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Abstract. We determine curvature properties of pseudosymmetry type of
hypersurfaces in Euclidean spaces En+1, n > 5, having three distinct nonzero
principal curvatures λ1, λ2 and λ3 of multiplicity 1, p and n−p−1, respectively.
For some hypersurfaces having this property the sum of λ1, λ2 and λ3 is equal
to the trace of the shape operator of M . We present an example of such
hypersurface.

1. Introduction

Let H be the second fundamental tensor of a hypersurface M immersed isomet-
rically in a semi-Riemannian space of constant curvature Nn+1

s (c), with signature

(s, n+ 1 − s), n > 4, where c = κ̃
n(n+1) and κ̃ is the scalar curvature of the ambient

space. For precise definitions of the symbols used we refer to Section 2 of this paper
and Sections 2 and 3 of [16] (see also [3,5,14,34,50]). Let UH ⊂ M be the set of
all points at which the tensor H2 is not a linear combination of H and the metric
tensor g of M . Curvature conditions of pseudosymmetry type on hypersurfaces M
in Nn+1

s (c), n > 4, satisfying on UH ⊂ M the equation

(1.1) H3 = tr(H)H2 + ψH,

where ψ is some function on UH , were investigated in several papers: [1,7,8,11,12,
15, 16, 22, 23, 25, 26, 34, 37]. For instance, the Cartan hypersurfaces satisfy (1.1)
(see, e.g., [12, Theorem 4.3], [16, Example 5.1(iii)]). Examples of hypersurfaces
in Euclidean spaces E

n+1, n > 5, as well as in semi-Euclidean spaces E
n+1
s , with

signature (s, n+1−s), n > 5, satisfying (1.1) are given in [1] and [11], respectively.
For further examples we refer to [15,16,23,26,27,31,35].
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Curvature conditions of pseudosymmetry type on hypersurfaces M in Nn+1
s (c),

n > 4, satisfying on M r UH the equation

(1.2) H2 = ψH + ρg,

for some functions ψ and ρ on this set, were investigated among others in [2,7,9,18,
27, 33, 35, 45, 47, 54]. Examples of hypersurfaces in spaces of constant curvature
satisfying (1.2) are given among others in [27, 35, 43, 56, 57]. It is obvious that
(1.1) is a special case of a more general equation

(1.3) H3 = φH2 + ψH + ρg,

where φ, ψ and ρ are some functions on UH . Hypersurfaces M in Nn+1
s (c), n > 4,

satisfying (1.3) on UH ⊂ M were investigated for instance in [6, 21, 50]. Here we
investigate curvature conditions of pseudosymmetry type on hypersurfaces M in
E

n+1
s , n > 5, satisfying (1.3) on UH . We can also consider (1.3) with φ = tr(H) on

UH , i.e., the equation

(1.4) H3 = tr(H)H2 + ψH + ρg,

where ψ and ρ are some functions on UH . Hypersurfaces M in Nn+1
s (c), n > 4,

satisfying (1.4) on UH ⊂ M were investigated in [4,30,51–53]. In [30, Proposition
2.1] it was proved that for every hypersurface M in N5

s (c) equation (1.4) reduces
on UH ⊂ M to (1.1). Evidently, ρ = 0 on UH . The assumption that dimM = 4
is essential. In Section 5 we present an example of a hypersurface M in E

n+1,
n > 5, having at every point three distinct principal curvatures λ1, λ2 and λ3

of multiplicity 1, p and q, respectively, where n = 1 + p + q, satisfying (1.4) with
nonzero function ρ. In [50, Proposition 4.1] it was shown that the tensors R·C, C ·R
and C · C of a hypersurface M in Nn+1

s (c), n > 4, satisfying (1.3) on UH ⊂ M are
expressed on this set by a linear combinations of the Tachibana tensors Q(g,R),
Q(S,R), Q(S,G), Q(H,G) and Q(S, g ∧ H), and the tensors g ∧ Q(H,H2) and
H ∧ Q(g,H2). In Section 3 we present these formulas in the case when M is a
hypersurface in E

n+1
s , n > 4. Further, in the next section we present these formulas

in the special case when M is a hypersurface in E
n+1, n > 5, and at every point

of the set UH of a hypersurface M there are three distinct principal curvatures of
multiplicity 1, p and p, respectively, where n = 2p+ 1. In Section 5 we present an
example of such hypersurface.

2. Preliminaries

Throughout the paper all manifolds are assumed to be connected paracompact
manifolds of class C∞. Let (M, g) be an n-dimensional, n > 3, semi-Riemannian
manifold and let ∇ be its Levi-Civita connection and Ξ(M) the Lie algebra of vector
fields on M . We define on M the endomorphisms X ∧A Y and R(X,Y ) of Ξ(M)
by

(X ∧A Y )Z = A(Y, Z)X −A(X,Z)Y,

R(X,Y )Z = ∇X∇Y Z − ∇Y ∇XZ − ∇[X,Y ]Z,
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where A is a symmetric (0, 2)-tensor onM andX,Y, Z ∈ Ξ(M). The Ricci tensor S,
the Ricci operator S, the tensor S2 and the scalar curvature κ of (M, g) are defined
by S(X,Y ) = tr{Z → R(Z,X)Y }, g(SX,Y ) = S(X,Y ), S2(X,Y ) = S(SX,Y )
and κ = trS, respectively. The endomorphism C(X,Y ) we define by

C(X,Y )Z = R(X,Y )Z −
1

n− 2

(
X ∧g SY + SX ∧g Y −

κ

n− 1
X ∧g Y

)
Z.

Further, we define the (0, 4)-tensor G, the Riemann–Christoffel curvature tensor R
and the Weyl conformal curvature tensor C of (M, g) by

G(X1, X2, X3, X4) = g((X1 ∧g X2)X3, X4),

R(X1, X2, X3, X4) = g(R(X1, X2)X3, X4),

C(X1, X2, X3, X4) = g(C(X1, X2)X3, X4),

respectively, where X1, X2, · · · ∈ Ξ(M).
Let B(X,Y ) be a skew-symmetric endomorphism of Ξ(M) and let B be a

(0, 4)-tensor associated with B(X,Y ) by

(2.1) B(X1, X2, X3, X4) = g(B(X1, X2)X3, X4).

The tensor B is said to be a generalized curvature tensor [44] if

B(X1, X2, X3, X4) +B(X2, X3, X1, X4) +B(X3, X1, X2, X4) = 0,

B(X1, X2, X3, X4) = B(X3, X4, X1, X2).

Let B(X,Y ) be a skew-symmetric endomorphism of Ξ(M) and let B be the tensor
defined by (2.1). We extend B(X,Y ) to a derivation B(X,Y )· of the algebra of
tensor fields on M , by assuming that it commutes with contractions and B(X,Y ) ·
f = 0, for any smooth function f on M . Now for a (0, k)-tensor field T , k > 1, we
can define the (0, k + 2)-tensor B · T by

(B · T )(X1, . . . , Xk;X,Y ) = (B(X,Y ) · T )(X1, . . . , Xk;X,Y )

= −T (B(X,Y )X1, X2, . . . , Xk) − · · · − T (X1, . . . , Xk−1,B(X,Y )Xk).

If A is a symmetric (0, 2)-tensor then we define the (0, k + 2)-tensor Q(A, T ) by

Q(A, T )(X1, . . . , Xk;X,Y ) = (X ∧A Y · T )(X1, . . . , Xk;X,Y )

= −T ((X ∧A Y )X1, X2, . . . , Xk) − · · · − T (X1, . . . , Xk−1, (X ∧A Y )Xk).

In this manner we obtain the (0, 6)-tensors B ·B and Q(A,B). Setting in the above
formulas B = R or B = C, T = R or T = C or T = S, A = g or A = S, we get the
tensors R ·R, R ·C, C ·R, C ·C, R ·S, C ·S, Q(g,R), Q(S,R), Q(g, C) and Q(g, S).
Let A be a symmetric (0, 2)-tensor and T a (0, p)-tensor, p > 2. According to [22],
the tensor Q(A, T ) is called the Tachibana tensor of A and T , or the Tachibana
tensor for short. We also remark that in some papers, the (0, 6)-tensor Q(g,R) is
called the Tachibana tensor (see, e.g., [39–41,46,55]). For symmetric (0, 2)-tensors
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E and F we define their Kulkarni–Nomizu product E ∧ F by

(E ∧ F )(X1, X2, X3, X4) = E(X1, X4)F (X2, X3) + E(X2, X3)F (X1, X4)

− E(X1, X3)F (X2, X4) − E(X2, X4)F (X1, X3).

Clearly, the tensors R, C, G and E ∧ F are generalized curvature tensors. For a
symmetric (0, 2)-tensor E we define the (0, 4)-tensor E by E = 1

2E ∧ E. We have

g = G = 1
2g ∧ g. We note that the Weyl tensor C can be presented in the form

(2.2) C = R−
1

n− 2
g ∧ S +

κ

(n− 2)(n− 1)
G.

We also have (see, e.g., [15, Section 3])

(2.3) Q(E,E ∧ F ) = −Q(F,E).

Now (2.2) and (2.3) yield Q(g, C) = Q(g,R) + (1/(n− 2))Q(S,G). For a symmet-
ric (0, 2)-tensor E and a (0, k)-tensor T k > 2, we define their Kulkarni–Nomizu
product E ∧ T by [12]

(E ∧ T )(X1, X2, X3, X4;Y3, . . . , Yk)

= E(X1, X4)T (X2, X3, Y3, . . . , Yk) + E(X2, X3)T (X1, X4, Y3, . . . , Yk)

− E(X1, X3)T (X2, X4, Y3, . . . , Yk) − E(X2, X4)T (X1, X3, Y3, . . . , Yk).

Using the above definitions we can prove

Lemma 2.1. [11,12] Let E1, E2 and F be symmetric (0, 2)-tensors at a point
x of a semi-Riemannian manifold (M, g), n > 3. Then at x we have

E1 ∧Q(E2, F ) + E2 ∧Q(E1, F ) = −Q(F,E1 ∧ E2).

If E = E1 = E2, then

(2.4) E ∧Q(E,F ) = −Q(F,E).

3. Hypersurfaces in semi-Euclidean spaces

Let M , n > 3, be a connected hypersurface isometrically immersed in a semi-
Riemannian manifold (N, gN ). We denote by g the metric tensor induced on M
from gN . Further, we denote by ∇ and ∇N the Levi-Civita connections correspond-
ing to the metric tensors g and gN , respectively. Let ξ be a local unit normal vector
field on M in N and let ε = gN (ξ, ξ) = ±1. We can write the Gauss formula and the
Weingarten formula of (M, g) in (N, gN) in the form: ∇N

XY = ∇XY + εH(X,Y )ξ
and ∇N

Xξ = −AX , respectively, where X,Y are vector fields tangent to M , H is
the second fundamental tensor of (M, g) in (N, gN ), A is the shape operator and
Hk(X,Y ) = g(AkX,Y ), k > 1, H1 = H and A1 = A. We denote by R and RN

the Riemann–Christoffel curvature tensors of (M, g) and (N, gN ), respectively. Let
xr = xr(yk) be the local parametric expression of (M, g) in (N, gN ), where yk and
xr are local coordinates of M and N , respectively, and h, i, j, k ∈ {1, 2, . . . , n} and
p, r, t, u ∈ {1, 2, . . . , n+ 1}. The Gauss equation of (M, g) in (N, gN ) has the form

(3.1) Rhijk = RN
prtuB

p
hB

r
iB

t
jB

u
k + ε(HhkHij −HhjHik), Br

k =
∂xr

∂yk
,



CURVATURE PROPERTIES OF SOME CLASS OF HYPERSURFACES 169

where RN
prtu, Rhijk and Hhk are the local components of the tensors RN , R and H ,

respectively. If (N, gN ) is a conformally flat space then we have [23, Section 4]

Chijk = µGhijk + εHhijk +
ε

n− 2

(
g ∧ (H2 − tr(H)H)

)
hijk

,

µ =
1

(n− 2)(n− 1)

(
κ− 2S̃rtB

r
hB

t
kg

hk + κ̃
)
,(3.2)

where S̃rt are the local components of the Ricci tensor S̃ of the ambient space, Ghijk

are the local components of the tensor G and κ̃ and κ are the scalar curvatures of
(N, gN ) and (M, g), respectively.

Let now M be a hypersurface in E
n+1
s , n > 4. Clearly, (3.1) and (3.2) read

(3.3) Rhijk = εHhijk, µ =
κ

(n− 2)(n− 1)
,

respectively. Contracting (3.3) with gij and gkh we obtain

(3.4) Shk = ε(tr(H)Hhk −H2
hk), κ = ε

(
(tr(H))2 − tr(H2)

)
,

respectively, where tr(H) = ghkHhk, tr(H2) = ghkH2
hk and Shk are the local com-

ponents of the Ricci tensor S of M . We recall that on every hypersurface M in
E

n+1
s , n > 3, we have the following identity R · R = Q(S,R) [32]. We prove now

that on M in E
n+1
s , n > 3, we also have

Proposition 3.1. On every hypersurface M in E
n+1
s , n > 3, the following

identities are satisfied

g ∧Q(H,H2) = εg ∧Q(S,H),(3.5)

H ∧Q(g,H2) = ε tr(H)Q(g,R) − εH ∧Q(g, S).(3.6)

Proof. From (3.4) we have

(3.7) H2 = tr(H)H − εS,

and this yields

g ∧Q(H,H2) = g ∧Q(H, tr(H)H − εS) = εg ∧Q(S,H).

Thus (3.5) is proved. Further, using (2.4), (3.3) and (3.7) we obtain

H ∧Q(g,H2) = tr(H)H ∧Q(g,H) − εH ∧Q(g, S)

= − tr(H)H ∧Q(H, g) − εH ∧Q(g, S)

= tr(H)Q(g,H) − εH ∧Q(g, S)

= ε tr(H)Q(g,R) − εH ∧Q(g, S).

Our proposition is thus proved. �
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Let now M be a hypersurface in E
n+1
s , n > 4, satisfying (1.3) on UH ⊂ M . We

set (cf. [50, eq. (34)])

(3.8)

β1 = ε(φ− tr(H)),

β2 = −
ε

n− 2
(φ(2 tr(H) − φ) − (tr(H))2 − ψ − (n− 2)εµ),

β3 = εµ tr(H) +
1

n− 2

(
ψ(2 tr(H) − φ) + (n− 3)ρ

)
,

β4 = β3 − εβ2 tr(H),

β5 =
κ

n− 1
+ εψ + β1 tr(H),

β6 = β2,

where the functions φ, ψ and ρ are defined by (1.3).

Proposition 3.2. If M is a hypersurface in E
n+1
s , n > 4, satisfying (1.3) on

UH ⊂ M , for some functions φ, ψ and ρ, then the following conditions are satisfied
on this set

S2 = γ2S + γ1H + γ0g,(3.9)

(n− 2)R · C = (n− 2)Q(S,R) + ρQ(H,G) − β1g ∧Q(H,S),(3.10)

(n− 2)C · R =
( κ

n− 1
+ εψ + β1 tr(H)

)
Q(g,R)(3.11)

+ (n− 3)Q(S,R) − β1H ∧Q(g, S),

(n− 2)C · C = β1Q(S, g ∧H) + β4Q(H,G)(3.12)

+ (n− 3)Q(S,R) + β5Q(g,R) + β2Q(S,G),

γ0 = ρ(φ− 2 tr(H)),

γ1 = ψ(φ− 2 tr(H)) + ρ+ tr(H)(φ2 + ψ + (tr(H))2),(3.13)

γ2 = −(φ2 + ψ + tr(H)(tr(H) − 2φ)).

Proof. We denote by S2
hk the local components of the tensor S2. Evidently,

we have

S2
hk = gijShiSkj = H4

hk − 2 tr(H)H3
hk + (tr(H))2H2

hk.

Applying in this (1.3) we obtain

S2 = (φ2 + ψ + tr(H)(tr(H) − 2φ))H2

+ ρ(φ− 2 tr(H))g + (ψ(φ − 2 tr(H)) + ρ)H.

The last relation, by making use of (3.7) and (3.13), turns into (3.9). Further, we
also have on UH (cf. [50, Proposition 4.1]): (3.12) and

(n− 2)R · C = (n− 2)Q(S,R) + ρQ(H,G) + (φ − tr(H))g ∧Q(H,H2),(3.14)

(n− 2)C ·R =
( κ

n− 1
+ εψ

)
Q(g,R) + (n− 3)Q(S,R)(3.15)

+ (φ − tr(H))H ∧Q(g,H2),
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where β1, . . . , β5 are defined by (3.8). Now (3.10) and (3.11) are an immediate
consequence of (3.5), (3.6), (3.8), (3.14) and (3.15). �

4. Hypersurfaces with three principal curvatures

In this section we consider hypersurfaces M in E
n+1, n > 5, having at every

point of the set UH ⊂ M three distinct principal curvatures λ1, λ2 and λ3. First
we note that from (1.3) it follows that

(4.1) φ = λ1 + λ2 + λ3, ψ = −(λ1λ2 + λ1λ3 + λ2λ3), ρ = λ1λ2λ3.

Moreover we assume that λ1, λ2 and λ3 are of multiplicity 1, p and p, respectively.
Evidently, n = 2p+ 1. Further, (3.3), (3.4) and (3.8) lead to

tr(H) = λ1 + p(λ2 + λ3), tr(H2) = λ2
1 + p(λ2

2 + λ2
3),

β1 = −
n− 3

2
(λ2 + λ3), β2 =

1

n− 3
β2

1 = ψ +
κ

n− 1

β3 =
1

n− 2

(
tr(H)β2 − ψβ1 + (n− 3)ρ

)
,

β4 = −
1

n− 2

(
(n− 3) tr(H)β2 + ψβ1 − (n− 3)ρ

)
, β5 = β2 + tr(H)β1.(4.2)

Using now (3.9) and (4.1) we find

γ0 = −λ1λ2λ3(λ1 + (2p− 1)(λ2 + λ3)),

γ1 = p(p− 1)2(λ3
2 + λ3

3) + p(p− 1)(λ2
2 + λ2

3)λ1

+ (3p2(p− 2) + 4p− 1)λ2λ3(λ2 + λ3) + (2p2 − 2p+ 1)λ1λ2λ3,

γ2 = −(p− 1)(λ2
2 + λ2

3) − (p− 2)λ1(λ2 + λ3) − (2p− 3)λ2λ3.(4.3)

From (3.4) and (4.2) it follows immediately that the eigenvalues ρ1, ρ2 and ρ3 of
the Ricci tensor S of M are expressed on UH trought the following relations

ρ1 = λ1(tr(H) − λ1) = pλ1(λ2 + λ3),

ρ2 = λ2(tr(H) − λ2) = λ2(λ1 + (p− 1)λ2 + pλ3),

ρ3 = λ3(tr(H) − λ3) = λ3(λ1 + pλ2 + (p− 1)λ3).(4.4)

Now (4.4) yields

(4.5) (ρ1 − ρ2)(ρ1 − ρ3)(ρ2 − ρ3) = (λ1 − λ2)(λ1 − λ3)(λ2 − λ3)((p− 1)λ2 + pλ3)

(pλ2 + (p− 1)λ3)(λ1 + (p− 1)(λ2 + λ3)).

Proposition 4.1. Let M be a hypersurface in E
n+1, n = 2p+ 1 > 5, having

at every point of UH ⊂ M three distinct principal curvatures λ1, λ2 and λ3 of
multiplicity 1, p and p, respectively. We have

(i) The Ricci tensor S of M has at a point x ∈ UH three distinct eigenvalues
ρ1, ρ2 and ρ3 if and only if at this point we have

((p− 1)λ2 + pλ3)(pλ2 + (p− 1)λ3)(λ1 + (p− 1)(λ2 + λ3)) 6= 0.
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(ii) If the Ricci tensor S of M has at a point x ∈ UH three distinct eigenval-
ues ρ1, ρ2 and ρ3, then γ1, defined by (3.13), is nonzero at this point, and in a
consequence H = γ−1

1 (S2 − γ2S − γ0g).

Proof. (i) follows immediately from (4.5).
(ii) Suppose that γ1 = 0 at x. Then from (3.9) it follows that S has at x only

two distinct eigenvalues, a contradiction. �

The above results, together with (3.3), Lemma 2.1 and Proposition 3.2, imply

Theorem 4.1. Let M be a hypersurface in E
n+1, n = 2p + 1 > 5, having

at every point of UH ⊂ M three distinct principal curvatures λ1, λ2 and λ3 of
multiplicity 1, p and p, respectively. Let U ⊂ UH be the set of all points at which
Ricci tensor S of M has three distinct eigenvalues ρ1, ρ2 and ρ3. Then on this set
we have

R =
1

2
γ−2

1 (S2 − γ2S − γ0g) ∧ (S2 − γ2S − γ0g),(4.6)

(n− 2)R · C = (n− 2)Q(S,R) +
ρ

γ1
Q(S2, G)

+
(
β1 −

ργ2

γ1

)
Q(S,G) +

β1

γ1
g ∧Q(S, S2),(4.7)

(n− 2)C ·R = (n− 3)Q(S,R) +
( κ

n− 1
+ εψ + β1 tr(H)

)
Q(g,R)

+
β1γ0

γ1
Q(S,G) −

β1γ2

γ1
Q

(
g,

1

2
S ∧ S

)
−
β1

γ1
S2 ∧Q(g, S),(4.8)

(n− 2)C · C = (n− 3)Q(S,R) + β5Q(g,R)

+
(
β2 −

2β1γ0 + β4γ2

γ1

)
Q(S,G)

+
β1γ2

γ1
Q

(
g,

1

2
S ∧ S

)
+
β1

γ1
Q(S, g ∧ S2) +

β4

γ1
Q(S2, G).(4.9)

Remark 4.1. Let M be the hypersurface considered in Theorem 4.1. By
making use of (4.6) we state that the curvature tensor R of M is expressed on
UH ⊂ M by a linear combination of the Tachibana tensors:

G =
1

2
g ∧ g, g ∧ S, g ∧ S2, S ∧ S2, S =

1

2
S ∧ S, S

2
=

1

2
S2 ∧ S2.

Results on hypersurfaces in Nn+1
s (c), n > 4, with the curvature tensor R having the

above property are given in [21] and [52]. Hypersurfaces in Nn+1
s (c), n > 4, with

the curvature tensor R which is expressed by a linear combination of the tensors
g ∧ g, g ∧ S and S ∧ S were investigated in [35]. For instance, the Clifford torus

Sp
(√

p/n
)

× Sn−p
(√

(n− p)/n
)
, 2 6 p 6 n − 2, n 6= 2p, has this property [35,

Corollary 3.1]. We also mention that semi-Riemannian manifolds with the curvature
tensor R expressed by a linear combination of the tensors g∧g, g∧S and S∧S were
introduced and investigated in [10]. For further results on this class of manifolds
we refer to [13,17,19,20,24,27,29,31,36,42].



CURVATURE PROPERTIES OF SOME CLASS OF HYPERSURFACES 173

5. Example

Example 5.1. (i)(cf. [48, Section 2], [49, Section 2]) Let α1 = α1(t) and
α2 = α2(t) be positive smooth functions defined on an interval I = (0; t0) ⊂ R,
t0 > 0, such that α′

1 6= 0 and α′

2 6= 0 for every t ∈ I, where α′

1 = dα1

dt
and α′

2 = dα2

dt
.

Let x = x(t, u1, . . . , up, v1, . . . , vq) be a parametric expression of a subset M of an
(n+ 1)-dimensional Euclidean space E

n+1, n = p+ q + 1, p > 2, q > 2, defined by

x = α1F1 + α2F2,(5.1)

F1 = (cosu1, sinu1 cosu1, . . . , sinu1 . . . sinup−1 cosup, sinu1 . . . sinup, 0, . . . , 0),

F2 = (0, . . . , 0, cos v1, sin v1 cos v1, . . . , sin v1 . . . sin vq−1 cos vq, sin v1 . . . sin vq),

where u1, . . . , up, v1, . . . , vq ∈ (0, π
2 ) and 0 occurs (q+ 1)-and (p+ 1)-times, respec-

tively. We set

(5.2) ξ = β
(

− α′

2F1 + α′

1F2
)
, β−1 =

√
α′

1
2 + α′

2
2.

Further, we have 〈F1, F1〉 = 〈F2, F2〉 = 〈ξ, ξ〉 = 1, where 〈·, ·〉 denotes the standard
scalar product of En+1. Differentiating (5.1) we obtain

x′

t =
∂x

∂t
= α′

1F1 + α′

2F2,

x′

k =
∂x

∂uk
= α1

∂F1

∂uk
= α1F

′

1k, x′

l =
∂x

∂vl
= α2

∂F2

∂vl
= α2F

′

2l,(5.3)

where k ∈ {1, . . . , p} and l ∈ {p+ 1, . . . , p+ q}. Using (5.2) and (5.3) we can easy
check that

(5.4) 〈ξ, x′

t〉 = 〈ξ, x′

k〉 = 〈ξ, x′

l〉 = 0.

We assume that at x we have

µ0x
′

t + µ1x
′

1 + · · · + µpx
′

p + µp+1x
′

p+1 + · · · + µp+qx
′

p+q = 0,

where µ0, . . . , µp+q ∈ R. The last relation, by (5.3), turns into

α1

(α′

1µ0

α1
F1 + µ1F

′

11 + · · · + µpF
′

1p

)

+ α2

(α′

2µ0

α2
F2 + µp+1F

′

2p+1 + · · · + µp+qF
′

2p+q

)
= 0.

This and the definitions of F1 and F2 lead to

α′

1µ0

α1
F1 + µ1F

′

11 + · · · + µpF
′

1p = 0,

α′

2µ0

α2
F2 + µp+1F

′

2p+1 + · · · + µp+qF
′

2p+q = 0.

Since the vectors F1, F
′

11, . . . , F
′

1p, resp. F2, F
′

2p+1, . . . , F
′

2p+q are linearly indepen-
dent vectors (see, e.g., [38, Example 2, pp.329–331]) at x we have

α′

1µ0

α1
= µ1 = · · · = µp = 0,

α′

2µ0

α2
= µp+1 = · · · = µp+q = 0.
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Thus the vectors x′

t, x
′

1, . . . , x
′

p, x′

p+1, . . . , x
′

p+q are linearly independent at every

point of M . Therefore we can state that M is immersed isometrically in E
n+1. In

addition, from (5.4) it follows that ξ is the unit normal vector field of M . Further,
differentiating (5.2) we obtain

ξ′

t =
∂ξ

∂t
= −(α′

2β)′F1 + (α′

1β)′F2,

ξ′

k =
∂ξ

∂uk
= −α′

2βF1k, ξ′

l =
∂ξ

∂vl
= α′

1βF2l,(5.5)

where α′′

1 =
dα′

1

dt
and α′′

2 =
dα′

2

dt
. From (5.3) and (5.5) we obtain the Weingarten

formula for M

ξ′

t = (α′′

1α
′

2 − α′

1α
′′

2 )β3x′

t =
α′′

1α
′

2 − α′

1α
′′

2

α′

1
2 + α′

2
2 βx′

t,

ξ′

k = −α−1
1 α′

2βx
′

k, ξ′

l = α−1
2 α′

1βx
′

l.

Thus we have

λ1 = (α′

1α
′′

2 − α′′

1α
′

2)β3, λ2 = α−1
1 α′

2β, λ3 = −α−1
2 α′

1β.

(ii) It is easy to see that if at every point of M we have

(5.6) (p− 1)λ2 = −(q − 1)λ3

then the second fundamental tensor H of M satisfies (1.4) on UH ⊂ M . Evidently,
(5.6) yields (p− 1)α2α

′

2 = (q − 1)α1α
′

1, which is equivalent to

α2 =

√
c+

q − 1

p− 1
α2

1,

where c is a constant. Note that from (4.1) and (5.6) we get easily

tr(H) = λ1 + pλ2 + qλ3

= λ1 + λ2 + λ3 + (p− 1)λ2 + (q − 1)λ3 = λ1 + λ2 + λ3 = φ.

Thus (1.3) turns into (1.4).
(iii) We consider the case: p = q > 2. Now (5.6) gives λ2 = −λ3. Thus

(4.1)–(4.4) and (3.4) yield

φ = λ1, ψ = λ2
2, ρ = −λ1λ

2
2,

tr(H) = λ1, tr(H2) = λ2
1 + (n− 1)λ2

2,

β1 = β2 = β5 = 0, β3 = β4 =
n− 3

n− 2
ρ,

γ0 = λ2
1λ

2
2, γ1 = −λ1λ

2
2, γ2 = −λ2

2,

ρ1 = 0, ρ2 = λ2(λ1 − λ2), ρ3 = −λ2(λ1 + λ2),

κ = tr(H))2 − tr(H2) = −(n− 1)λ2
2 = −(n− 1)ψ.
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We also have

S3 =
2κ

n− 1
S2 −

κ

n− 1

( κ

n− 1
+ (tr(H))2

)
S,

(tr(H))2 = −
(n− 1) tr(S3)

κ2 +
2 tr(S2)

κ
−

κ

n− 1
.

Conditions (4.7)–(4.9), by making use of the above presented formulas, turn
into

R · C = Q(S,R) +
1

n− 2
Q

(
S2 −

κ

n− 1
S,G

)
,(5.7)

C ·R =
n− 3

n− 2
Q(S,R),(5.8)

C · C =
n− 3

n− 2

(
Q(S,R) +

1

n− 2
Q

(
S2 −

κ

n− 1
S,G

))
,(5.9)

respectively. From (5.7) and (5.8) we get immediately

(5.10) (n− 2)(R · C − C · R) = Q(S,R) +
1

n− 2
Q

(
S2 −

κ

n− 1
S,G

)
.

Thus the difference tensor R · C − C · R is expressed by a linear combination of
some Tachibana tensors. We mention that hypersurfaces in spaces of of constant
curvature with the tensor R ·C−C ·R expressed by a linear combination of certain
Tachibana tensors were investigated among others in [16, 22, 26, 28, 51]. We also
note that (5.9) and (5.10) yield (n− 3)(R ·C −C ·R) = C ·C. Thus the difference
tensor R · C − C ·R of M is a conformal invariant.
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