [5], providing
an n-fold delooping of the classifying space of a category.

We work in the category (here denoted by Top) of compactly generated Haus-
dorff spaces. (This category is denoted by Ke in [7] and by CGHaus in [9].) The
objects of Top are called spaces and the arrows are called maps. Products are given
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the compactly generated topology. We adopt the following notation throughout:
≃ for homotopy of maps or same homotopy type of spaces, ≈ for homeomorphism
of spaces.

The category ∆ (denoted by ∆+ in [9]) is the standard topologist’s simplicial

category defined as in [9, VII.5]. We identify this category with the subcategory
of Top whose objects are the standard ordered simplices (one for each dimension),
i.e., with the standard cosimplicial space ∆→ Top.

The objects of ∆ are the nonempty ordinals 1, 2, 3, . . ., which are rewritten
as [0], [1], [2], etc. The coface arrows from [n − 1] to [n] are denoted by δn

i , for
0 6 i 6 n, and the codegeneracy arrows from [n] to [n− 1] are denoted by σn

i , for
0 6 i 6 n− 1.

For the opposite category ∆op, we denote the arrow (δn
i )op : [n]→ [n− 1] by dn

i

and (σn
i )op : [n− 1]→ [n] by sn

i . For f an arrow of ∆op (or (∆op)n), we abbreviate
X(f) by f whenever the (multi)simplicial object X is determined by the context.

We consider all the monoidal structures to be strict, which is supported by
the strictification given by [9, XI.3, Theorem 1]. Some proofs prepared for non-
specialists are given in the appendix.

2. Multisimplicial spaces and their realization

A multisimplicial space is an object of the category Top(∆op)n

, i.e., a functor
from (∆op)n to Top. When n = 0, this is just a space and when n = 1, this is
a simplicial space. As usual, for a multisimplicial space X : (∆op)n → Top, we
abbreviate X([k1], . . . , [kn]) by Xk1...kn

.
We say that X : (∆op)n → Top is a multisimplicial set when every Xk1...kn

is discrete. A multisimplicial map is an arrow of Top(∆op)n

, i.e., a natural trans-
formation between multisimplicial spaces. When n = 1, this is a simplicial map.
Throughout this paper we use the standard geometric realization of (multi)simpli-
cial spaces.

Definition 2.1. The realization functor | | : Top∆op

→ Top of simplicial
spaces is defined so that for a simplicial space X , we have

|X | =

(
∐

n

Xn ×∆n

)/

∼,

where the equivalence relation ∼ is generated by

(dn
i x, t) ∼ (x, δn

i t) and (sn
i x, t) ∼ (x, σn

i t).

Definition 2.2. For p > 0, the functor (p) : Top(∆op)n+p

→ Top(∆op)n

of
partial realization is defined inductively as follows

(0) is the identity functor, and (p+1) is the composition

Top(∆op)n+p+1 ∼=
−→

(
Top∆op )(∆op)n+p | |(∆op)n+p

−−−−−−−→ Top(∆op)n+p
(p)

−−→ Top(∆op)n

,

where the first isomorphism maps X to Y such that (Yk1...kn+p
)l = Xk1...kn+pl.
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For a multisimplicial space X : (∆op)p → Top, we denote X(p) by |X |. Hence,
for X : (∆op)n+p → Top, we have that (X(p))k1...kn

= |Xk1...kn . . .
︸ ︷︷ ︸

p

|.

Definition 2.3. If X = Y (p), for Y a multisimplicial set, then we say that X

is a partially realized multisimplicial set (PRmss).

Definition 2.4. For n > 0 and X : (∆op)n → Top, let the simplicial space
diag X : ∆op → Top be such that

(diag X)k = Xk...k.

In particular, when n = 0 and X is just a topological space, we have that (diag X)k

is X and all the face and degeneracy maps of diag X are 1X .

The following lemma is a corollary of [15, Lemma, p. 94].

Lemma 2.5. For X : (∆op)n → Top, we have that |X | ≈ | diag X |.

As a consequence of Lemma 2.5 and [10, Theorem 14.1] we have the following
lemma.

Lemma 2.6. If X is a PRmss, then |X | is a CW-complex.

The following remark easily follows.

Remark 2.7. (a) If X : (∆op)n+p → Top is a PRmss, then X(p) is a PRmss.

(b) If X : (∆op)n → Top is a PRmss, then for every k1, . . . , kn, the space Xk1...kn

is a CW-complex.

(c) If X : (∆op)n → Top is a PRmss, then for every k > 0, Xk ... is a PRmss.

(d) If X : (∆op)n → Top, for n > 1, is a PRmss, then Y : ∆op×∆op → Top, defined
so that Ymk = Xmk...k, is a PRmss.

Definition 2.8. A simplicial space X : ∆op → Top is good when for every
0 6 i 6 n − 1, the map sn

i : Xn−1 → Xn is a closed cofibration. It is proper

(Reedy cofibrant) when for every n > 1, the inclusion sXn →֒ Xn, where sXn =
⋃

i sn
i (Xn−1), is a closed cofibration.

Proposition 2.9. Every PRmss X : ∆op → Top is good.

Proof. Since dn
i ◦ sn

i = 1Xn−1 , we may consider Xn−1 to be a retract of Xn.
By Remark 2.7(b), Xn is a CW-complex and by [6, Corollary III.2] (see also [8,
Corollary 2.4(a)]) a locally equiconnected space. By [8, Lemma 3.1] and since every
Xk is Hausdorff, sn

i is a closed cofibration. ⊣

As a corollary of [18, Proposition 22] (see also references listed in [18, Section 6,
p. 19]) we have the following result.

Lemma 2.10. Every good simplicial space is proper.

The following result is from [12, Appendix, Theorem A4(ii)].
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Lemma 2.11. Let f : X → Y be a simplicial map of proper simplicial spaces.

If each fk : Xk → Yk is a homotopy equivalence, then |f | : |X | → |Y | is a homotopy

equivalence.

Definition 2.12. The product X × Y of simplicial spaces X and Y is defined
componentwise, i.e., (X×Y )k = Xk×Yk, and for every arrow f : k → l of ∆op and
every x ∈ Xk and y ∈ Yk, we have that f(x, y) = (fx, fy).

Since the product of two CW-complexes in Top is a CW-complex, by reasoning
as in Proposition 2.9, we have the following.

Remark 2.13. If X, Y : ∆op → Top are PRmss, then X × Y is good.

The following lemma is a corollary of [11, Lemma 11.11].

Lemma 2.14. If the space X0 of a simplicial space X : ∆op → Top is path-

connected, then |X | is path-connected.

3. Segal’s multisimplicial spaces

For m > 1, consider the arrows i1, . . . , im : [m] → [1] of ∆op given by the
following diagrams.

i1 :
q q

q q . . . q

0 1

0 1 m

i2 :
q q

q q q . . . q

0 1

0 1 2 m

�
�
�
� . . . im :

q q

q q. . . q

0 1

0 m−1 m

✑
✑
✑
✑
✑
✑

The following images of these arrows under the functor J : ∆op → ∆ of [14,
Section 6] may help the reader to see that i1, . . . , im correspond to m projections.
(Note that 0 and 2 in the bottom line of the images serve to project away all but
one element of the top line.)

q q q

q q q . . . q q

0 1 2

0 1 2 m m+1

✑
✑
✑

✦✦✦✦✦

q q q

q q q q . . . q

0 1 2

0 1 2 3 m+1

✁
✁

✁
✁

✟✟✟✟

✁
✁ . . .

q q q

q q q q. . . q

0 1 2

0 1 m−1 m m+1

✁
✁
✟✟✟✟

✟✟✟✟

✟✟✟✟

For maps fi : A→ Bi, 1 6 i 6 m, we denote by 〈f1, . . . , fm〉 : A→ B1×· · ·×Bm

the map obtained by the Cartesian structure of Top. In particular, for the above-
mentioned i1, . . . , im and for a simplicial space X : ∆op → Top we have the map

pm = 〈i1, . . . , im〉 : Xm → (X1)m.

(According to our convention from the introduction, X(ik) is abbreviated by ik.)
If m = 0, then (X1)0 = {∗} (a terminal object of Top) and let p0 denote the unique
arrow from X0 to (X1)0. The following lemma is claimed in [17].

Lemma 3.1. If X : ∆op → Top is a simplicial space such that for every m > 0,

the map pm is a homotopy equivalence, then X1 is a homotopy associative H-space

whose multiplication m is given by the composition

(X1)2 p
−1
2−−→ X2

d2
1−→ X1,

where p−1
2 is an arbitrary homotopy inverse to p2, and whose unit ∗ is s1

0(x0), for

an arbitrary x0 ∈ X0.
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Definition 3.2. We say that a PRmss X : ∆op → Top is Segal’s simplicial

space when for every m > 0, the map pm : Xm → (X1)m is a homotopy equivalence.

Lemma 3.3. Let Y : ∆op × ∆op → Top be a PRmss. If for every k > 0, the

simplicial space Y k is Segal’s, then Y (1) is Segal’s simplicial space.

Definition 3.4. We say that a PRmss X : (∆op)n → Top, where n > 1, is
Segal’s multisimplicial space, when for every l ∈ {0, . . . , n−1} and every k > 0, the
simplicial space X1 . . . 1

︸︷︷︸

l

k...k is Segal’s.

Note that we do not require Xk1...kl kl+1...kn−1 to be Segal’s for arbitrary
k1, . . . , kn−1 (see the parenthetical remark in Section 5.)

Remark 3.5. If X : (∆op)n → Top is Segal’s multisimplicial space, then for
every l ∈ {0, . . . , n− 1}, X1...1 is homotopy associative H -space with respect to the
structure obtained from Lemma 3.1 applied to X1 . . . 1

︸︷︷︸

l

1...1 : ∆op → Top.

Our goal is to generalize the following proposition, which stems from [17,
Proposition 1.5(b)]. (In the proof of that result, contractibility of |P A| comes
from the fact that |P A| ≃ A0.)

Proposition 3.6. Let X : ∆op → Top be Segal’s simplicial space. If X1

with respect to the H-space structure obtained by Lemma 3.1 is grouplike, then

X1 ≃ Ω|X |.

Our generalization is the following.

Proposition 3.7. Let X : (∆op)n → Top be Segal’s multisimplicial space. If

X1...1, with respect to the H-space structure obtained by Remark 3.5 when l = n−1,

is grouplike, then X1...1 ≃ Ωn|X |.

Proof. We proceed by induction on n > 1. If n = 1, the result follows from
Proposition 3.6.

If n > 1, then we may apply the induction hypothesis to X1 ... . Hence,

X1...1 ≃ Ωn−1|X1 ... |.

By Lemma 2.5, we have that |X1 ... | ≈ | diag X1 ... |. By the assumption and
Remark 2.7(d), the multisimplicial space Y : ∆op × ∆op → Top, defined so that
Ymk = Xmk...k, satisfies the conditions of Lemma 3.3. Let Z be the simplicial space
Y (1) : ∆op → Top, i.e.,

Zm = |Ym | = | diag Xm ... |.

By Lemma 3.3, Z is Segal’s simplicial space. By Remark 2.7(b), Z1 is a CW-
complex. Since the space Y10 (i.e., X10...0) is by the assumption homotopic to
(X110...0)0, it is contractible, and hence, path-connected. By Lemma 2.14, we have
that Z1, which is equal to |Y1 |, is path-connected. Note also that |Z| = |Y | ≈
| diag X | ≈ |X |.
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By Lemma 3.1, Z1 is a homotopy associative H-space, and since it is a path-
connected CW-complex, by [1, Proposition 8.4.4], it is grouplike. Applying Propo-
sition 3.6 to Z, we obtain

|X1 ... | ≈ | diag X1 ... | = Z1 ≃ Ω|Z| ≈ Ω|X |.

Finally, we have

X1...1 ≃ Ωn−1|X1 ... | ≃ Ωn|X |. ⊣

4. Segal’s lax functors

Thomason, [20], was the first who noticed that the reduced bar construction
based on a symmetric monoidal category produces a lax, instead of an ordinary,
functor. The idea to use Street’s rectification in that case, also belongs to him.

We use the notions of lax functor, left and right lax transformation as defined
in [19]. The following theorem is taken over from [19, Theorem 2].

Theorem 4.1. For every lax functor W : A → Cat there exists a genuine

functor V : A → Cat, a left lax transformation E : V → W and a right lax

transformation J : W → V such that J is the left adjoint to E and W = EVJ .

We call V a rectification of W . It is easy to see that if W : A × B → Cat
is a lax functor and V is its rectification, then for every object A of A, WA is a
lax functor and VA is its rectification. As for simplicial spaces, for a (lax) functor

W : ∆op → Cat, we denote the unique arrow W0 → (W1)0 by p0, and when m > 1,
we have pm = 〈i1, . . . , im〉 : Wm → (W1)m.

Definition 4.2. We say that a lax functor W : ∆op → Cat is Segal’s, when
for every m > 0, pm : Wm → (W1)m is the identity. We say that a lax functor
W : (∆op)n → Cat is Segal’s, when for every l ∈ {0, . . . , n − 1} and every k > 0,
the lax functor W1 . . . 1

︸︷︷︸

l

k...k : ∆op → Cat is Segal’s.

We denote by B : Cat→ Top the classifying space functor, i.e., the composition

| | ◦N , where N : Cat→ Top∆op

is the nerve functor.

Proposition 4.3. If W : ∆op → Cat is Segal’s lax functor and V is its recti-

fication, then B ◦ V is Segal’s simplicial space.

By Definitions 3.4 and 4.2, the following generalization of Proposition 4.3 is
easily obtained.

Corollary 4.4. If W : (∆op)n → Cat is Segal’s lax functor and V is its

rectification, then B ◦ V is Segal’s multisimplicial space.

For Corollary 4.4, we conclude that B ◦V is a PRmss as in the proof of Propo-
sition 4.3 given in the appendix.
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5. An application

Let M be an n-fold strict monoidal category and let WM : (∆op)n → Cat be
the n-fold reduced bar construction defined as in [5]. The main result of that paper
says that WM is a lax functor and it is easy to verify that it is Segal’s. (Note that
WMk1...kl ...kn−1 is not Segal’s when kj > 1, for some 1 6 j 6 l.)

For V being a rectification of WM, we have the following.

Theorem 5.1. If BV1...1, with respect to the H-space structure obtained by

Remark 3.5 when l = n− 1, is grouplike, then BM≃ Ωn|B ◦ V |.

Proof. By Corollary 4.4, we have that B ◦ V is Segal’s multisimplicial space.
Hence, by Proposition 3.7, BV1...1 ≃ Ωn|B ◦ V |. Since V is a rectification of WM,
by relying on Remark A1 of the appendix, we conclude that BV1...1 ≃ BWM1...1.
From the fact that WM1...1 =M, we obtain that BM≃ Ωn|B ◦ V |. ⊣

This means that up to group completion (see [17] and [13]), for every n-fold
strict monoidal category M, the classifying space BM is an n-fold loop space.
WhenM contains a terminal or initial object, we have that BM, and hence BV1...1,
is path-connected. In that case, by [1, Proposition 8.4.4], BV1...1 is grouplike, and
|B ◦ V | is an n-fold delooping of BM.

6. Appendix

Proof of Lemma 3.1. First, we prove that 〈X1, m, ∗〉 is an H-space. Let j1 :
X1 → X1×X1 be such that j1(x) = (x, ∗), and analogously, let j2 : X1 → X1×X1

be such that j2(x) = (∗, x). By the assumption, X0 is contractible. Hence, d1
0 is

homotopic to the constant map to x0 and therefore s1
0 ◦ d1

0 is homotopic to the
constant map to ∗. We conclude that

j1 ≃ 〈1X1 , s1
0 ◦ d1

0〉 = 〈d2
2 ◦ s2

1, d2
0 ◦ s2

1〉 = 〈d2
2, d2

0〉 ◦ s2
1 = p2 ◦ s2

1,

i.e., p−1
2 ◦ j1 ≃ s2

1. Hence,

m ◦ j1 = d2
1 ◦ p−1

2 ◦ j1 ≃ d2
1 ◦ s2

1 = 1X1 .

Analogously, m ◦ j2 ≃ 1X1 and we have that 〈X1, m, ∗〉 is an H-space.

Next, we prove that m is associative up to homotopy, i.e., that

m ◦ (m× 1) ≃ m ◦ (1×m).

Consider p3 : X3 → (X1)3 for which we have

p3 = 〈〈i1, i2〉, i3〉 = 〈〈d2
2 ◦ d3

3, d2
0 ◦ d3

3〉, i3〉 = 〈p2 ◦ d3
3, i3〉

= (p2 × 1) ◦ 〈d3
3, i3〉, and analogously

p3 = (1× p2) ◦ 〈i1, d3
0〉.

Since p2 and p3 are homotopy equivalences, we have that 〈d3
3, i3〉 and 〈i1, d3

0〉 are
homotopy equivalences, too. Moreover,

〈d3
3, i3〉

−1 ≃ p−1
3 ◦ (p2 × 1),(1)

〈i1, d3
0〉

−1 ≃ p−1
3 ◦ (1× p2).(2)
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Also, we show that

d2
1 × 1 ≃ p2 ◦ d3

1 ◦ p−1
3 ◦ (p2 × 1),(3)

1× d2
1 ≃ p2 ◦ d3

2 ◦ p−1
3 ◦ (1× p2).(4)

We have

(d2
1 × 1) ◦ 〈d3

3, i3〉 = 〈d2
1 ◦ d3

3, i3〉 = 〈d2
2 ◦ d3

1, d2
0 ◦ d3

1〉 = 〈d2
2, d2

0〉 ◦ d3
1 = p2 ◦ d3

1,

which together with (1) delivers (3). Also,

(1× d2
1) ◦ 〈i1, d3

0〉 = 〈i1, d2
1 ◦ d3

0〉 = 〈d2
2 ◦ d3

2, d2
0 ◦ d3

2〉 = 〈d2
2, d2

0〉 ◦ d3
2 = p2 ◦ d3

2,

which together with (2) delivers (4). Finally, we have

m ◦ (m× 1) = d2
1 ◦ p−1

2 ◦ (d2
1 × 1) ◦ (p−1

2 ) ≃ d2
1 ◦ d3

1 ◦ p−1
3 , by (3)

= d2
1 ◦ d3

2 ◦ p−1
3 ≃ d2

1 ◦ p−1
2 ◦ (1× d2

1) ◦ (1× p−1
2 ), by (4)

= m ◦ (1×m). ⊣

Proof of Lemma 3.3. Let Z : ∆op → Top be Y (1). By Remark 2.7(a), it is
a PRmss. We have to show that for every m > 0, the map pm : Zm → (Z1)m is a
homotopy equivalence.

Let m = 0 and let T be the trivial simplicial space with Tk = {∗}. Consider
the simplicial space Y0 : ∆op → Top, which is a PRmss by Remark 2.7(c). By
Proposition 2.9 and Lemma 2.10, both T and Y0 are proper. The following sim-
plicial map is obtained by the assumptions (the diagrams are commutative since
{∗} is terminal).

↓ ≃ ↓ ≃ ↓ ≃

. . . Y02

→
→
→

←
← Y01

→
→
← Y00

. . . {∗} →← {∗} →← {∗}

Y0 :

T :

By Lemma 2.11, we have that |Y0 | ≃ |T | = {∗} via the unique map. Since

Z0 = |Y0 | and (Z1)0 = {∗}, we are done.

Let m > 0. Consider the simplicial spaces Ym and (Y1 )m, which are proper
by Remark 2.7(c), Proposition 2.9, Lemma 2.10 and Remark 2.13. The following
simplicial map is obtained by the assumptions (it is straightforward to verify that
the diagrams are commutative).

↓ ≃ ↓ ≃ ↓ ≃

. . . Ym2

→
→
→

←
← Ym1

→
→
← Ym0

. . . (Y12)m
→
→
→

←
← (Y11)m →

→
← (Y10)m

Ym :

(Y1 )m :
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By Lemma 2.11, we have that

|〈Y (i1, ), . . . , Y (im, )〉| : |Ym | → |(Y1 )m|

is a homotopy equivalence. Also, for Top, the realization functor | | preserves
products (see [10, Theorem 14.3], [7, III.3, Theorem] and [11, Corollary 11.6]).
Namely, for πk : (Y1 )m → Y1 , 1 6 k 6 m being the kth projection,

〈|π1|, . . . , |πm|〉 : |(Y1 )m| → |Y1 |
m

is a homeomorphism (| | is strong monoidal; see [16, Example 6.2.2]). Hence,

〈|π1|, . . . , |πm|〉 ◦ |〈Y (i1, ), . . . , Y (im, )〉| : |Ym | → |Y1 |
m

is a homotopy equivalence.
The following easy computation, in which 〈Y (i1, ), . . . , Y (im, )〉 is abbrevi-

ated by α,

〈|π1|, . . . , |πm|〉 ◦ |α| = 〈|π1| ◦ |α|, . . . , |πm| ◦ |α|〉 = 〈|π1 ◦ α|, . . . , |πm ◦ α|〉

= 〈|Y (i1, )|, . . . , |Y (im, )|〉 = 〈Z(i1), . . . , Z(im)〉

shows that the map pm = 〈Z(i1), . . . , Z(im)〉 is a homotopy equivalence between
Zm = |Ym |, and (Z1)m = |Y1 |

m. ⊣

Some preliminary remarks for Proposition 4.3. Let 2 be the category
with two objects (0 and 1) and one nonidentity arrow h : 0→ 1. Let I0, I1 : C → C×2

be the functors such that for every object C of C, we have that I0(C) = (C, 0) and
I1(C) = (C, 1). Let F, G : C → D be two functors. There is a bijection between the
set of natural transformations α : F

.

→ G, and the set of functors A : C×2→ D such
that A ◦ I0 = F and A ◦ I1 = G. This bijection maps α : F

.

→ G to A : C × 2→ D
such that

A(C, 0) = FC, A(C, 1) = GC, A(f, 10) = Ff, A(f, 11) = Gf,

and for f : C → C′,
A(f, h) = Gf ◦ αC = αC′ ◦ Ff.

Its inverse maps A : C × 2→ D to α : F
.

→ G such that αC = A(1C , h).
The nerve functor N preserves products on the nose, hence, the classifying

space functor B = | | ◦ N preserves products too. Therefore, the spaces BC × I

(i.e., BC ×B2) and B(C × 2) are homeomorphic and we have the following.

Remark A1. Every natural transformation α : F
.

→ G gives rise to the homo-
topy

BC × I
≈
−→ B(C × 2)

BA
−−→ BD

between the maps BF and BG.

Proof of Proposition 4.3. By the isomorphism mentioned in Definition 2.2,
we have that N ◦ V corresponds to a multisimplicial set X : ∆op ×∆op → Top and
B ◦ V is X(1). Hence, it is a PRmss.

We have to show that for every m > 0, pm : BVm → (BV1)m is a homotopy
equivalence, where we denote again by p0 the unique map from BV0 to (BV1)0 and
by pm the map 〈BV (i1), . . . , BV (im)〉.
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When m = 0, we show that BJ0 : BW0 → BV0 is a homotopy inverse to p0.
Since W0 and (V1)0 are the same trivial category and BW0 = (BV1)0 = {∗}, it is
easy to conclude that p0 ◦ BJ0 ≃ 1(BV1)0 , and that p0 = BE0. The latter, by the
adjunction J0 ⊣ E0 and Remark A1, delivers BJ0 ◦ p0 ≃ 1BV0 .

When m > 1, we have for every 1 6 j 6 m, the following natural transforma-
tions.

Vm

V1

W1

Wm

ij

Em ij

E1

⇓ Eij

❍❍❍❍❥

✟✟✟✟✯ ❍❍❍❍❥

✟✟✟✟✯
Wm

W1

V1

Vm

ij

Jm ij

J1

⇑ Jij❍❍❍❍❥

✟✟✟✟✯ ❍❍❍❍❥

✟✟✟✟✯

By using the monoidal structure of Cat given by 2-products and the fact that
〈i1, . . . , im〉 : Wm → (W1)m is the identity, we obtain the following two natural
transformations.

Vm

(V1)m

Wm

〈i1, . . . , im〉

Em

(E1)m⇓
〈Ei1 , . . . , Eim 〉❅

❅
❅
❅❘

✲

�
�
�
�✒

Wm (V1)m

Vm

〈i1, . . . , im〉

(J1)m

Jm
⇑

〈Ji1 , . . . , Jim 〉

❅
❅
❅
❅❘
✲

�
�
�

�✒

For πk : Cm → C, 1 6 k 6 m being the kth projection,

〈Bπ1, . . . , Bπm〉 : BCm → (BC)m

is a homeomorphism whose inverse we denote by qm(C). It is easy to verify that
for F, F1, . . . , Fm : C → D we have B〈F1, . . . , Fm〉 = qm(D)〈BF1, . . . , BFm〉 and
BF m ◦ qm(C) = qm(D) ◦ (BF )m.

By Remark A1, the transformations mentioned above give rise to

BEm ≃ B(E1)m ◦B〈V (i1), . . . , V (im)〉(†)

= qm(W1) ◦ (BE1)m ◦ 〈BV (i1), . . . , BV (im)〉

= qm(W1) ◦ (BE1)m ◦ pm,

B(J1)m ≃ B〈V (i1), . . . , V (im)〉 ◦BJm(††)

= qm(V1) ◦ 〈BV (i1), . . . , BV (im)〉 ◦BJm

= qm(V1) ◦ pm ◦BJm.

The following calculation shows that

BJm ◦ qm(W1) ◦ (BE1)m : (BV1)m → BVm

is a homotopy inverse to pm.
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1BVm
≃ BJm ◦BEm, by Jm ⊣ Em, Remark A1

≃ BJm ◦ qm(W1) ◦ (BE1)m ◦ pm, by (†)

1(BV1)m ≃ q−1
m (V1) ◦B(J1)m ◦B(E1)m ◦ qm(V1), by J1 ⊣ E1, Remark A1

≃ pm ◦BJm ◦ qm(W1) ◦ (BE1)m, by (††). ⊣
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