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MAXIMAL TYCHONOFF SPACES
AND NORMAL ISOLATOR COVERS

C.K. Basu and S.S. Mandal

ABSTRACT. We introduce a new kind of cover called a normal isolator cover
to characterize maximal Tychonoff spaces. Such a study is used to provide an
alternative proof of an interesting result of Feng and Garcia-Ferreira in 1999
that every maximal Tychonoff space is extremally disconnected. Maximal
tychonoffness of subspaces is also discussed.

1. Introduction

In the poset A(X), of all topologies on a given set X, having the property P,
a topological space (X, 7) is maximal P provided that 7 is a maximal element in
A(X). In [6], it had been shown that a topological space (X, 7) is maximal P if and
only if every continuous bijection from a space (Y, 71) with the property P to (X, )
is a homeomorphism. In 1943 Hewitt [15] and in 1947 Vaidyanathaswamy [29] had
independently proved that every compact Hausdorff space is maximal compact.
Vaidyanathaswamy [29] put forward a question if there exists any non-Hausdorff
maximal compact space. One year later in 1948 Hing tong [28] answered affirma-
tively Vaidyanathaswamy’s question. In the same year Ramanathan [21] charac-
terized maximal compact spaces as those whose compact subsets are precisely the
closed sets. Levine [I7] answered affirmatively the question of Vaidyanathaswamy
by establishing that a one point compactification of rationals with the usual topol-
ogy is a non-Hausdorff maximal compact space. In the same paper he exhibited
that maximal compact topologies are not productive. On the other hand, Mio-
duszewski and Rudolf [18] demonstrated necessary and sufficient conditions for an
absolutely closed (or H-closed) space to become maximal absolutely closed.

Thron [27] and Aull [1] investigated maximal countably compact spaces. Aull,
in fact, strengthened the result: a first countable Hausdorff countably compact
space is maximal countably compact and minimal first countable Hausdorff of
Thron [27].
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In 1971, Cameron [6] and in 1973 Raha [20] investigated exhaustively the vari-
ous aspects of certain maximal P spaces, where P = Lindeloff, countably compact,
sequential compact, pseudocompact, lightly compact or connected. Thomas [26]
had also discussed maximal connected topologies. Cameron characterized maximal
QHC spaces [7] and maximal pseudocompact spaces [5, [9] and in [8] he shown that
the maximal topologies of a class of topologies which include lightly compact and
QHC spaces are submaximal and T3 spaces. In 1999, Kennedy and McCartan [16]
investigated spaces which are maximal with respect to a semiregular property and
showed new characterizations of maximal QHC spaces and maximal pseudocompact
spaces. In 1997, Guthrie, Stone and Wage [13] investigated topologies, which are
maximal connected Hausdorff and in 1998, Shakhmatov, Tkacenko, Tkachuk, Wat-
son and Wilson [23] showed that neither first countable nor Cech-complete spaces
are maximal Tychonoff connected also in 2007, Zelenyuk [31] investigated almost
maximal spaces. In addition, interesting behaviors of some of Maximal topologies
and their applications are found in the papers [10}, 11}, 14}, 19, 22, 24, 25].

Considering the usefulness and importance of uniformizability (=Tychonoff-
ness in Hausdorfl spaces) and the above observations about maximal topologies of
various kinds of topological properties, this article is devoted to study maximal uni-
formizable(=Maximal Tychonoff) spaces. Several characterizations of such spaces
have been given in terms of refinement of normally open covers as well as newly in-
troduced normal isolator covers. As a consequence, we provide an alternative proof
of the already existing interesting result of Feng, Garcia-Ferreira [12] that every
maximal Tychonoff space is extremally disconnected. Maximal uniformizability
with respect to subspaces has also been discussed.

2. Preliminaries

The symbol X or (X, 7) denotes a topological space without any isolated points
which is T3 and the base set X is infinite, unless explicitly stated. For two covers
U and V of X, U is called a refinement of V denoted by U < V if for each U € U,
there exists a V' € V such that U C V' and we call U star refines V or U is a star

refinement of ¥V, denoted by U z V, if for each U € U, there exists a V' € V such
that St(U;U) C V, where St(U;U) = U{W €U : WNU # 0}. When U = {z}, we
denote St(U;U) as St(z;U). We note that if U < V, then U < V.

A normal sequence of covers of X is a sequence of covers Uy,Us, ... of X such

that U1 2 U,, forn =1,2,...; and a normal cover is a cover which is U; in some
normal sequence of covers [30, §36.9. p.247]. An open cover U of a topological
space X is normally open if and only if &/ = U; in some normal sequence Uy, Uo, . . .
consisting of open covers of X [30, §36.14. p. 248].

A collection ' of covers of a space X is a base for some covering uniformity on
X if and only if it satisfies the condition that for U, Us € p’ there is a Us € p' such

that Us z Uy and Uz z U> |30, §36.3, p. 245]. Tt is well known that if p’ is a base for
a covering uniformity p on X, then {St(x;U) : U € p'} is a local base at € X in
the uniform topology [30, §36.6, p. 246]. Also if X is any uniformizable topological
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space, then there is a finest uniformity on X, compatible with the topology of X,
called the fine uniformity on X, denoted by pp, which has a base of all normally
open covers of X. So a uniformizable space (X, 7) has at least one normally open
cover consisting of proper subsets of X.

LEMMA 2.1. If Uy, Us, Us are three covers of X such that Uy < Us z Us, then
Uy < Us
PROOF. The proof is obvious. O

LEMMA 2.2. If {Uy,Uz,Us, ...} is a normal sequence of covers and if Uy, Uy, €
{Uy,Us,Us, ...}, then for a positive integer t greater than both of k and m, Uy 2 Uy,
and Uy < U, .

PROOF. The proof is obvious. O

THEOREM 2.1 (Hausdorff criterion [30]). For each x € X, let BL be a neighbor-
hood base at x for the topology 71 on X and B2 be a neighborhood base at x for the
topology T2 on X. Then 7 C 72 if and only if for each x € X and each B € BL,
there is some B? € B2 such that B> C B! |30, §4.8. p.35].

DEFINITION 2.1. For two covers U and V of X, we denote the intersection of
Uand VasU AV and define it asY AV ={UNV : U € U,V € V} [30, §36.3.
p. 245].

3. Maximal Tychonoff spaces

Recently, when a space (uniformizable or not) possessing a nontrivial proper
uniformizable subtopology is investigated in [3] by Basu and Mandal, by the help
of normal sequence of covers and star refinement of covers. A useful consequence of
that investigation reflects that a sort of converse of A. H. Stone’s famous theorem is
true when Basu and Mandal [3] established that a paracompact T space (X, 7) is
either metrizable or (X, 7) has a nontrivial proper uniformizable subtopology, which
is pseudometrizable. In the course of that study, disconnectedness is seen to play a
major role, especially when that is of very strong in nature viz. zero-dimensionality,
it is shown there that for a paracompact T space (X, 7) containing no isolated
points, the cardinality of such nontrivial proper uniformizable subtopologies of
(X, 7) is at least Rg. In another paper [4], Basu and Mandal characterized minimal
Uniformizable spaces in terms of normal sequence of covers and have shown that
a minimal uniformizable non-indiscrete space is pseudometrizable. In this section,
we investigate maximal uniformizable (=maximal Tychonoff ) spaces in terms of a
new kind of cover called a normal isolator cover.

DEFINITION 3.1. A cover U of (X, ) is called an isolator cover of (X,7) if
St(x;U AV) is infinite for every normally open cover V of (X, 7) and U is called a
normal isolator cover if it is the first term of a normal sequence of isolator covers.

Clearly every open cover of (X,7) is an isolator cover of (X,7) and every
normally open cover of (X, 7) is also obviously a normal isolator cover of (X, 7).
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We further note that if 71 is a topology on X such that 7 D 7 and if I/ is a normal
isolator cover of (X, 7y), then i is a normal isolator cover of (X, 7).

DEFINITION 3.2. A Tyconoff (or uniformizable) space (X, 7) is called maximal
Tyconoff [11] (or maximal uniformizable) if no topology without any isolated points
stronger than 7 is Tyconoff (or uniformizable).

LEMMA 3.1. If Us < Uy and Vo < V1, then
(1) Us AV S UL AV (i) Us A Ve < Uy and Us A Vs < V.

PRrOOF. (i) Let Uy N Va € Uy A Vo, where Us € Ua, Vo € Vy. Then
St(Ua N Va;Us A Va) C U{(Ua NVg) : Uy € Us with Uy N Uz # ¢ and
Vi € Vo with V, NV, # ¢}

ClJUs €lthy : Uan Uz # ¢} 0 (| J{Vs €V2: VEN V2 # ¢})
= St(Us;Us) NSE(Va; V) CUL N VL €Uy AV

[as Us 2 Uy and Vy 2 Vi, so for Uy € Us, Vo € Vs there exist some Uy € U; and some
V1 € V1 such that St(Us;Us) C Uy and St(Va; V) C V4. So for Us NV € Us A Vo
there exists Uy N'V4 € Uy AV such that St(Us N Va;Ua A V2) € Uy N V. Hence
Us NVo < Uy AV

(ii) We know that Uy A Vi < Uy and Uy AV < Vp and also we know that for
three covers Wy, W, W3 of X, if W5 2 Wo < Wy, then Wy 2 W;. Hence the result
follows. u

LEMMA 3.2. For a Tychonoff space (X,7), if u is the collection of all nor-
mally open covers of (X,7) and U is a normal isolator cover of (X,T) with the
corresponding normal sequence of isolator covers ...Us 2 Us 2 U = U, then
wy = pU{Uy,Us, .. JU{V AU, : k=1,2,...;V € u} forms a base for some unifor-
mity on X which generates a stronger Tychonoff (uniformizable) topology Ty O
X such that (X, 7, ) is T2 and contains no isolated points.

PROOF. Here pf = pU{Us,Usz,...} U{V AU, : k=1,2,...;V € u}. First we
shall prove that for Wi, Wy € puf, there exists a Wi € p} such that Wy b Wi and
Ws < W,

Now u is itself a base for the fine uniformity on X generating the topology 7
on X. So for Wi, W, € pu, there obviously exists a W3 € u such that Ws 2 Wy and
Ws < W,

Also by Lemma 2] for Uy, U,,, € {Ur,Us, ...}, there exists an U € {Ur,Ua, ...}
such that 2 U, and U 2 Up,.

Now we will have to check it for four possible cases:

O Wrepand U e{lh,Us,...}; i) Wiepand We{V AU, 1 k=1,2,...;V € u};
(i) Wi,Wa € {V AU : k = 1,2,...;V € u}; (iv) for Uy € {Uy,Us,...} and
We{VAU, : k=1,2,..;V € u}.
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Case (i): Suppose Wy € p and Uy, € {Uy,Us,...}. As p is a base for the fine
uniformity on X, there exists a W5 € p such that Ws 2 Wi and also U 2 U, [where
t is a positive integer such that ¢t > k|. Hence by Lemma B Wa A U; 2 Wi AU,
and Wy A U 2 Wri; Wa AU, 2 Uy, where Wo AU € 1.

Case (ii): Let U € p, U N U, € (Y ANU 11 =1,2,...;V € p}.

Since U’,U € p and p is being a base for the fine uniformity on X, there exists
a U € p such that U” U andU” ZU. .. (D).

Now as U" < U and Uy z Uy, (where t is a positive integer greater than k), by
Lemma BT U” AU, u AU

Again for UNV e U”" AUy, we have St(UNV;U" ANU) C St(U;U”) C U’ (for
some U’ € U’ as U" < Uu. Sod” Ny zu.

Case (iii): Let U' AU, U NU € (VAU -t = 1,2,...;V € u}. Now, for
U, U" € p, there exists a U"" € p, such that U’ z u,u" zur... (a).

Also Lemma ensures that, for a positive integer ¢ greater than both k and

* *
LU <Up and Uy < U ... (b)

From (a), (b) and Lemma B1] we get U AUy S U AU as well as U AUy <
U" NU;. Here we note that U AU, e (VAU :t=1,2,...;V € u} C pf.

The proof of case (iv) can be done similarly.

So we have for any Wi, Wa € p, there exists a Wi € pf such that Ws b Wy,
Ws < Ws. Hence pf is a base for some covering uniformity on X. Now u] generates
the topology 7,,, on X. Since u C 1}, the topology generated by p i.e., the topology
7 is weaker than 7,,. Now {St(z;U) : U € py} forms a local base at € X in
(X, 1) and also St(x;U) is infinite for each x € X and for each U € pj. So

(X, 71 ) contains no isolated points. Also 7, is 7> and uniformizable. Hence the
Lemma follows. d

THEOREM 3.1. For a Tychonoff space (X, ), the following statements are
equivalent:

(i) (X, 7) is mazimal Tychonoff.
(ii) Every normal isolator cover U of (X, 7) has an open refinement V, which
is also a cover of (X, ).
(ili) Every normal isolator cover U of (X,T) has an open star refinement V,
which is also a cover of (X, ).

PROOF. We shall proceed to prove in the following manner: (i)<(ii), (ii)<(iii).

(i)=(ii): Let (X,7) be a maximal Tychonoff space and also let & be a normal
isolator cover of (X, 7) and U = Uy, Us, ... be the corresponding normal sequence
of isolator covers of (X, 7).

Now we shall consider the collection p of covers consisting of all normally open
covers of (X, 1), the covers {U,Us, ...} and the covers {VAUL, : k =1,2,...;V € u},
where p is the collection of all normally open covers of (X, 7).
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So by Lemma B2 pf is a base for some uniformity on X, which generates a
stronger Tychonoff(or uniformizable) topology 7., on X (i.e. 7,, D 7) such that
(X, T ) is T5 and contains no isolated points. Then 7 = Ty, by the maximality of
7 as a Tychonoff (or uniformizable) topology. So we can write T, CT.

Now {St(z; W) : W € 1} is a local base at € X in (X, 7,/ ) and {St(z; W) :
W' € p}is alocal base at € X in (X, 7). By the Hausdorff criterion, for Us € pf,
there exists a V € p such that St(z;V) C St(z;Us). Take a V, € V containing .
Then V,, € St(z;V) C St(x;Us) C St(Us;Us) [for some Us € Uy containing x]. As

Us z Uy = U, there exists some U, € Uy = U such that St(Us;Us) C U,. So
V. C U,. Therefore the cover W = {V, : © € X} is the required open cover of
(X, 7), which is a refinement of U.

(ii) = (i): Let the condition holds and if possible let 74 be a Tychonoff (or
uniformizable) topology that contains no isolated points satisfying 7 C 71. It is
sufficient to prove that = C 7.

Let U € 11. Consider the collection pq of all normally open covers of (X, 7).
Then for € U € 71, there exists a U’ € p; such that « € St(z;U’) C U. But as U’
is a normal isolator cover of (X, 71), it is therefore so in (X, 7), as well. Hence the
assumption shows the existence of an open cover W of (X, 1) satisfying W < U’.
Obviously x € St(z; W) C St(x;U’) C U and hence U € 7 as U is a neighborhood
of z in (X, 7). So 71 C 7 and hence (i) is followed.

(if)=-(iii): Let (ii) holds i.e. every normal isolator cover of (X, 7) has a 7-open
refinement. Let I be a normal isolator cover of (X, 7) with ... ,Us,Us,U; = U be
the corresponding normal sequence of isolator covers. Since Us is also a normal
isolator cover, by (ii), it has a 7-open refinement V. Now for V' € V), there exists a
Us € Uy, such that V' C Us. So St(V; V) C St(Usz;Uz), as V < Us and every member
of ¥V which intersects V must be contained in a member of Us intersecting Us,. Since

Uy < U, St(V; V) C St(Usz;Us) C U for some U € U. That is for V' € V), there exists
a U € U such that St(V;V) C U and hence V is a star refinement of U.

(ili)=-(ii): As every star refinement of a cover W is obviously a refinement of
W, (iii)=>(ii) follows obviously. O

COROLLARY 3.1. In a mazimal Tychonoff space (X,7), a subset G of X is

open if and only if for every x € G there exists a normal isolator cover U of (X, T)
such that x € St(z;U) C G

PROOF. Let G be an open subset of (X, 7) and « € G. Now we know that the
collection of all normally open covers p (say) of (X, 7) forms a base for a uniformity
on X, which generates 7 on X where 8, = {St(z;V) : V € u} forms a local base
at x € X in (X, 7). Hence the necessary part is followed as every normally open
cover is also a normal isolator cover.

Conversely, let G be a subset of X such that for every x € G there exists a
normal isolator cover U of (X, 7) with z € St(a;U) C G. Since (X, 1) is maxi-
mal Tychonoff, then by Theorem Bl the normal isolator cover Y has an T-open
refinement V (say). Now if U is a member of V containing z, then obviously
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x €U C St(z;U) and so x € U C G. Hence G is a 7-neighborhood of = and this is
true for every z € G. Thus G is an open set in (X, 7). O

Basu and Mandal [2] recently characterized various disconnectedness in terms
of star refinement of covers. Here using the tool of normal isolator covers, we have
shown that a maximal Tychonoff (or maximal uniformizable) space is extremally
disconnected.

THEOREM 3.2. Let (X,7) be a maximal Tychonoff space. Then for every
nonempty proper subset G of X containing no isolated points in G (with the induced
subspace topology), cl(G) is open.

PROOF. Let G be a nonempty proper subset of X containing no isolated points
in (X,7). If cl(G) = X, then cl(GQ) is obviously open; so let cI(G) € X. Then
X — cl(G) is an open set and obviously contains no isolated points in (X, 7). Also
cl(G) obviously contains no isolated points in (X, 7).

Now we consider the cover U = {cl(G), X — cl(G)} of X. Here we see that for
any normally open cover V of (X, 7) if « belongs to X — cl(G), then St(z;U AV)
being a union of open sets is itself an open set and hence is infinite. Let z € cl(G).
Now if x € G, then z is not an isolated point of G. So when an open set containing
x intersects G, it intersects at infinite number of points. Again if x is a limit point of
G, then as (X, 7) is Ty, every open set containing x intersects G at infinite number
of points. So in both cases St(z;U A V) is infinite. Hence U is an isolator cover of
(X,7). Also ...,U,U,U is a normal sequence and so U is a normal isolator cover
of (X, 7). Thus by Theorem Bl U/ has a 7-open refinement. So cl(G) is obviously
T-open. Hence the result follows. O

L. Feng and S. Garcia-Ferreira, in their paper [12], have established that every
maximal Tychonoff space is extremally disconnected [12] Lemma 1.6]. Here an
alternative proof of this result is established.

COROLLARY 3.2. A mazimal Tychonoff space is extremally disconnected.

PROOF. As in a maximal Tychonoff space, every nonempty proper open set
contains no isolated points in that space, so by Theorem B.2, the closure of every
open set is open and hence a maximal Tychonoff space is extremally disconnected.

O

COROLLARY 3.3. A mazimal Tychonoff space is zero dimensional space.

PROOF. The proof follows immediately, since an extremally disconnected reg-
ular space is zero-dimensional. O

THEOREM 3.3. In a mazimal Tychonoff space (X, T), for any proper nonempty
subset G containing no isolated points in (X, 1), cl(Q) is mazimal Tychonoff.

PROOF. Let (X, 7) be maximal Tychonoff and G be a proper nonempty subset
of X such that G contains no isolated points and also let cl(G) # X. Then obviously
(cl(G), Tei(@y) is T, uniformizable and also contains no isolated points.
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Now if ¢ is any normal isolator cover of (cl(G), Tey(@)), then U U {X — cl(G)}
is also a normal isolator cover of (X, 7).

As (X, 1) is maximal Tychonoff, by Theorem Bl A/ U{X —cl(G)} has a 7-open
refinement V', which is also a cover of X. Now V =V gy ={V Ncl(G) : V € V'}
is an open cover of cl(G) and it refines . So V is a 7.y(¢)-open refinement of ¢ i.e.,
every normal isolator cover of (cl(G), ey )) has a ¢y )-open refinement. Hence
by Theorem BT} (cl(G), 7ei(¢)) is a maximal Tychonoff space. O

COROLLARY 3.4. In a maximal Tychonoff space (X,T), for every proper non-
empty open set A, cl(A) is mazimal Tychonoff.

PROOF. As every proper nonempty open set contains no isolated points, the
proof follows from Theorem O

COROLLARY 3.5. A topological space (X, ) is mazimal Tychonoff if and only
if every nonempty open subset is maximal Tychonoff.

PROOF. The proof follows from Corollary B4 O
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