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GROUPS WITH FINITELY

MANY COUNTABLE MODELS

Dejan Ilić, Slavko Moconja, and Predrag Tanović

Abstract. We construct Abelian group with an extra structure whose first
order theory has finitely many but more than one countable model.

1. Introduction

In this paper we will deal with the first order structures in a countable language.
The theory of a structure M in the language L, denoted by ThL(M), is the set
of all L-sentences that M satisfies; it is a complete theory. For any complete
theory T having infinite models let I(ℵ0, T ) denote the number of isomorphism
classes of its countable models. The theory T is called an Ehrenfeucht theory if
1 < I(ℵ0, T ) < ℵ0. The first example of such a theory was given by Ehrenfeucht
in [11]. It is the theory in the language {<} ∪ {cn | n ∈ ω} describing a dense
linear order without endpoints in which C = (cn | n ∈ ω) is a strictly increasing
chain. There are three countable models, up to isomorphism: one in which C is
unbounded, one in which C is bounded but diverges, and one in which C converges.
Ehrenfeucht theories are considered as sporadic among the first order theories and
there are not many essentially distinct examples, some of them can be found in
[6, 9, 12]. None of the known examples is based on an algebraic structure, for
example on a group. In this article by a group we will mean a first order structure
(G, ·, . . . ) such that (G, ·) is a group but an additional structure may be added. If
no additional structure is added then we say that it is a pure group, even when the
neutral element is named.

We will describe a construction which for a given densely ordered, countable,
saturated structure produces an Abelian group similar to it; more precisely, the
two structures will be bi-interpretable (we use standard notion of interpretation of
a structure into another as can be found in [2]). We will start with a countable,
saturated structure L in a countable, relational language L containing a binary
relation (symbol) < and a unique constant symbol 0. Assuming that the domain is
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densely linearly ordered we construct a countable, saturated Abelian group G(M)
in the language LG = L ∪ {+}. The structure L will be interpretable in G(M)
via a canonical, definable mapping π taking the elementary submodels of G(M)
onto the elementary submodels of L. It will turn out that π preserve isomorphism
in both directions so, by saturation, it determines a bijective correspondence be-
tween countable models of ThL(L) and ThLG

(G(M)). In particular we have that
I(ℵ0,ThL(L)) = I

(

ℵ0,ThLG
(G(M))

)

and if ThL(L) is an Ehrenfeucht theory, then
ThLG

(G(M)) is an Ehrenfeucht theory, too. Since Ehrenfeucht’s example can be
turned into a densely ordered relational structure, we obtain:

Theorem 1.1. There is an Abelian group (with additional structure) whose
theory is an Ehrenfeucht theory.

The construction is a slight modification of Krupinski’s construction of a min-
imal, ordered group from [3]; it was used in [4] and described in detail in [1]. A
similar construction was used by the third author in [8].

We assume that the reader is familiar with basic model theory concepts, as can
be found in [2]. Let M = (M, . . . ) be a first order structure and let A ⊆ M and
a ∈ M . By tp(a/A) we denote the set of all formulae with parameters from A that
a satisfies. If there is a formula with parameters from A whose unique solution is
a, then we say that a is definable over A. The set of all definable elements over A
is called the definable closure of A in M and is denoted by dclM(A). Suppose that
N = (N, . . . ) is elementary equivalent to M, B ⊆ N and f : A −→ B is a bijection.
If tp(a1, . . . , an) = tp(f(a1), . . . , f(an)) holds for all a1, . . . , an ∈ A, then we say
that f is a partial elementary mapping. Such a mapping extends (uniquely) to a
partial elementary mapping between dclM(A) and dclN(B).

2. The construction

Throughout this section we fix a countable language L whose unique non-
relational symbol is a constant symbol 0. We assume that L contains a binary
relation symbol <. In order to simplify notation we will not distinguish between
the < and actual linear orderings that it defines in structures. Fix a countable,
saturated L-structure L = (L,<, 0, . . . ) such that (L,<) is a dense, unbounded
linear order whose minimum is 0. We will construct a 2-sorted structure M in
which one sort L(M) is L, and the other sort G(M) is a group with the L-structure
added. The only link between the sorts will be the projection map πM mapping
G(M) (the domain of G(M)) onto L (the domain of L(M)).

Let LG := {+}∪{RG | R ∈ L} and let L∗ := {L,G}∪L∪LG ∪{π} . Here the
unary predicates L and G are reserved for sort names. Let L(M) := L. + will be
interpreted as an addition in commutative groups and, to simplify notation, we will
not distinguish between the language symbol and actual operations in structures.
An LG-structure G(M) is defined in the following way. Let E = (el | l ∈ Lr {0})
be a sequence of pairwise distinct elements and let (G(M),+, 0G) be a group of
exponent 2 freely generated by E. For 0 < l1 < · · · < lk define: πM(el1

+· · ·+elk
) =

lk, πM(0G) = 0. Then πM : G(M) −→ L is called the projection of G(M) onto
L(M). For each n-ary relation symbol R ∈ L and (a1, . . . , an) ∈ G(M)n define:
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G(M) |= RG(a1, . . . , an) if and only if L |= R(πM(a1), . . . , πM(an)).

In particular, a <G b holds in G(M) if and only if πM(a) < πM(b) holds in L.
For every N |= Th(M), we denote its domain by N . We assume that N is the

disjoint union of G(N) and L(N), where G(N) (L(N)) is the domain of the G-sort
(L-sort) of N. The structure G(N) is an LG-group (G(N),+, 0G, . . . ) and L(N) is
the L-structure of the L-sort (L(N), <, 0, . . .). So when we write G(N′) by this we
mean the G-sort of some model N′; similarly for L(N′). Note that for each n-ary
relation symbol R ∈ L holds:

M |= (∀x1, x2, . . . , xn ∈ G)
(

RG(x1, x2, . . . , xn) ⇔ R(π(x1), π(x2), . . . , π(xn))
)

.

Therefore, the same holds in each N |= Th(M). Hence, for all a1, a2, . . . , an ∈ G(N)
we have:

(2.1) G(N) |= RG(a1, a2, . . . , an) iff L(N) |= R(πN(a1), πN(a2), . . . , πN(an)).

Lemma 2.1. Let x ∼ y denote G(x) ∧G(y) ∧ ¬(x <G y ∨ y <G x).

(i) M |= (∀x, y ∈ G)(x ∼ y ⇔ π(x) = π(y)).
(ii) The <G-incomparability is a definable equivalence relation on the G-sort

of any model of Th(M).
(iii) The mapping defined by x/ ∼ 7→ πM(x) determines an interpretation of

L(M) in G(M). Moreover, for any N |= Th(M) x/∼ 7→ πN(x) defines
an interpretation of L(N) in G(N).

Proof. (i) follows from the definition of <G and (ii) follows from (i). (iii)
follows from the definition of G(M): whenever ai ∼ bi, for i 6 n, ai, bi are elements
of G(M), then πM(ai) = πM(bi) and we have

G(M) |= RG(a1, . . . , an) iff L(M) |= R(πM(a1), . . . , πM(an)) iff

L(M) |= R(πM(b1), . . . , πM(bn)) iff G(M) |= RG(b1, . . . , bn).

Therefore R is interpreted by RG/∼. By elementary equivalence the same holds
in any N |= Th(M). �

It follows from part (iii) of the lemma that the isomorphism type of any model
of Th(M) is determined by the LG-isomorphism type of its G-sort. We aim to
prove that the isomorphism type of any countable model of Th(M) is uniquely
determined by the L-isomorphism type of its L-part among the countable models.
We do that in Theorem 2.1 and the key fact used in the proof is the existence of
linearly ordered basis (defined below) in the countable case. In Proposition 2.1 we
prove that M has an uncountable elementary extension whose L-sort is L, so L(M)
does not determine the isomorphism type of M in the class of all models.

We will view G(N) as a vector space over Z2 and by span(X) denote the linear
span of X ⊆ G(N). A linearly ordered basis is a basis which is totally ordered
by <G.

Lemma 2.2. (i) G(M) |= (∀x 6= 0G)(∀y 6= 0G)(x ∼ y ⇔ x+ y <G y)

(ii) G(M) |= (∀x1, . . . , xn)(x1 <G · · · <G xn ⇒ x1 + · · · + xn ∼ xn).
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(iii) If N |= Th(M), then every finite totally ordered subset of non-zero ele-
ments in G(N) is linearly independent.

(iv) If N |= Th(M) and 0G <G a1 <G · · · <G an and 0G <G b1 <G · · · <G bn

are elements of G(N), then f(ai) = bi (i 6 n) extends to an isomorphism
of (span(a1, . . . , an),+, <G, 0G) and (span(b1, . . . , bn),+, <G, 0G).

(v) If N |= Th(M) is countable, then any finite, totally ordered subset of
G(N) r {0G} is contained in a linearly ordered basis of G(N).

Proof. (i)–(ii) are easy and left to the reader.
(iii) If a1 <G a2 <G · · · <G an then, by part (ii), we have

∑n

i=1 ai ∼ an so
∑n

i=1 ai 6= 0G. Therefore the sum of elements of a chain is distinct from 0G, so
every chain is linearly independent.

(iv) Suppose that a1 <G · · · <G an and b1 <G · · · <G bn are chains of
non-zero elements of G(N) and that f : {a1, . . . , an} → {b1, . . . , bn} sends ai

to bi (for each i 6 n). To prove that f extends to an isomorphism between
(span(a1, . . . , an),+, <G, 0G) and (span(b1, . . . , bn),+, <G, 0G) first note that, by
part (iii), ai’s are linearly independent. Further, since part (ii) of the lemma
holds for G(N) in place of G(M), we have that whenever both (n1, . . . , nr) and
(m1, . . . ,ms) consist of pairwise distinct natural numbers, we have:

an1
+ · · · + anr

<G am1
+ · · · + ams

iff max{n1, . . . , nr} < max{m1, . . . ,ms}.

It is straightforward to verify that this fact implies that f extends to isomorphism
of the ordered spans.

(v) Suppose that {a0, . . . , an} is totally ordered by <G. Then, by (iii), it is
linearly independent, so it can be extended to a basis A = {ai | i ∈ ω} of G(N).
Inductively we will define a new basis {bi | i ∈ ω} satisfying our requirements. Let
bi = ai for i 6 n. Consider an+1 + span(b0, . . . , bn) and let bn+1 be its <G-minimal
element. Then bn+1 is ∼-equivalent to no element b of span(b0, . . . , bn) as otherwise,
by (ii), we would have bn+1 >G bn+1+b and bn+1+b ∈ an+1+span(b0, . . . , bn) would
contradict the minimality of bn+1. Thus, {b0, . . . , bn+1} is <G-totally ordered and
span(a0, . . . , an+1) = span(b0, . . . , bn+1). Continuing in this way, we get a totally
ordered basis {bi | i ∈ ω} containing {a0, . . . , an}. �

Lemma 2.3. Suppose that N |= Th(M).

(i) Any linearly ordered base of G(N) contains exactly one representative from
each non-zero ∼-class. Non-zero ∼-classes are densely linearly ordered;
In particular if N is countable, they are ordered in the order type of the
rationals.

(ii) Any order-preserving bijection between linearly ordered bases of G(N) ex-
tends to an automorphism of (G(N),+, <G, 0G).

(iii) If ā = (a1, . . . , an) and b̄ = (b1, . . . , bn) are chains of non-zero elements
of G(N), then tp{<G,+}(ā) = tp{<G,+}(b̄).

Proof. (i) From the definition of linearly ordered base no pair of its elements
are ∼-equivalent, so it remains to show that it has at least one representative in
each non-zero ∼-class. Let a ∈ G(N) r {0G} and let B be a linearly ordered basis
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of G(N). To show that a ∼ b holds for some b ∈ B, note that a is a finite sum of
elements of B. By Lemma 2.2(ii) a is in the ∼-class of the largest element b ∈ B
appearing in the sum. Hence a ∼ b holds.

Non-zero classes are <G-ordered in the same way as their projections are or-
dered in L(N), so the order is dense.

(ii) Follows from Lemma 2.2(iv).
(iii) If the conclusion fails then it fails in a countable model. So it suffices to

prove the lemma assuming that N is countable. By Lemma 2.2(v), each of ā and b̄
is contained in a linearly ordered basis of G(N). By part (i) these bases are ordered
in the order type of the rationals. Hence they are isomorphic (as linear orders) and
the isomorphism can be chosen mapping each ai to bi (1 6 i 6 n). By part (ii)
this isomorphism extends to an automorphism of (G(N), <G,+, 0G). In particular
tp{<G,+}(ā) = tp{<G,+}(b̄). �

According to part (i) of the lemma every linearly ordered base A ⊂ G(N)
contains exactly one representative from each non-zero ∼ -class. Hence the elements
of A can be indexed by the elements of L(N) r {0}:

A = {al | l ∈ L(N) r {0}} and πN(al) = l holds for all relevant l.

This condition does not imply that A is a base. In the proof of Proposition 2.1 we
will find A which satisfies this condition but which is not a basis of G(M).

Lemma 2.4. Suppose that N |= Th(M) and that (ai | i ∈ I) and (bi | i ∈ I)
are sequences of pairwise <G-comparable, non-zero elements of G(N) such that
(πN(ai) | i ∈ I) ≡L (πN(bi) | i ∈ I). Then (ai | i ∈ I) ≡LG

(bi | i ∈ I); in other
words, the mapping defined by f(ai) = bi is a partial elementary mapping.

Proof. Clearly, it suffices to prove the lemma assuming that I is finite and
N is countable. Further, we may assume that L(N) ∼= L: if the conclusion fails
in N, then by replacing N by the union of an appropriately formed ω-chain of
countable, elementary extensions of N, we get a countable model of Th(M) such
that L(N) is countable and saturated (saturation of L is relevant here). So assume
that L(N) ∼= L.

By induction on the complexity of LG-formula φ(x̄) we prove that G(N) |= φ(ā)

and G(N) |= φ(b̄) are equivalent, whenever ā = (a1, . . . , an) and b̄ = (b1, . . . , bn) are
increasing chains of non-zero elements of G(N) satisfying πN(ā) ≡L πN(b̄). First
we prove it for atomic φ(x̄). Assume that ā = (a1, . . . , an) and b̄ = (b1, . . . , bn)
are increasing chains of non-zero elements of G(N) satisfying πN(ā) ≡L πN(b̄). By

Lemma 2.3(iii) ā and b̄ have the same {<G,+}-type. Further note that every LG-
term is {+, 0G}-term so, if φ(x̄) is an atomic formula of the form t(x̄) = s(x̄), then

the equality of {<G,+}-types of ā and b̄ implies the equivalence of G(N) |= φ(ā)
and G(N) |= φ(b̄). Assume that φ(x̄) is atomic of the form RG(t1(x̄), . . . , tm(x̄))
where R ∈ L is m-ary. Then

G(N) |= RG(t1(ā), . . . , tm(ā)) iff L(N) |= R
(

πN(t1(ā)), . . . , πN(tm(ā))
)

iff

L(N) |= R
(

πN(t1(b̄)), . . . , πN(tm(b̄))
)

iff G(N) |= RG(t1(b̄), . . . , tm(b̄)).
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Here the first and the third equivalence follow from the fact (2.1) before Lemma 2.1.
The second is a consequence of tpL(πN(ā)) = tpL(πN(b̄)): indeed, if t(x̄) is any
{+, 0G}-term then, without loss of generality, t(x̄) =

∑

i∈I0
xi, for some I0 ⊆

{1, 2 . . . , n}. We have

t(ā) ∼ max{ai | i ∈ I0} and t(b̄) ∼ max{bi | i ∈ I0}; hence

πN(t(ā)) = max{πN(ai) | i ∈ I0} and πN(t(b̄)) = max{πN(bi) | i ∈ I0}.

It follows that πN(t(ā)) = πN(ak) and πN(t(b̄)) = πN(bk) hold for the same k ∈ I0.
Therefore tpL(πN(ā)) = tpL(πN(b̄)) implies:

tpL

(

πN(t1(ā)), . . . , πN(tm(ā))
)

= tpL

(

πN(t1(b̄)), . . . , πN(tm(b̄))
)

.

This proves the equivalence of G(N) |= φ(ā) and G(N) |= φ(b̄) for atomic
formulae. The induction step is trivial when φ(x̄) is either a conjunction or a
negation and it remains to consider the case when φ(x̄) is ∃y ψ(y, x̄). So assume
that G(N) |= ψ(c, ā) holds and we prove G(N) |= ∃y ψ(y, b̄).

First suppose that c ∈ span(ā) and let c =
∑

i∈I0
ai for some I0 ⊆ {1, . . . , n}.

Apply the induction hypothesis to ψ(
∑

i∈I0
xi, x̄), ā and b̄. Then we have that

G(N) |= ψ(
∑

i∈I0
ai, ā) implies G(N) |= ψ(

∑

i∈I0
bi, b̄), so G(N) |= ∃y ψ(y, b̄).

Now assume that c /∈ span(ā) and let c′ = c+
∑

i∈I0
ai be the smallest element

of c+span(ā). Then c′ is <G-comparable to each element of span(ā); otherwise, by
Lemma 2.2(i) their sum would be strictly smaller than c′, contradicting the mini-
mality of c′. Therefore (c′, ā) can be arranged into a strictly increasing sequence:

a1 <G · · · <G ak <G c′ <G ak+1 <G · · · <G an.

Then πN(a1) < · · · < πN(ak) < πN(c′) < πN(ak+1) < · · · < πN(an).

tpL(πN(ā)) = tpL(πN(b̄)) coupled with saturation of L(N) implies that there
is f ∈ Aut(L(N)) such that f(πN(ai)) = πN(bi) for all 1 6 i 6 n. Let d′ ∈ G(N)
be such that f(πN(c′)) = πN(d′). Then

b1 <G · · · <G bk <G d′ <G bk+1 <G · · · <G bn.

By Lemma 2.3(iii) we have tp{+,<G}(d′, b̄) = tp{+,<G}(c′, ā). By the induction

hypothesis G(N) |= ψ(c′ +
∑

i∈I0
ai, ā) implies G(N) |= ψ(d′ +

∑

i∈I0
bi, b̄). Hence

G(N) |= ∃y ψ(y, b̄), completing the proof of the lemma. �

Theorem 2.1. (i) Two countable models of Th(M) are isomorphic iff their
L-sorts are isomorphic iff their G-sorts are isomorphic.

(ii) I
(

ℵ0,Th(G(M))
)

= I
(

ℵ0,Th(L(M))
)

= I(ℵ0,Th(M)).

(iii) The structure M is saturated.

Proof. (i) Let U be an ℵ1-saturated model of Th(M). Since any countable
model embeds into U, it suffices to prove the claim for elementary submodels of U.
We have already noted that isomorphism of G-sorts implies isomorphism of full
L∗-structures. Trivially, isomorphism of full L∗-structures implies isomorphism of
their L-parts. It remains to prove that isomorphism of L-parts implies isomorphism
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of L∗-structures. So assume that N1 ≺ U and N2 ≺ U are countable and that
L(N1) and L(N2) are isomorphic. Let f : L(N1) → L(N2) be an isomorphism.

Choose a linearly ordered base A = (al | l ∈ L(N1) r {0}) of G(N1) such that
πN1 (al) = l, and choose a linearly ordered base B = (bf(l) | l ∈ L(N1) r {0}) of

G(N2) such that πN2 (bf(l)) = f(l). Since f is an isomorphism, we have

πU(al | l ∈ L(N1) r {0}) ≡L πU(bf(l) | l ∈ L(N1) r {0}).

By Lemma 2.4 the mapping F : A → B defined by F (al) = bf(l) is partial elemen-
tary. It extends to a partial elementary mapping of their definable closures (in U).
The extension maps span(A) onto span(B) and is an isomorphism of G(N1) and
G(N2). Hence N1 and N2 are isomorphic.

(ii) Follows from part (i).

(iii) By assumption L(M) is saturated, so we prove that G(M) is saturated,
too. Let A ⊂ G(M) be finite and let p be a complete LG-type over A in one
variable. After replacing A by a linearly ordered base of span(A) we may assume
that A = (al0

, . . . , aln
) is an increasing chain of non-zero elements of G(M) such

that πM(ali
) = li. Suppose that N0 ≻ M is countable and that p is realized

in G(N0). By taking the union of an appropriately formed ω-chain of countable,
elementary extensions of N0, we get a countable N such that L(N) is saturated.
Since L(M) and L(N) are countable and saturated, there is an isomorphism f
between them fixing pointwise {l0, . . . , ln}.

By Lemma 2.2(v) there exists a linearly ordered base A′ ⊃ A of G(M) with
A′ = (al | l ∈ L(M) r {0}) such that πM(al) = l. Similarly, there is a linearly
ordered base B′ ⊃ A of G(N) such that: B′ = (bf(l) | l ∈ L(M) r {0}) and

πN(bf(l)) = f(l). Since {l0, . . . , ln} is fixed pointwise by f and A ⊂ B′, we have
bf(li) = ali

for all i 6 n. By Lemma 2.4 we conclude that F : B′ → A′ defined by
F (bf(l)) = al is a partial elementary mapping. It extends to a partial elementary
mapping F ′ of dclM(B′) onto dclN(A′), and F ′ is a bijection of span(B′) = G(N)
and span(A′) = G(M). Hence F ′ is an isomorphism of G(N) and G(M).

The type p is realized in N because N0 ≺ N. Let c ∈ G(N) realize p. Then
F ′(c) realizes p (because A is fixed pointwise by F ′) so p is realized in G(M). We
have just shown that all 1-types over a finite sub-domain of G(M) are realized in
G(M). Hence G(M) is saturated. �

Now we can easily prove Theorem 1.1:

Proof of Theorem 1.1. Let Q0 be the set of all non-negative rational num-
bers and let (cn | n ∈ ω) be an increasing sequence of positive rationals converging

to
√

2. Consider the structure L = (Q0, <,Rn)n∈ω where < is a natural order-
ing and each Rn is a unary predicate satisfied exclusively by cn. Then Th(L) is
a modification of the Ehrenfeucht’s example, having three countable models, and
L is saturated. Let M be two sorted structure constructed as above. Then, by
Theorem 2.1(ii), G(M) is an Abelian group with an Ehrenfeucht theory. �

Proposition 2.1. There is an uncountable M′ ≻ M such that L(M′) = L(M).
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Proof. First of all we prove that M has a proper, saturated, elementary
submodel N such that L(N) = L(M). Fix a decreasing sequence I = (li | i ∈ ω)
of elements of L(M). For i ∈ ω let ali

= eli
+ eli+1

, otherwise let al = el. Let A =
(al | l ∈ L(M)). Then A is linearly independent and contains one representative
from each non-zero ∼-class. Let N be the submodel of M whose G-sort is span(A).

We claim that eli
/∈ G(N) for all i ∈ ω. Towards contradiction assume that

eli
∈ G(N) for some i ∈ ω. Then eli

∈ span(A) so there are finite sets J0 ⊂ ω and
J1 ⊂ L(M) r I such that:

eli
=

∑

j∈J0

alj
+

∑

k∈J1

ek =
∑

j∈J0

(elj
+ elj+1

) +
∑

k∈J1

ek.

Since {el | l ∈ L(M)} is linearly independent, all the e’s, but one eli
cancel in the

sum on the right-hand side. If k ∈ J1, then ek does not appear in the first sum, so it
cannot be canceled, so ek 6= eli

implies J1 = ∅. Hence eli
=

∑

j∈J0
elj

+ elj+1
. The

sum on the right-hand side has even number of summands and after all possible
cancelations the number remains even. A contradiction.

Therefore, although A contains a representative of each non-zero ∼-class, it is
not a basis of G(M). In particular N ( M. As in the proof of Theorem 2.1 we
show that the inclusion is elementary: by Lemma 2.4 F (al) = el defines a partial
elementary mapping from A onto E (within M) which extends to an elementary
embedding of span(A) onto span(E). The embedding is an isomorphism of G(N)
and G(M).

By induction one constructs a continuous, strictly increasing, elementary chain
(Mξ | ξ ∈ ω1) of countable, saturated models such that M0 = N, M1 = M, and
L(Mξ) = L(M) holds for all ξ < ω1. Let M′ be the union of the chain. Clearly,
M′ is an uncountable elementary extension of M and L(M) = L(M′). �

3. Questions

By an Ehrenfeucht group we will mean a group whose theory is an Ehrenfeucht
theory. The following question is quite natural:

Question 3.1. Is there a pure Ehrenfeucht group?

Mekler’s construction [5] suggests the possibility of constructing such a group.
Namely, he proved that any structure in a finite relational language can be inter-
preted in a (pure) nilpotent group. However, the major problem is that it is not
clear whether there is an Ehrenfeucht theory in a finite relational language. We also
note that there is no such pure Abelian group: it is well known that the theory of
any pure Abelian group is stable and 1-based. By [7] there is no such Ehrenfeucht
theory.

Our construction produces groups of exponent 2 and it cannot be modified to
produce groups without torsion. That raises questions:

Question 3.2. Is every Ehrenfeucht group a torsion group?

Question 3.3. Does every Abelian Ehrenfeucht group have finite exponent?
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Finally, our construction relies on the existence of a linear order. It is interesting
to know whether any such group has a definable ordering.

Question 3.4. Does every Ehrenfeucht group have the strict order property?

According to Theorem 2 from [10], any Ehrenfeucht theory with infinitely many
definable elements has the strict order property. Therefore, if an Ehrenfeucht group
has a 0-definable element of infinite order, then dcl(∅) is infinite and the theory has
the strict order property. This suggests that the answer to Question 3.4 may be
affirmative.
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