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ENUMERATION OF CERTAIN CLASSES

OF ANTICHAINS

Goran Kilibarda

Abstract. An antichain is here regarded as a hypergraph that satisfies the
following property: neither of every two different edges is a subset of the
other one. The paper is devoted to the enumeration of antichains given on
an n-set and having one or more of the following properties: being labeled or
unlabeled; being ordered or unordered; being a cover (or a proper cover); and
finally, being a T0-, T1- or T2-hypergraph. The problem of enumeration of
these classes comprises, in fact, different modifications of Dedekind’s problem.
Here a theorem is proved, with the help of which a greater part of these classes
can be enumerated. The use of the formula from the theorem is illustrated
by enumeration of labeled antichains, labeled T0-antichains, ordered unlabeled
antichains, and ordered unlabeled T0-antichains. Also a list of classes that can
be enumerated in a similar way is given. Finally, we perform some concrete
counting, and give a table of digraphs that we used in the counting process.

1. Introduction

By a hypergraph we mean a finite nonempty set together with a finite multiset
of its subsets. The elements of this set are called vertices and the subsets are called
edges of the hypergraph. Quite naturally, we introduce the notion of the hypergraph
with and without multiple edges. If a linear order is given on the multiset of edges
of a hypergraph, we get an ordered hypergraph. An antichain is a hypergraph
without multiple edges that satisfies the following property: neither of every two
different edges is a subset of the other one. A hypergraph is a T0-hypergraph if for
every two different vertices there exists an edge that contains exactly one of them.

By a relative equivalence p on a set X we mean a subset X ′ of the given
set together with a relation of equivalence ∼ on this subset X ′; so we have that
p = (X ′, ∼).

Let us fix an n-set V , and denote by H the set of all hypergraphs on V , i.e.,
of all hypergraphs that have V as their set of vertices. Then on H we take a
relative equivalence p = (Hp, ∼p). Antichains belonging to the set Hp are called

2010 Mathematics Subject Classification: 05C30; 05C65.
Key words and phrases: Exact enumeration, monotone Boolean function, hypergraph, an-

tichain, cover, bipartite graph, digraph, coloring of a digraph.
Communicated by Žarko Mijajlović.

69



70 KILIBARDA

p-antichains. Supposing that p satisfies some natural conditions we get that every
class of the equivalence ∼p is either a subset of or disjoint from the set of all p-
antichains. We do not differentiate p-antichains that belong to the same class of
equivalence ∼p, and our goal is to count the number of all classes of p-antichains.

We derive a formula (Theorem 3.3) for counting classes of p-antichains in the
labeled case. A new class of digraphs, a class of all hedgehogs, is introduced,
and the formula “goes” over the digraphs of this class. As an illustration of the
use of the formula, examples of the enumeration of labeled antichains, labeled T0-
antichains, ordered unlabeled antichains, and ordered unlabeled T0-antichains with
a fixed number of edges are given.

The first of these examples, i.e., the case of labeled antichains, has connection
with the well-known problem of Dedekind [1], a brief history of which can be found
in [2, 3]. Though the problem has been considered in many papers, it remains
open till now.

2. Basic notions and designations

Let X be a set. Denote by |X | the cardinality of the set X , by B(X) the power
set of X . If |X | = n, then we say that X is an n-set.

For all integers m1, m2 ∈ Z, m1 6 m2, by m1, m2 denote the integer interval
{m1, m1 + 1, . . . , m2}. Also, by n denote the set {1, . . . , n} for every n ∈ N, and
let N0 = N ∪ {0}.

Following [4], by a multiset on a set S we mean an ordered pair consisting of
S and a mapping f : S → N0. Let a = (S, f) be a multiset; the value f(s) is called
multiplicity of s ∈ S in a. If it is clear from the context which function f is meant,
we use the notation ‖s‖ instead of f(s). For some s ∈ S we write s ∈ a if ‖s‖ > 0.
If ‖s‖ = 0 for every s ∈ S, then the multiset a is called the empty multiset. By the
cardinality of the multiset a we mean the number |a| =

∑

s∈S ‖s‖, and it is called
an m-multiset if |a| = m. Let b = (S, g) be another multiset. We write a ⊆ b if
f(s) 6 g(s) for every s ∈ S.

Let us introduce some notions from the graph theory which we are going to use
in the paper. By unordered hypergraph or simply hypergraph we mean an ordered
pair H = (V, E), where V is a finite nonempty set and E a finite multiset on B(V ).
Let us call elements of the set V vertices, and members of the multiset E edges
of the given hypergraph H . In what follows the set of vertices of a hypergraph
H will be also denoted by V H , and the multiset of its edges by EH . If |E| = m
and |V | = n, then we call hypergraph H an (m, n)-hypergraph. We say that a
hypergraph H is a hypergraph without multiple edges if ‖e‖ = 1 for every e ∈ EH .

If in the above given definition instead of a multiset E we take an m-tuple
(e1, . . . , em), where ei ⊆ V (i ∈ m), then we have an ordered hypergraph, that is, if
|V | = n, we have an ordered (m, n)-hypergraph. The sets ei, i ∈ m, are its edges.

Let e be an edge of a hypergraph H (ordered or unordered). We say that e is
an empty edge if e = ∅, and e is a unit edge if e = V H .

Note that a graph may be regarded as a special case of a hypergraph. In what
follows, we shall often denote by V G the set of vertices V , and by EG the set
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of edges E of the graph G = (V, E). The same notation is used for a digraph
D = (V, E): by V D we mean set of vertices V , and by ED the set of edges E.

Let H = (V, E) be a hypergraph or an ordered hypergraph. We say that a
vertex v ∈ V of H is incident to an edge e ∈ E of H (or e is incident to v) if v ∈ e.
A vertex v is called an isolated vertex in H if there is no edge in H which is incident
to v. A set V ′ ⊆ V is a set of adjacent vertices in H if there exists an edge e ∈ E
such that V ′ ⊆ e.

Denote by H(V ) [ ~H(V )] the set of all hypergraphs [ordered hypergraphs] that
have a set V as their set of vertices. Let H1 and H2 be two hypergraphs from H(V ).
These hypergraphs are equal, H1 ≡ H2, if EH1 = EH2. They are isomorphic,
H1 ≃ H2, if there is a bijection ι : V → V such that e ∈ EH1 iff ι(e) ∈ EH2

for every e ∈ B(V ), and ‖e‖ = ‖ι(e)‖ for every e ∈ EH1. These two relations are
equivalence relations on H(V ). By labeled [unlabeled] hypergraph (on V ) we mean a
class of equivalence ≡ [≃]. Isomorphic [equal] hypergraphs have the same number
of edges, and because of that we can speak about an unlabeled [labeled] (m, n)-
hypergraph. Analogously, we can introduce the notion of an unlabeled [labeled]
ordered (m, n)-hypergraph.

Let H be a hypergraph [an ordered hypergraph]. It is called an antichain if it
is a hypergraph [an ordered hypergraph] without multiple edges and if e1 6⊆ e2 for
every e1, e2 ∈ EH , e1 6= e2. It is called a cover if there is no isolated vertex in H .
If a cover does not contain the unit edge, we say that it is a proper cover.

By analogy with the notions of T0-, T1- and T2-spaces from general topology
let us introduce similar notions for hypergraphs. A hypergraph (an ordered hyper-
graph) H is:

a) a T0-hypergraph iff for every two different vertices u, v ∈ V there exists an
edge e from H such that (u ∈ e ∧ v 6∈ e) ∨ (u 6∈ e ∧ v ∈ e),

b) a T1-hypergraph iff for every pair (u, v) ∈ V 2 of different vertices there is
an edge e from H , such that (u ∈ e ∧ v /∈ e),

c) a T2-hypergraph iff for every pair (u, v) ∈ V 2 of different vertices there
exist edges e1, e2 from H , such that (u ∈ e1 ∧ v ∈ e2 ∧ e1 ∩ e2 = ∅).

It is clear that if a hypergraph belongs to one of the above classes, then an
isomorphic hypergraph is also from the same class. Thus we may say that an
unlabeled hypergraph is an antichain, cover and so on.

Let us fix an infinite set V∞ = {v1, v2, . . . }. Put Vi = {v1, . . . , vi} for every
i ∈ N. Introduce classes of labeled [unlabeled] (m, n)-hypergraphs Ta1a2a3a4a5(m, n)
(0 6 a1, a2, a3 6 1; 0 6 a4 6 2; 0 6 a5 6 3) on Vn in the following way. The pa-
rameters ai, 1 6 i 6 5, have the following meaning:

a1 a2 a3 a4 a5

0 labeled ordered antichain proper-cover T2

1 unlabeled unordered ∅ cover T1

2 — — — ∅ T0

3 — — — — ∅
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In the table the symbol ∅ means that the corresponding property is not taken
into account. The introduced classes are in fact the constituents of the previously
defined classes of hypergraphs. For example, the class T00022(m, n) consists of all
labeled ordered T0-hypergraphs on Vn with m edges which are antichains. Class
T10213(m, n) consists of all unlabeled ordered (m, n)-hypergraphs on Vn which are
covers.

Some of introduced parameters are not completely independent. For example,
if a hypergraph is a T1- or T2-hypergraph, and n > 1, then it is also a cover; if it is
an antichain, and m > 1, then it is also a proper cover.

We consider, basically, classes Ai1i2i3 (m, n) = T0i10i2i3 (m, n) (0 6 i1 6 1,
0 6 i2 6 2, 1 6 i3 6 3), and our aim is to find their cardinality. Let us put
ta1a2a3a4a5(m, n) = |Ta1a2a3a4a5 (m, n)| and αi1i2i3 (m, n) = |Ai1i2i3 (m, n)|.

If it is clear from the context which set is taken as a set of vertices for a
hypergraph H = (V, E), we use the notation E instead of (V, E). Denote by H(m, n)
the set of all ordered hypergraphs with m edges and with the set of vertices Vn.
Let us put H(n) = ∪∞

m=1H(m, n).
Let H = (e1, . . . , em) be a labeled ordered hypergraph from the set H(m, n).

Let us define the incidence matrix MH = [aij ]m×n of H as a matrix for which
aij = 1 if vj ∈ ei, and aij = 0, otherwise. Let cj (1 6 j 6 n) be the j-th column of
MH . Then we sometimes represent matrix MH by n-tuple (c1, c2, . . . , cn).

For every labeled ordered hypergraph H ∈ H(m, n) with incidence matrix MH

a dual labeled ordered hypergraph HT is defined as the hypergraph from the set
H(n, m) whose incidence matrix is MT

H , where MT
H is transpose of MH .

Denote by Dm the class of all labeled digraphs with the set Vm as their set of
vertices. Every digraph with m vertices that we are going to consider further is an
element of the set Dm. The unique digraph without edges which belongs to Dm is
denoted by ∅m.

Let D ∈ Dm, and let H = (e1, . . . , em) ∈ H(m, n). We say that D correlates
with H if for every i, j ∈ m, i 6= j, from (vi, vj) ∈ ED follows that ei ⊆ ej . By
fH denote the function fH : Vm → B(Vn) such that fH(vi) = ei for every i ∈ m.
Denote by H(D, n) the set of all hypergraphs H ′ from the set H(m, n) such that

D correlates with H ′. It is clear that H(m, n) = H(∅m, n). Denote by Ĥ(D, n) the
set of all hypergraphs without multiple edges from H(D, n).

Let H = (e1, . . . , em) ∈ H(m, n). Denote by H a hypergraph (ek1 , . . . , ekm′ ),

1 = k1 < k2 < · · · < km′ , such that eki 6= ekj for every i, j ∈ m′, i 6= j, and for

every i ∈ m there exists j ∈ m′ such that kj 6 i and ei = ekj . It is obvious that

for every H the hypergraph H is unique.
By a relative equivalence on a set A we mean a pair p = (Ap, ∼p), where Ap ⊆ A

and ∼p is equivalence on Ap. Let B be a subset of A. We say that B is p-subset of
A if the set Ap ∩ B ∩ a is equal to a or ∅ for every class a ⊆ Ap of equivalence ∼p.
Let us put Bp = B ∩ Ap, B/p = {a ∈ Ap/∼p | B ∩ a 6= ∅}, and αp(B) = |B/p|. If
we write x ∼p y for some x, y ∈ A, then it means that there exists an a ∈ Ap/∼p

such that x, y ∈ a.
Let p be a relative equivalence on H(n). We say that p is regular on H(n), if
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1) the sets H(D, n) and Ĥ(D, n) are p-subsets of H(n) for every m ∈ N and
D ∈ Dm;

2) H ∼p H ′ then H ∼p H ′ for every H, H ′ ∈ H(m, n).

Let p be regular relative equivalence on H(n). Then we take that

Hp(D, n) = (H(D, n))p, Ĥp(D, n) = (Ĥ(D, n))p, Hp(D, n) = H(D, n)/p

and Ĥp(D, n) = Ĥ(D, n)/p. Also denote λp(D, n) = αp[H(D, n)] and λ̂p(D, n) =

αp[Ĥ(D, n)].

Denote by H(i)(D, n), i ∈ |V D|, the set of all hypergraphs from H(D, n) that
have exactly i different edges. We say that a regular relative equivalence p =
(Hp(n), ∼p) on H(n) is strong, if

1) H(i)(D, n) is p-subset of H(n) for every D ∈ Dm and every i ∈ m,

2) for every H ′, H ′′ ∈ H
(i)
p (D, n) = (H(i)(D, n))p, H ′ ∼p H ′′, and every

v′, v′′ ∈ Vm, fH′(v′) ⊆ fH′(v′′) iff fH′′ (v′) ⊆ fH′′ (v′′).

3. On the number of p-antichains

Let p = (Hp(n), ∼p) be a relative equivalence on H(n). By p-antichain we mean
every antichain belonging to Hp(n). Denote by Ap(m, n) the set of all p-antichains
that belong to the class Hp(m, n) = Hp(∅m, n). Let αp(m, n) = αp(Ap(m, n)).

Theorem 3.1. Let p be a regular relative equivalence on H(n). Then the set
Ap(m, n) is p-subset of H(n) and it holds that

αp(m, n) =
∑

D∈Dm

(−1)|ED|λp(D, n) =
∑

D∈Dm

(−1)|ED|λ̂p(D, n).

Proof. We say that a H = (e1, . . . , em) ∈ H(m, n) possesses the property pij

(i, j ∈ m, i 6= j) if ei ⊆ ej . Let H ∈ Hp(m, n). Then H ∈ Ap(m, n) iff H does not

possess any of the properties pij , i, j ∈ m, i 6= j. Note that Ap(m, n) ⊆ Ĥp(m, n).
Now observe arbitrary r of such properties pi1j1 , . . . , pirjr . Let D be a digraph

from Dm such that ED = {(vi1 , vj1 ), . . . , (vir , vjr )}. It is clear that the set of all
hypergraphs H ∈ H(m, n) which possess the properties pi1j1 , . . . , pirjr is actually
the set H(D, n). Now, it is clear that

Ap(m, n) = Hp(m, n) r
⋃

D∈Dmr∅m

H(D, n) = Hp(m, n) r
⋃

D∈Dmr∅m

Hp(D, n)

= Ĥp(m, n) r
⋃

D∈Dmr∅m

(Hp(D, n) ∩ Ĥp(m, n)) = Ĥp(m, n) r
⋃

D∈Dmr∅m

Ĥp(D, n).

The first part of the theorem follows from this relation, and, also, from the relation,
using the inclusion-exclusion principle, we can get now the second part of the
theorem. �

Denote by D′
m the set of all acyclic digraphs from Dm, and by D′′

m the set of
all digraphs from D′

m in which there is a path of the length > 2. Let us call the
elements of the set Jm = D′

m r D′′
m hedgehogs. Note that a connected hedgehog J

is an oriented bipartite graph with distinguished blocks V1(J) and V2(J) such that
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for every edge (u, v) ∈ E(J) it holds that u ∈ V1(J) and v ∈ V2(J). Note also that
the notion of the hedgehog is close to the notion of 2-graduate posets [5]. Now let
us give an improvement of the formula from Theorem 3.1.

Theorem 3.2. αp(m, n) =
∑

D∈Jm

(−1)|ED|λ̂p(D, n).

Proof. Let D be a digraph from DmrD′
m. As D is from DmrD′

m, then D has
at least one simple cycle. Let vi1 vi2 . . . vik

, where vi1 = vik
and (vij , vij+1 ) ∈ ED

for every j ∈ k − 1, be one of these cycles. Now if H = (e1, . . . , em) ∈ Hp(D, n),
then ei1 ⊆ ei2 ⊆ · · · ⊆ eik

⊆ ei1 , so it follows that ei1 = ei2 = · · · = eik
. Thus

H /∈ Ĥp(D, n), and we have that Ĥp(D, n) = ∅. Thus we have equation
∑

D∈DmrD′
m

(−1)|ED|λ̂p(D, n) = 0.(3.1)

Let us consider the class of digraphs D′′
m. Order all the ordered pairs of different

vertices from V 2
m in a sequence: (u′

1, u′′
1), (u′

2, u′′
2), . . . , (u′

a0
, u′′

a0
), a0 = m(m − 1).

Break the set D′′
m into disjoint classes (D′′

m)i, i ∈ a0, so that the digraph D ∈ D′′
m

will belong to class (D′′
m)i iff the following condition is satisfied: D does not belong

to the set ∪i−1
l=1(D′′

m)l and in D there is a directed path of the length > 2 with the
beginning in u′

i and with the end in the vertex u′′
i .

It is clear that for every i ∈ a0 we can break the class (D′′
m)i into 2-sets, such

that the digraphs from such a 2-set differ only in the fact that one contains the edge
(u′

i, u′′
i ) and the other does not. Also, it is clear that for every such 2-set {D′, D′′}

the equation Ĥp(D′, n) = Ĥp(D′′, n) is fulfilled, and consequently we have that

λ̂p(D′, n) = λ̂p(D′′, n). Then it is clear that the respective summands in the sum
from the statement differ only in the sign, so they are annuled in the sum, i.e.,
holds the equation

∑

D∈D′′
m

(−1)|ED|λ̂p(D, n) =

a0
∑

i=1

∑

D∈(D′′
m)i

(−1)|ED|λ̂p(D, n) = 0.(3.2)

The statement of the theorem now follows from (3.1), (3.2) and Theorem 3.1, and
the fact that the sets Jm, D′′

m and Dm r D′
m form a partition of the set Dm. �

Note that every subgraph of a hedgehog is a hedgehog. Let D be a hedgehog.
Then denote by Ex(D) the set of all vertices from which at least one edge goes out,
by En(D) the set of all vertices in which at least one edge goes in, and by Is(D)
the set of all isolated vertices of D. It is clear that Out(D) = Ex(D) ∪ Is(D) 6= ∅
and In(D) = En(D) ∪ Is(D) 6= ∅.

Lemma 3.1.
∑

D∈Jm

(−1)|ED| = (−1)m−1.

Proof. The statement will be proved by mathematical induction on number
m. It is easy to verify that the formula holds for m = 1 and for m = 2. Let us
assume that it holds for every natural number 6 m and let us show that then it
holds for m + 1. Break Jm+1 into two parts J ′

m+1 = {D ∈ Jm+1 | vm+1 ∈ In (D)}
and J ′′

m+1 = {D ∈ Jm+1 | vm+1 ∈ Ex (D)}.
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Let us consider the class J ′
m+1 and break it into subclasses [J ′

m+1]i, i ∈ a1, so
that any two digraphs D, D′ ∈ J ′

m+1 belong to the same class [J ′
m+1]i0 for some

i0 ∈ a1 iff (Vm, ED r (Vm × {vm+1})) = (Vm, ED′
r (Vm × {vm+1})) = D′

i0
. Then

σ1 =
∑

D∈J ′
m+1

(−1)|ED| =

a1
∑

i=1

∑

D∈[J ′
m+1]i

(−1)|ED|

=

a1
∑

i=1

(−1)|ED′
i|

∑

E′⊆Out (D′
i
)×{vm+1}

(−1)|E′|.

As Out (D′
i) 6= ∅ for every i ∈ a1, then

∑

E′⊆Out (D′
i
)×{v1}

(−1)|E′| = 0, for every i ∈ a1,

i.e., σ1 = 0.
Now consider the class J ′′

m+1 and break it into subclasses [J ′′
m+1]i, i ∈ a2, so

that any two digraphs D, D′ ∈ J ′′
m+1 belong to the same class [J ′′

m+1]i0 for some
i0 ∈ a2 iff (Vm, ED r ({vm+1} × Vm)) = (Vm, ED′

r ({vm+1} × Vm)) = D′′
i0

. Note
that the set of all D′′

i , i ∈ a2, is the set Jm. Let E′′
i = {vm+1} × In (D′′

i ) for every
i ∈ a2. By the induction hypothesis we have

σ2 =
∑

D∈J ′′
m+1

(−1)|ED| =

a2
∑

i=1

∑

D∈[J ′′
m+1]i

(−1)|ED| =

a2
∑

i=1

(−1)|ED′′
i |

×
∑

E′⊆E′′
i

, E′ 6=∅

(−1)|E′| =

a2
∑

i=1

(−1)|ED′′
i |

[

− 1 +
∑

E′⊆E′′
i

(−1)|E′|

]

= (−1)

a2
∑

i=1

(−1)|ED′′
i | = (−1)

∑

D∈Jm

(−1)|ED| = (−1)(−1)m−1 = (−1)m.

Finally we can write
∑

D∈Jm+1

(−1)|ED| = σ1 + σ2 = 0 + (−1)m = (−1)m. �

Let X be a set. An ordered m-tuple (Y1, . . . , Ym), where Yi, i ∈ m, are all the
blocks of a partition of the set X , is called an ordered partition of the set X .

Let 6 be a linear ordering of the set X , and let π be a partition of the set X
into m blocks. Denote by Y1 the partition block that contains the minimal element
of the set X . Let us assume that blocks Y1, . . . , Yk, 1 6 k < m, of the partition
π are taken. Then by Yk+1 denote the partition block that contains the minimal

element of the set X r

⋃k
j=1 Yj . The ordered partition ~π = (Y1, . . . , Ym) is called

the ordering of the partition π in respect to the linear ordering 6.
Take a hypergraph H ∈ H(i)(D, n). It defines a partition of the set Vm into

i blocks in such a way that two elements v′, v′′ ∈ Vm belong to the same block
iff fH(v′) = fH(v′′); denote this partition by π(H, D). Denote by ~π(H, D) =

(V
(1)

m (H), . . . , V
(i)

m (H)) the corresponding ordering of the partition π(H, D) in re-
spect to the linear ordering 6m (vi 6m vj iff i 6 j).
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Let H = (e1, . . . , em) be an ordered hypergraph. Denote by ⊆H the partial
ordering on the set 〈EH〉 = {ej | 1 6 j 6 m} defined by the relation ⊆. Let
p = (Hp(n), ∼p) be a strong relative equivalence on H(n). Also, let H ′ and H ′′ be

two hypergraphs from H
(i)
p (D, n) for some D ∈ Dm such that H ′ ∼p H ′′. Then, it

is easy to show that ~π(H ′, D) = ~π(H ′′, D), and that ⊆H′ and ⊆H′′ are isomorphic.
The latter fact implies correctness of the following notions. Let H be a hypergraph

from the set H
(i)
p (D, n) for some D ∈ Dm. Consider the set [H ] ∈ Hp(n)/∼p where

by [H ] we mean the class of the equivalence ∼p on Hp(n) containing H . If ⊆H is
nonempty, we call the class [H ] a complex class, in the opposite case we call it a

simple class. The set of all complex classes is denoted by H
(i)
1 (p, n) and the set of

all simple classes by H
(i)
0 (p, n).

Let h be a complex class, and take some H ∈ h. Let c be a chain of the length
> 1 in (〈EH〉, ⊆H). The minimal and maximal element of the chain c are denoted,
respectively, by emin(c) and emax(c). It is clear that for each D ∈ Jm such that H ∈
H(i)(D, n), it holds that f−1

H [emin(c)] r En(D) 6= ∅ and f−1
H [emax(c)] r Ex(D) 6= ∅;

otherwise emin(c) and emax(c) could not be, respectively, minimal and maximal
element of the chain c. Let f−1

H [emin(c)] and f−1
H [emax(c)] be, respectively, the ic-th

and the jc-th block of the ordered partition ~π(H, D), and take that

C(H) = { (ic, jc) | c is a chain in (〈EH〉, ⊆H) of the length > 1}.

Let (iH , jH) be the minimal element of the set C(H) in respect to the lexicographic
ordering of this set. It is easy to see that for every H ′ ∈ h holds that (iH′ , jH′ ) =
(iH , jH). Because of that by (ih, jh) we mean (iH , jH) for an arbitrary H ∈ h. Now
it is easy to prove the following assertion.

Lemma 3.2. Let h ∈ H
(i)
1 (p). Then for every H1, H2 ∈ h we have

V
(iH1 )

m (H1) = V
(iH2 )

m (H2) = V̂1(h) and V
(jH1 )

m (H1) = V
(jH2 )

m (H2) = V̂2(h).

Lemma 3.3. If p is a strong relative equivalence on H(n), then
∑

D∈Jm

(−1)|ED|λ
(i)
p (D, n) = (−1)m−i · S(m, i) · αp(i, n),

where λ
(i)
p (D, n) = αp(H(i)(D, n)), and S(n, k) are Stirling numbers of the second

kind.

Proof. For a given ordered hypergraph H , EH = i, let us denote by Jm(H)
the set of all D ∈ Jm satisfying the condition H ∈ H(i)(D, n). It is obvious that
from H ′ ∼p H ′′ (H ′, H ′′ ∈ H(i)(m, n) = H(i)(∅m, n)) it follows that Jm(H ′) =

Jm(H ′′). By Jm(h) (h ∈ H(i)(m, n)/p) we mean the set Jm(H) where H is a
hypergraph from h. Now we have

∑

D∈Jm

(−1)|ED|λ
(i)
p (D, n) =

∑

h∈H(i)(m,n)/p

∑

h∈H
(i)
m /pD∈Jm(h)

(−1)|ED|

=
∑

h∈H
(i)
1 (p)

∑

h∈H
(i)
1 (p)D∈Jm(h)

(−1)|ED| +
∑

h∈H
(i)
0 (p)

∑

h∈H
(i)
0 (p)D∈Jm(h)

(−1)|ED|.
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In the above expression denote the first sum after the last sign = by ω1, and the
second one by ω2.

Let h ∈ H
(i)
1 (p). Let us break the set Jm(h) into disjoint classes in the following

way: D′ and D′′ belong to the same class d iff

V̂1(h) r En(D′) = V̂1(h) r En(D′′) = U1(d),

V̂2(h) r Ex(D′) = V̂2(h) r Ex(D′′) = U2(d)

and ED′
r Ed = ED′′

r Ed, where Ed = U1(d) × U2(d); denote the corresponding
relation of equivalence on Jm(h) by ρ. Then

ω1 =
∑

h∈H
(i)
1 (p)

∑

h∈H
(i)
1 (p)d∈Jm(h)/ρ

∑

h∈H
(i)
1 (p)D∈d

(−1)|ED|

=
∑

h∈H
(i)
1 (p)

∑

h∈H
(i)
1 (p)d∈Jm(h)/ρ

(−1)|Ed|
∑

h∈H
(i)
1 (p)E′⊆Ed

(−1)|E′| = 0.

Since p is a regular relative equivalence, then exactly one class ah from the
set Ap(i, n)/p corresponds to every simple class h. Now it is clear that the simple
class h is completely determined by the class ah and by the partition π(h) of the
set Vm into i blocks. There are αp(i, n) such classes and there are S(m, i) such
partitions. Denote blocks of the partition π(h) by Vj(h), j ∈ i. Then it is clear that
in every digraph D ∈ Jm(h) there does not exist an edge that connects a vertex
from the set Vk(h) with a vertex from the set Vl(h), k, l ∈ i, k 6= l, that is to say,
ED ∩ (Vk(h) × Vl(h)) = ∅ for every k, l ∈ i, k 6= l. Put D′

k = (Vk(h), ED ∩ V 2
k (h))

and mk = |Vk(h)|; k ∈ i. By Dk, k ∈ i, denote the digraph from Jmk
that is

isomorphic to D′
k. It is clear that when D passes the set Jm, then the digraph Dk

passes the whole set Jmk
for every k ∈ i. Using Lemma 3.1 we have

∑

D∈Jm(h)

(−1)|ED| =
∑

D1∈Jm1

· · ·
∑

Di∈Jmi

(−1)|ED1| · · · (−1)|EDi|

=
∑

D1∈Jm1

· · ·
∑

Di−1∈Jmi−1

(−1)|ED1| · · · (−1)|EDi−1|
∑

Di∈Jmi

(−1)|EDi|

= (−1)mi−1
∑

D1∈Jm1

· · ·
∑

Di−1∈Jmi−1

(−1)|ED1| · · · (−1)|EDi−1| = · · ·

= (−1)m1−1 · · · (−1)mi−1 = (−1)m−i.

Now it is clear that

ω = ω2 =
∑

ah∈Ap(i,n)/p

∑

π(h)

∑

D∈Jm(h)

(−1)|ED| = (−1)m−iS(m, i)αp(i, n). �

Theorem 3.3. If p is a strong relative equivalence on H(n), then

αp(m, n) =

m
∑

i=1

|s(m, i)|
∑

D∈Ji

(−1)|ED|λp(D, n),

where s(n, k) are Stirling numbers of the first kind.
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Proof. Let βp(m, n) =
∑

D∈Jm
(−1)|ED|λp(D, n). Then from Lemma 3.3 and

the equality λp(D, n) =
∑m

i=1 λ
(i)
p (D, n) it follows that

βp(m, n) =
m

∑

i=1

∑

D∈Jm

(−1)|ED|λ
(i)
p (D, n) =

m
∑

i=1

(−1)m−i · S(m, i) · αp(i, n).

Applying the Stirling inversion [4] to the previous formula we get the required
equation

αp(m, n) =

m
∑

i=1

|s(m, i)| · βp(i, n) =

m
∑

i=1

|s(m, i)|
∑

D∈Ji

(−1)|ED|λp(D, n). �

Denote by Ãp(m, n) the set of all unordered antichains that correspond to
ordered antichains from the set Ap(m, n). As in an antichain there are no multiple
edges, then it is obvious that

(3.3) α̃p(m, n) = (1/m!) αp(m, n),

where α̃p(m, n) = |Ãp(m, n)|, and from Theorem 3.3 we have the following state-
ment.

Theorem 3.4. If p is a strong relative equivalence on H(n), then

α̃p(m, n) =
1

m!

m
∑

i=1

|s(m, i)|
∑

D∈Ji

(−1)|ED|λp(D, n).

For every k1, . . . , km ∈ N0, let (jkj)m = 1k1 + 2k2 + · · · + mkm. Denote by

Yn(x1, x2, . . . , xn) =
∑

(jkj )n=n

B(k1, . . . , kn) xk1
1 xk2

2 . . . xkn
n

Bell polynomial [6]. Let p be a strong relative equivalence on H(n). We say that p

allows partitioning if λp(D, n) = λp(D1, n) λp(D2, n) . . . λp(Dk, n), whenever D =
D1 ∪ D2 ∪ · · · ∪ Dk. Denote by J c

i the set of all connected hedgehogs with i
vertices. Then, in the case of a strong relative equivalence which allows partitioning,
Theorem 3.3 can be reformulated in the following statement:

Theorem 3.5. If p is a strong relative equivalence on H(n) which allows par-
titioning, then

α̃p(m, n) =
1

m!

m
∑

i=1

|s(m, i)| Z(i, n) =
1

m!

m
∑

i=1

|s(m, i)| Yi(β(1, n), β(2, n), . . . , β(i, n))

where β(j, n) =
∑

D∈J c
j

(−1)|ED|λp(D, n) for every j ∈ i.

Proof. Let π be a partition of the set Vi of the type 1k1 . . . iki ; by Pi(k1, . . . , ki)
denote the set of all such partitions, and let |π| = k1+· · ·+ki. Define a function fπ :

|π| → i in the following way: the value fπ(r) (r ∈ |π|) is equal to the ordinal number
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of the first nonpositive number in the sequence r−k1, r−k1 −k2, . . . , r−k1 −· · ·−ki.
Then we get

∑

D∈Ji

(−1)|ED|λp(D, n) =
∑

(jkj )
i
=i

∑

π∈Pi(k1,...,ki)
∑

Di∈J c
fπ (i)

, i∈|π|

(−1)|E(D1∪···∪D|π|)|λp(D1 ∪ · · · ∪ D|π|, n).

But as
∑

Di∈J c
fπ(i)

, i∈|π|

(−1)|E(D1∪···∪D|π|)|λp(D1 ∪ · · · ∪ D|π|, n)

=
∑

Di∈J c
fπ (i)

, i∈|π|

(−1)|ED1|λp(D1, n) · · · (−1)|ED|π||λp(D|π|, n)

=
∑

D1∈J c
fπ(1)

(−1)|ED1|λp(D1, n) · · ·
∑

D|π|∈J c
fπ (|π|)

(−1)|ED|π||λp(D|π|, n)

=

[

∑

D∈J c
1

(−1)|ED|λp(D, n)

]k1

· · ·

[

∑

D∈J c
i

(−1)|ED|λp(D, n)

]ki

= [β(1, n)]k1 · · · [β(i, n)]ki ,

we have, finally, that
∑

D∈Ji

(−1)|ED|λp(D, n) =
∑

(jkj )
i
=i

∑

π∈Pi(k1,...,ki)

[β(1, n)]k1 · · · [β(i, n)]ki

=
∑

(jkj )
i
=i

B(k1, k2, . . . , ki) [β(1, n)]k1 · · · [β(i, n)]ki = Y (β(1, n), . . . , β(i, n)). �

For application of the formula from Theorem 3.3 it would be very useful to have
some simple necessary conditions for a relative equivalence to be a strong relative
equivalence. Let us give one of such conditions. For a given hypergraph H by MH

denote the set of columns of the matrix MH .

Theorem 3.6. Let p be a relative equivalence. If MH′ = MH′′ for every
H ′, H ′′ ∈ Hp(n), H ′ ∼p H ′′, then p is a strong relative equivalence.

4. Enumeration of some classes of antichains

In this section we are going to show how to calculate some of the numbers
αi1i2i3 (m, n) using the above obtained formulas. First of all, let us introduce some
notions and give some results that we use in what follows.

Let us introduce two vertex colorings of graphs or digraphs with two colors,
red and green. By ↑-coloring of a graph or a digraph we mean a coloring of its
vertices with red and green such that adjacent vertices cannot be colored red (here
↑ denotes Sheffer’s stroke or alternative denial), and by ⇒-coloring of a digraph we
mean a coloring of this digraph with red and green color such that there is not a
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vertex colored red from which an edge goes to a vertex colored green. The reason
for such naming of these colorings can be easily seen if the red color is replaced
by 1 (logically true) and the green by 0 (logically false). For the same reason,
a “regular” coloring of a graph with two colors, such that two adjacent vertices
are not colored with the same color, could be called a ∨-coloring, where ∨ is the
operation of exclusive disjunction.

Let D be a digraph. Denote by η⇒(D) [η↑(D)] the number of all ⇒-colorings
[↑-colorings] of the digraph. Let G be a graph. Denote by η↑(G) the number of all

↑-colorings of G. For given digraph D by D denote the graph obtained from D by
canceling orientation of its edges. It is easy to prove the following statement.

Proposition 4.1. For an arbitrary hedgehog D ∈ Jm the equation η⇒(D) =
η↑(D) = η↑(D) holds.

It is easy to see that the set of red colored vertices in an η↑-coloring of a digraph
(graph) is an independent set of its vertices. Let us also note that the notion of
hedgehog is very close to the notion of bipartite graph. Namely, graph D is a
bipartite graph for every connected hedgehog D. Thus Proposition 4.1 allows to
cancel orientations of edges in hedgehogs, and practically to pass from hedgehogs
to bipartite graphs, and to consider ↑-colorings instead of ⇒-colorings. Turning to
a new type of coloring is not purely formal, but it also seems convenient for the
following reasons. The number of all ↑-colorings of a graph G can be calculated
in the following way. Denote by G1

v the graph that is obtained from G when the
point v and all its incident edges are rejected, and by G2

v the graph that is obtained
from G when v and all its adjacent vertices are rejected, and all the edges incident
to some of the rejected vertices are discarded, too. Introduce, formally, a graph
without edges and vertices, denote it by ∅0, and take that η↑(∅0) = 1. It is easy to
prove the following statements [2].

Proposition 4.2 (Decomposition lemma). η↑(G) = η↑(G1
v) + η↑(G2

v).

Using the above statement it is easy to calculate numbers η↑(G) for special
cases of graph G.

8
1

2

3

4
56

7

8 2

3

4
56

7

2

3

4

7
= +

Figure 1. An illustration of Decomposition lemma

Example 4.1. Let Kn and Km,n be respectively a complete graph with n
vertices and a complete bipartite graph with partition classes consisting of m and
n elements. Then η↑(Kn) = n + 1 and η↑(Km,n) = 2m + 2n − 1. If Pn is a path
with n vertices, then we get Fibonacci sequence η↑(Pn) = η↑(Pn−1) + η↑(Pn−2),
n = 2, 3, . . . , η↑(P0) = η↑(∅0) = 1, η↑(P1) = 2. If Zn is an n-cycle, then we get
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that η↑(Zn) = η↑(Pn−1) + η↑(Pn−3), n > 3, and, consequently, that η↑(Zn+2) =
η↑(Zn+1) + η↑(Zn), where η↑(Z3) = 4 i η↑(Z4) = 7.

The proof of the following statement is trivial.

Proposition 4.3. If C1, C2, . . . , Cs are all components (maximal connected
subgraphs) of the graph G, then η↑(G) = η↑(C1)η↑(C2) . . . η↑(Cs).

Now, let us return to our main problem of finding numbers αi1i2i3 (m, n). As
(3.3) implies that α1i2i3 (m, n) = (1/m!)α0i2i3 (m, n), the finding of the numbers
α1i2i3 (m, n) (i2 ∈ 0, 2, i3 ∈ 0, 3) can be reduced to the calculation of the numbers
α0i2i3 (m, n). Let us show how to calculate some of the numbers α0i2i3 (m, n) using
appropriate strong relative equivalence pi2i3 . Denote by λi2i3 (D, n) the number
λpi2i3

(D, n). So as not to overload the text with unnecessary details, we will adduce
formulas only for the numbers λi2i3 (D, n), as the numbers α0i2i3 (m, n) can be
calculated by the use of the main formula from Theorem 3.4.

It is easy to note that if H ∈ H(D, n), then every column of the matrix MH

defines a ⇒-coloring of the digraph D. Also, it is clear that every n-tuple of ⇒-
colorings defines a hypergraph from H(D, n). So, |H(D, n)| = ηn

⇒(D). Now from
Proposition 4.1 it follows that if D is a hedgehog, then every column of the matrix
MH defines a ↑-coloring for every H ∈ H(D, n). Corollaries 4.1–4.4 follow easily
from this observation.

Corollary 4.1. If p23 = (H(n), =), then λ23(D, n) = ηn
⇒(D) = ηn

↑ (D) for
every D ∈ Jm.

Class A023 is closely connected with the Post class M of all monotone Boolean
functions. Let us explain this connection.

For every two binary n-tuples (a1, . . . , an), and (b1, . . . , bn), we write

(a1, . . . , an) 6 (b1, . . . , bn) if ai 6 bi for every i = 1, . . . , n.

If (a1, . . . , an) 6 (b1, . . . , bn) and there is some i0, 0 6 i0 6 n, such that ai0 < bi0 ,
then we write that (a1, . . . , an) < (b1, . . . , bn). A Boolean function f of n variables
is monotone if for every two binary n-tuples, (a1, . . . , an) and (b1, . . . , bn), from
(a1, . . . , an) 6 (b1, . . . , bn) it follows that f(a1, . . . , an) 6 f(b1, . . . , bn); denote by
M(n) the class of all such functions. Then M = ∪∞

n=1M(n).
The problem of counting the number of elements of the classes M(n) has a long

history and is known as the Dedekind’s problem. It was formulated by Dedekind
in [1] as far back as in 1897 as the problem of determining the number of elements
in a free distributive lattice FD(n) on n generators (see also, [5]). In terms of the
set theory the problem is equivalent to the problem of determining the number of
all antichains on an n-set. The solution of the problem can be attempted in the
following way.

Let f be an arbitrary monotone Boolean function of n variables. A binary
n-tuple (a1, a2, . . . , an) is a lower unit for f if f(a1, a2, . . . , an) = 1 and for every
(b1, b2, . . . , bn) < (a1, a2, . . . , an) it holds that f(b1, b2, . . . , bn) = 0. It is easy to
note that the function f is uniquely defined by the set U(f) of its lower units.
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Denote by M(m, n) the set of all monotone Boolean functions of n variables
with exactly m lower units (“mincuts”). Let α(m, n) = |M(m, n)|. As it is known
from famous Sperner’s lemma [4], m takes values from 0 to

(

n
⌊n/2⌋

)

, so

|M(n)| =

( n
⌊n/2⌋)
∑

m=0

|M(m, n)|.

Therefore, we can enumerate the class M(n) in such a way as to enumerate classes
M(m, n). A brief history of the problem of enumeration of the classes M(m, n)
can be found in [2, 3]. Let us deduce the main result from [3]. Let a = (a1, . . . , an)
be a binary n-tuple. By V (a) denote the subset of the set Vn such that vi ∈ V (a)
iff ai = 1.

Let f be a monotone Boolean function from the set M(m, n). Denote by
Hf hypergraf (Vn, E(f)), where E(f) = {V (a) | a ∈ U(f)}. Note that Hf is an
unordered labeled (m, n)-antichain (an (m, n)-hypergraph that is an antichain).
Now, it is easy to see that the correspondence fH → H defines a bijection between
M(m, n) and the set A123. Using Corollary 4.1 and Theorem 3.4 we have the
following statement.

Theorem 4.1. α123(m, n) =
1

m!

m
∑

i=1

|s(m, i)|
∑

D∈Jm

(−1)|ED|ηn
↑ (D).

If for a labeled ordered (m, n)-antichain H we observe a corresponding dual
labeled ordered hypergraph HT , then it is easy to see that it is a labeled ordered
T1-hypergraph with m vertices and n hyperedges, and, consequently, it is also a
cover. Thus, t00111(m, n) = α023(n, m).

Let us consider the class A022(m, n) of all ordered (m, n)-T0-antichains.

Corollary 4.2. If p22 = (H′(n)), =), where H′(n) is the set of all hypergraphs
H ∈ H(n) such that in MH all columns are different, then

λ22(D, n) = [η↑(D)]n = η↑(D)(η↑(D) − 1) . . . (η↑(D) − n + 1)

for every D ∈ Jm.

Now consider the class T10023(m, n) of all ordered unlabeled (m, n)-antichains.
Then we have the following statement.

Corollary 4.3. If p = (H(n), ∼), where H1 ∼ H2 iff the multisets defined by
the columns of the matrices of the hypergraphs H1 and H2 are equal, then

λp(D, n) =

(

η↑(D) + n − 1

n

)

for every D ∈ Jm.

For the class T10022(m, n) of all ordered unlabeled (m, n)-T0-antichains we have

Corollary 4.4. If p = (H′(n), ∼), where H1 ∼ H2 iff MH1 = MH2 , then

λp(D, n) =

(

η↑(D)

n

)

for every D ∈ Jm.
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Let us note that we get the formulas for the corresponding “cover” cases if
in the above formulas we replace η↑(D) by η↑(D) − 1 because the incidence ma-
trix of a cover does not contain zero column. Thus we solve the cases of the
classes A023(m, n), A022(m, n), T10023(m, n), T10022(m, n), A013(m, n), A012(m, n),
T10013(m, n) and T10012(m, n). Using (3.3) we also get the corresponding formulas
for the classes A123(m, n), A122(m, n), A113(m, n), and A112(m, n).

5. Calculations, examples and data

It is easy to see that the following proposition holds.

Proposition 5.1. For every hedgehog D, η↑(D) = η↑(D−1).

Let J c
s,t be a set of all connected hedgehogs D such that |Ex(D)| = s and

|En(D)| = t. If we consider the case of strong relative equivalence on H(n) from
Corollary 4.1 by using Theorem 3.3 and Theorem 3.5 we get the following propo-
sition:

Proposition 5.2. It holds that

α123(m, n) =
1

m!

m
∑

i=1

|s(m, i)| Z(i, n),(5.1)

where

Z(i, n) = Yi(β(1, n), β(2, n), . . . , β(i, n)),

β(1, n) = 2n, β(j, n) =

j−1
∑

k=1

(

j

k

)

b(k, j − k), 2 6 j 6 i,

b(s, t) =
∑

D∈J c
s,t

(−1)|ED|ηn
↑ (D), s, t > 1.

Let k1, . . . , ki ∈ N0 be nonnegative numbers such that (jkj)i = i. Denote
by J (k1, . . . , ki) the set of all hedgehogs D1 ∪ · · · ∪ Dk1+···+ki such that Di ∈
Jfπ(i) for every i ∈ k1 + · · · + ki, where fπ is the function defined in the proof of

Theorem 3.5 for the partition type 1k1 2k2 . . . iki . By J (k1, . . . , ki; l) denote the set
of all hedgehogs D from J (k1, . . . , ki) such that η↑(D) = l. Let j(k1, . . . , ki; l) =
|J (k1, . . . , ki; l)|. It is clear that the following proposition holds.

Proposition 5.3. If p is a strong relative equivalence on H(n), satisfying
λp(D, n) = g(η↑(D)) for every D ∈ J , then the number α123(m, n) is equal to

1

m!

m
∑

i=1

∑

(jkj )
i
=i

2i
∑

l=1

|s(m, i)|B(k1, . . . , ki) j(k1, . . . , ki; l)g(l).

Example 5.1. Using Example 4.1 we get

b(1, t) =
∑

J∈J c
1,t

(−1)|EJ|ηn
↑ (J) = (−1)|EK1,t|ηn

↑ (K1,t) = (−1)t(2t + 1)n,
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and consequently we have that b(1, 1) = −3n, b(1, 2) = 5n, b(1, 3) = −9n, b(1, 4) =
17n, b(1, 5) = −33n, and b(1, 6) = 65n.

It is clear that b(s, t) = b(t, s). So, in order to calculate α123(m, n), 1 6 m 6 7,
it is sufficient to consider classes J c

2,2, J c
2,3, J c

2,4, J c
3,3, J c

2,5 and J c
3,4. In the given

table beside each graph there are two numbers, the upper one gives the number
of its isomorphic graphs, and the lower one gives the corresponding number η↑,
which is easily calculated with the help of Decomposition Lemma; the graphs are
classified by the degree of the vertices of their lower parts (they are given below
the graphs in the form of the corresponding tuples). Define the operation | in the
following way: for every a, b ∈ N, let a|b = a · bn (here n is fixed). Now using
formula (5.1) and the table (Fig. 2), we get

b(1, 1) = −1|3; b(1, 2) = 1|5; b(1, 3) = −1|9, b(2, 2) = −4|8 + 1|7;
b(1, 4) = 1|17, b(2, 3) = 6|14 + 6|13 − 6|12 + 1|11;
b(1, 5) = −1|33, b(2, 4) = −24|23 − 8|26 + 12|21 + 12|22 − 8|20 + 1|19,
b(3, 3) = −18|22 − 36|21 + 18|19 + 6|18 − 18|22 − 9|24 + 18|19 + 36|20−

18|17 − 9|18 − 9|18 + 9|16 − 1|15;
b(1, 6) = 1|65,
b(2, 5) = 10|50 + 40|43 + 30|41 − 20|42 − 60|39 + 20|38 + 20|37 − 10|36 + 1|35,
b(3, 4) = 144|36 + 36|40 + 72|34 + 72|37 − 72|31 − 72|33 − 72|34 − 72|31 + 24|31+

18|29 + 36|28 + 24|35 + 72|38 + 12|44 − 144|32 − 72|34 − 72|36 − 36|33+
72|30 + 72|32 + 144|29 + 36|29 − 72|27 − 12|30 − 24|26 + 36|30 + 18|32−
36|27 − 72|28 + 36|25 + 18|26 + 12|26 − 12|24 + 1|23

and
β(1, n) = 1|2, β(2, n) = −2|3, β(3, n) = 6|5, β(4, n) = −8|9 − 24|8 + 6|7,
β(5, n) = 10|17 + 120|14 + 120|13 − 120|12 + 20|11,
β(6, n) = −12|33 − 240|26 − 180|24 − 720|23 − 360|22 − 360|21 + 480|20+

750|19 − 240|18 − 360|17 + 180|16 − 20|15,
β(7, n) = 14|65 + 420|50 + 840|44 + 1680|43 − 840|42 + 1260|41 + 2520|40−

2520|39 + 5880|38 + 5880|37 + 4620|36 + 1722|35 − 5040|34−
7560|33 − 3780|32 − 8400|31 + 6720|30 + 13860|29 − 2520|28−
7560|27 + 420|26 + 2520|25 − 840|24 + 70|23.

Replacing xi with β(i, n) in Bell polynomials Yi(x1, . . . , xi), i = 1, 2, . . . , 7,

Y1 = x1, Y2 = x2
1 + x2, Y3 = x3

1 + 3x1x2 + x3,

Y4 = x4
1 + 6x2

1x2 + 4x1x3 + 3x2
2 + x4,

Y5 = x5
1 + 10x3

1x2 + 10x2
1x3 + 15x1x2

2 + 5x1x4 + 10x2x3 + x5,

Y6 = x6
1 + 15x4

1x2 + 45x2
1x2

2 + 15x3
2 + 20x3

1x3 + 60x1x2x3 + 10x2
3 + 15x2

1x4+
15x2x4 + 6x1x5 + x6,

Y7 = x7
1 + 21x5

1x2 + 105x3
1x2

2 + 105x1x3
2 + 35x4

1x3 + 210x2
1x2x3 + 105x2

2x3+
70x1x2

3 + 35x3
1x4 + 105x1x2x4 + 35x3x4 + 21x2

1x5 + 21x2x5 + 7x1x6 + x7,

we get respectively the values

Z(1, n) = 1|2, Z(2, n) = 1|4 − 2|3, Z(3, n) = 1|8 − 6|6 + 6|5,
Z(4, n) = 1|16 − 12|12 + 24|10 + 4|9 − 24|8 + 6|7,
Z(5, n) = 1|32 − 20|24 + 60|20 + 20|18 + 10|17 − 120|16 − 120|15+

150|14 + 120|13 − 120|12 + 20|11,
Z(6, n) = 1|64 − 30|48 + 120|40 + 60|36 + 60|34 − 12|33 − 360|32 − 720|30+

810|28 + 120|27 + 480|26 + 360|25 − 180|24 − 720|23 − 240|22−
540|21 + 480|20 + 750|19 − 240|18 − 360|17 + 180|16 − 20|15,

Z(7, n) = 1|128 − 42|96 + 210|80 + 140|72 + 210|68 − 84|66 + 14|65 − 840|64−
2520|60 + 2730|56 + 840|54 + 840|52 − 420|51 + 2940|50 + 1260|48−
5040|46 + 840|45 − 1260|44 + 1680|43 − 9660|42 + 1260|41 + 840|40−
7560|39 + 11130|38 + 5880|37 + 7980|36 + 2982|35 − 7560|34−
8400|33 − 2520|32 − 8400|31 + 6580|30 + 13860|29 − 2520|28−
7560|27 + 420|26 + 2520|25 − 840|24 + 70|23,
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Figure 2. Nonisomorphic hedgehogs (having up to 7 vertices)
with the corresponding number of isomorphic copies, and the num-
ber of their ↑-colorings



86 KILIBARDA

and from this we finally calculate formulas α̂(m, n) = α123(m, n) (1 6 m 6 7):

α̂(1, n) = 1|2,
α̂(2, n) = (1|4 − 2|3 + 2)/2!,
α̂(3, n) = (1|8 − 6|6 + 6|5 + 3|4 − 6|3 + 2|2)/3!,
α̂(4, n) = (1|16 − 12|12 + 24|10 + 4|9 − 18|8 + 6|7 − 36|6+

36|5 + 11|4 − 22|3 + 6|2)/4!,
α̂(5, n) = (1|32 − 20|24 + 60|20 + 20|18 + 10|17 − 110|16 − 120|15 + 150|14+

120|13 − 240|12 + 20|11 + 240|10 + 40|9 − 205|8 + 60|7 − 210|6+
210|5 + 50|4 − 100|3 + 24|2)/5!,

α̂(6, n) = (1|64 − 30|48 + 120|40 + 60|36 + 60|34 − 12|33 − 345|32 − 720|30+
810|28 + 120|27 + 480|26 + 360|25 − 480|24 − 720|23 − 240|22−
540|21 + 1380|20 + 750|19 + 60|18 − 210|17 − 1535|16 − 1820|15+
2250|14 + 1800|13 − 2820|12 + 300|11 + 2040|10 + 340|9 − 1815|8+
510|7 − 1350|6 + 1350|5 + 274|4 − 548|3 + 120|2)/6!,

α̂(7, n) = (1|128 − 42|96 + 210|80 + 140|72 + 210|68 − 84|66 + 14|65 − 819|64−
2520|60 + 2730|56 + 840|54 + 840|52 − 420|51 + 2940|50 + 630|48−
5040|46 + 840|45 − 1260|44 + 1680|43 − 9660|42 + 1260|41+
3360|40 − 7560|39 + 11130|38 + 5880|37 + 9240|36 + 2982|35−
6300|34 − 8652|33 − 9905|32 − 8400|31 − 8540|30 + 13860|29+
14490|28 − 5040|27 + 10500|26 + 10080|25 − 8120|24 − 15050|23−
5040|22 − 11340|21 + 20580|20 + 15750|19 − 1540|18 − 5810|17−
16485|16 − 21420|15 + 26250|14 + 21000|13 − 29820|12 + 3500|11+
17640|10 + 2940|9 − 16016|8 + 4410|7 − 9744|6 + 9744|5 + 1764|4−
3528|3 + 720|2)/7!.

Riviere [7] found the formulas for α̂(m, n), 1 6 m 6 3. Cvetković [8] calculated
the number α̂(4, n) by using computer, in fact by using the method of exhaustive
search. Arocha [9] gave explicit formulas for the numbers α̂(5, n) and α̂(6, n). The
above formulas, as well as the corresponding formulas for α̂(m, n), 8 6 m 6 10,
together with their values for small n are presented in [10]. Using formula (5.1)
and data from [11] for bipartite graphs the formulas for α̂(m, n) could be generated
by computer up to m = 15.

We obtained the above formulas using Proposition 5.2, but it is easy to see that
the formulas have the form of the formula given in Theorem 3.5, so by changing
the meaning of the operation | we can get the corresponding formulas for all other
classes given in Section 4. For example, we can get the number of all labeled ordered
T0-(3, n)-antichains from α̂(3, n), if we put that a|b = a · [b]n, and we obtain

α022(3, n) = ([8]n − 6[6]n + 6[5]n + 3[4]n − 6[3]n + 2[2]n)/3!.

We get the number of all unlabeled ordered (3, n)-antichains from α̂(3, n), if we put
that a|b = a · Cn

b+n−1, and delete 3! in the denominator; so we obtain that

t10023(3, n) = Cn
n+7 − 6Cn

n+5 + 6Cn
n+4 + 3Cn

n+3 − 6Cn
n+2 + 2Cn

n+1.

We get the number of all unlabeled ordered (3, n)-T0-antichains from α̂(3, n), if we
put that a|b = a · Cn

b , and delete 3! in denominator. So we have that

t10022(3, n) = Cn
8 − 6Cn

6 + 6Cn
5 + 3Cn

4 − 6Cn
3 + 2Cn

2 .
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