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MAXIMAL TYCHONOFF SPACES

AND NORMAL ISOLATOR COVERS

C. K. Basu and S. S. Mandal

Abstract. We introduce a new kind of cover called a normal isolator cover
to characterize maximal Tychonoff spaces. Such a study is used to provide an
alternative proof of an interesting result of Feng and Garcia-Ferreira in 1999
that every maximal Tychonoff space is extremally disconnected. Maximal
tychonoffness of subspaces is also discussed.

1. Introduction

In the poset A(X), of all topologies on a given set X , having the property P ,
a topological space (X, τ) is maximal P provided that τ is a maximal element in
A(X). In [6], it had been shown that a topological space (X, τ) is maximal P if and
only if every continuous bijection from a space (Y, τ1) with the property P to (X, τ)
is a homeomorphism. In 1943 Hewitt [15] and in 1947 Vaidyanathaswamy [29] had
independently proved that every compact Hausdorff space is maximal compact.
Vaidyanathaswamy [29] put forward a question if there exists any non-Hausdorff
maximal compact space. One year later in 1948 Hing tong [28] answered affirma-
tively Vaidyanathaswamy’s question. In the same year Ramanathan [21] charac-
terized maximal compact spaces as those whose compact subsets are precisely the
closed sets. Levine [17] answered affirmatively the question of Vaidyanathaswamy
by establishing that a one point compactification of rationals with the usual topol-
ogy is a non-Hausdorff maximal compact space. In the same paper he exhibited
that maximal compact topologies are not productive. On the other hand, Mio-
duszewski and Rudolf [18] demonstrated necessary and sufficient conditions for an
absolutely closed (or H-closed) space to become maximal absolutely closed.

Thron [27] and Aull [1] investigated maximal countably compact spaces. Aull,
in fact, strengthened the result: a first countable Hausdorff countably compact
space is maximal countably compact and minimal first countable Hausdorff of
Thron [27].
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In 1971, Cameron [6] and in 1973 Raha [20] investigated exhaustively the vari-
ous aspects of certain maximal P spaces, where P = Lindeloff, countably compact,
sequential compact, pseudocompact, lightly compact or connected. Thomas [26]
had also discussed maximal connected topologies. Cameron characterized maximal
QHC spaces [7] and maximal pseudocompact spaces [5, 9] and in [8] he shown that
the maximal topologies of a class of topologies which include lightly compact and
QHC spaces are submaximal and T1 spaces. In 1999, Kennedy and McCartan [16]
investigated spaces which are maximal with respect to a semiregular property and
showed new characterizations of maximal QHC spaces and maximal pseudocompact
spaces. In 1997, Guthrie, Stone and Wage [13] investigated topologies, which are
maximal connected Hausdorff and in 1998, Shakhmatov, Tkacenko, Tkachuk, Wat-
son and Wilson [23] showed that neither first countable nor Cech-complete spaces
are maximal Tychonoff connected also in 2007, Zelenyuk [31] investigated almost
maximal spaces. In addition, interesting behaviors of some of Maximal topologies
and their applications are found in the papers [10, 11, 14, 19, 22, 24, 25].

Considering the usefulness and importance of uniformizability (=Tychonoff-
ness in Hausdorff spaces) and the above observations about maximal topologies of
various kinds of topological properties, this article is devoted to study maximal uni-
formizable(=Maximal Tychonoff) spaces. Several characterizations of such spaces
have been given in terms of refinement of normally open covers as well as newly in-
troduced normal isolator covers. As a consequence, we provide an alternative proof
of the already existing interesting result of Feng, Garcia-Ferreira [12] that every
maximal Tychonoff space is extremally disconnected. Maximal uniformizability
with respect to subspaces has also been discussed.

2. Preliminaries

The symbol X or (X, τ) denotes a topological space without any isolated points
which is T2 and the base set X is infinite, unless explicitly stated. For two covers
U and V of X , U is called a refinement of V denoted by U < V if for each U ∈ U ,
there exists a V ∈ V such that U ⊂ V and we call U star refines V or U is a star

refinement of V , denoted by U
⋆
< V , if for each U ∈ U , there exists a V ∈ V such

that St(U ; U) ⊂ V , where St(U ; U) =
⋃

{W ∈ U : W ∩ U 6= ∅}. When U = {x}, we

denote St(U ; U) as St(x; U). We note that if U
⋆
< V , then U < V .

A normal sequence of covers of X is a sequence of covers U1, U2, . . . of X such

that Un+1
⋆
< Un, for n = 1, 2, . . .; and a normal cover is a cover which is U1 in some

normal sequence of covers [30, §36.9. p. 247]. An open cover U of a topological
space X is normally open if and only if U = U1 in some normal sequence U1, U2, . . .

consisting of open covers of X [30, §36.14. p. 248].
A collection µ′ of covers of a space X is a base for some covering uniformity on

X if and only if it satisfies the condition that for U1, U2 ∈ µ′ there is a U3 ∈ µ′ such

that U3
⋆
< U1 and U3

⋆
< U2 [30, §36.3, p. 245]. It is well known that if µ′ is a base for

a covering uniformity µ on X , then {St(x; U) : U ∈ µ′} is a local base at x ∈ X in
the uniform topology [30, §36.6, p. 246]. Also if X is any uniformizable topological
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space, then there is a finest uniformity on X, compatible with the topology of X ,
called the fine uniformity on X , denoted by µF , which has a base of all normally
open covers of X. So a uniformizable space (X, τ) has at least one normally open
cover consisting of proper subsets of X .

Lemma 2.1. If U1, U2, U3 are three covers of X such that U1
⋆
< U2

⋆
< U3, then

U1
⋆
< U3

Proof. The proof is obvious. �

Lemma 2.2. If {U1, U2, U3, . . .} is a normal sequence of covers and if Uk, Um ∈

{U1, U2, U3, . . .}, then for a positive integer t greater than both of k and m, Ut

⋆
< Uk

and Ut

⋆
< Um.

Proof. The proof is obvious. �

Theorem 2.1 (Hausdorff criterion [30]). For each x ∈ X, let B1
x be a neighbor-

hood base at x for the topology τ1 on X and B2
x be a neighborhood base at x for the

topology τ2 on X. Then τ1 ⊂ τ2 if and only if for each x ∈ X and each B1 ∈ B1
x,

there is some B2 ∈ B2
x such that B2 ⊂ B1 [30, §4.8. p. 35].

Definition 2.1. For two covers U and V of X , we denote the intersection of
U and V as U ∧ V and define it as U ∧ V = {U ∩ V : U ∈ U , V ∈ V} [30, §36.3.
p. 245].

3. Maximal Tychonoff spaces

Recently, when a space (uniformizable or not) possessing a nontrivial proper
uniformizable subtopology is investigated in [3] by Basu and Mandal, by the help
of normal sequence of covers and star refinement of covers. A useful consequence of
that investigation reflects that a sort of converse of A. H. Stone’s famous theorem is
true when Basu and Mandal [3] established that a paracompact T2 space (X, τ) is
either metrizable or (X, τ) has a nontrivial proper uniformizable subtopology, which
is pseudometrizable. In the course of that study, disconnectedness is seen to play a
major role, especially when that is of very strong in nature viz. zero-dimensionality,
it is shown there that for a paracompact T2 space (X, τ) containing no isolated
points, the cardinality of such nontrivial proper uniformizable subtopologies of
(X, τ) is at least ℵ0. In another paper [4], Basu and Mandal characterized minimal
Uniformizable spaces in terms of normal sequence of covers and have shown that
a minimal uniformizable non-indiscrete space is pseudometrizable. In this section,
we investigate maximal uniformizable (=maximal Tychonoff ) spaces in terms of a
new kind of cover called a normal isolator cover.

Definition 3.1. A cover U of (X, τ) is called an isolator cover of (X, τ) if
St(x; U ∧ V) is infinite for every normally open cover V of (X, τ) and U is called a
normal isolator cover if it is the first term of a normal sequence of isolator covers.

Clearly every open cover of (X, τ) is an isolator cover of (X, τ) and every
normally open cover of (X, τ) is also obviously a normal isolator cover of (X, τ).
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We further note that if τ1 is a topology on X such that τ1 ⊃ τ and if U is a normal
isolator cover of (X, τ1), then U is a normal isolator cover of (X, τ).

Definition 3.2. A Tyconoff (or uniformizable) space (X, τ) is called maximal
Tyconoff [11] (or maximal uniformizable) if no topology without any isolated points
stronger than τ is Tyconoff (or uniformizable).

Lemma 3.1. If U2
⋆
< U1 and V2

⋆
< V1, then

(i) U2 ∧ V2
⋆
< U1 ∧ V1; (ii) U2 ∧ V2

⋆
< U1 and U2 ∧ V2

⋆
< V1.

Proof. (i) Let U2 ∩ V2 ∈ U2 ∧ V2, where U2 ∈ U2, V2 ∈ V2. Then

St(U2 ∩ V2; U2 ∧ V2) ⊂
⋃

{(Uα ∩ Vβ) : Uα ∈ U2 with Uα ∩ U2 6= φ and

Vβ ∈ V2 with Vα ∩ V2 6= φ}

⊂
⋃

{Uα ∈ U2 : Uα ∩ U2 6= φ} ∩
(

⋃

{Vβ ∈ V2 : Vβ ∩ V2 6= φ}
)

= St(U2; U2) ∩ St(V2; V) ⊂ U1 ∩ V1 ∈ U1 ∧ V1

[as U2
⋆
< U1 and V2

⋆
< V1, so for U2 ∈ U2, V2 ∈ V2 there exist some U1 ∈ U1 and some

V1 ∈ V1 such that St(U2; U2) ⊂ U1 and St(V2; V2) ⊂ V1]. So for U2 ∩ V2 ∈ U2 ∧ V2

there exists U1 ∩ V1 ∈ U1 ∧ V1 such that St(U2 ∩ V2; U2 ∧ V2) ⊂ U1 ∩ V1. Hence

U2 ∧ V2
⋆
< U1 ∧ V1.

(ii) We know that U1 ∧ V1 < U1 and U1 ∧ V1 < V1 and also we know that for

three covers W1, W2, W3 of X , if W3
⋆
< W2 < W1, then W3

⋆
< W1. Hence the result

follows. �

Lemma 3.2. For a Tychonoff space (X, τ), if µ is the collection of all nor-
mally open covers of (X, τ) and U is a normal isolator cover of (X, τ) with the

corresponding normal sequence of isolator covers . . . U3
⋆
< U2

⋆
< U1 = U , then

µ′

1 = µ ∪ {U1, U2, . . .} ∪ {V ∧ Uk : k = 1, 2, . . . ; V ∈ µ} forms a base for some unifor-
mity on X which generates a stronger Tychonoff (uniformizable) topology τµ′

1
on

X such that (X, τµ′

1
) is T2 and contains no isolated points.

Proof. Here µ′

1 = µ ∪ {U1, U2, . . .} ∪ {V ∧ Uk : k = 1, 2, . . . ; V ∈ µ}. First we

shall prove that for W1, W2 ∈ µ′

1, there exists a W3 ∈ µ′

1 such that W3
⋆
< W1 and

W3
⋆
< W2.
Now µ is itself a base for the fine uniformity on X generating the topology τ

on X . So for W1, W2 ∈ µ, there obviously exists a W3 ∈ µ such that W3
⋆
< W1 and

W3
⋆
< W2.
Also by Lemma 2.2, for Uk, Um ∈ {U1, U2, . . .}, there exists an Ul ∈ {U1, U2, . . .}

such that Ul

⋆
< Uk and Ul

⋆
< Um.

Now we will have to check it for four possible cases:
(i) W1 ∈µ and Uk ∈{U1, U2, . . .}; (ii) W1 ∈µ and W ∈{V ∧ Uk : k = 1, 2, . . . ; V ∈ µ};
(iii) W1, W2 ∈ {V ∧ Uk : k = 1, 2, . . . ; V ∈ µ}; (iv) for Uk ∈ {U1, U2, . . .} and
W ∈ {V ∧ Uk : k = 1, 2, . . . ; V ∈ µ}.
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Case (i): Suppose W1 ∈ µ and Uk ∈ {U1, U2, . . .}. As µ is a base for the fine

uniformity on X , there exists a W2 ∈ µ such that W2
⋆
< W1 and also Ut

⋆
< Uk [where

t is a positive integer such that t > k]. Hence by Lemma 3.1, W2 ∧ Ut

⋆
< W1 ∧ Uk

and W2 ∧ Ut

⋆
< W1; W2 ∧ Ut

⋆
< Uk, where W2 ∧ Ut ∈ µ′

1.

Case (ii): Let U ′ ∈ µ, U ∧ Uk ∈ {V ∧ Ul : l = 1, 2, . . . ; V ∈ µ}.
Since U ′, U ∈ µ and µ is being a base for the fine uniformity on X , there exists

a U ′′ ∈ µ such that U ′′
⋆
< U ′ and U ′′

⋆
< U . . . (I).

Now as U ′′
⋆
< U and Ut

⋆
< Uk (where t is a positive integer greater than k), by

Lemma 3.1, U ′′ ∧ Ut

⋆
< U ∧ Uk.

Again for U ∩ V ∈ U ′′ ∧ Ut, we have St(U ∩ V ; U ′′ ∧ Ut) ⊂ St(U ; U ′′) ⊂ U ′ (for

some U ′ ∈ U ′ as U ′′
⋆
< U ′). So U ′′ ∧ Ut

⋆
< U ′.

Case (iii): Let U ′ ∧ Uk, U ′′ ∧ Ul ∈ {V ∧ Ut : t = 1, 2, . . . ; V ∈ µ}. Now, for

U ′, U ′′ ∈ µ, there exists a U ′′′ ∈ µ, such that U ′′′
⋆
< U ′, U ′′′

⋆
< U ′′ . . . (a).

Also Lemma 2.2 ensures that, for a positive integer t greater than both k and

l, Ut

⋆
< Uk and Ut

⋆
< Ul . . . (b).

From (a), (b) and Lemma 3.1, we get U ′′′ ∧ Ut

⋆
< U ′ ∧ Uk as well as U ′′′ ∧ Ut

⋆
<

U ′′ ∧ Ul. Here we note that U ′′′ ∧ Ut ∈ {V ∧ Ut : t = 1, 2, . . . ; V ∈ µ} ⊂ µ′

1.
The proof of case (iv) can be done similarly.

So we have for any W1, W2 ∈ µ′

1, there exists a W3 ∈ µ′

1 such that W3
⋆
< W1,

W3
⋆
< W2. Hence µ′

1 is a base for some covering uniformity on X . Now µ′

1 generates
the topology τµ′

1
on X . Since µ ⊂ µ′

1, the topology generated by µ i.e., the topology

τ is weaker than τµ′

1
. Now {St(x; U) : U ∈ µ′

1} forms a local base at x ∈ X in

(X, τµ′

1
) and also St(x; U) is infinite for each x ∈ X and for each U ∈ µ′

1. So

(X, τµ′

1
) contains no isolated points. Also τµ′

1
is T2 and uniformizable. Hence the

Lemma follows. �

Theorem 3.1. For a Tychonoff space (X, τ), the following statements are
equivalent:

(i) (X, τ) is maximal Tychonoff.
(ii) Every normal isolator cover U of (X, τ) has an open refinement V, which

is also a cover of (X, τ).
(iii) Every normal isolator cover U of (X, τ) has an open star refinement V,

which is also a cover of (X, τ).

Proof. We shall proceed to prove in the following manner: (i)⇔(ii), (ii)⇔(iii).
(i)⇒(ii): Let (X, τ) be a maximal Tychonoff space and also let U be a normal

isolator cover of (X, τ) and U = U1, U2, . . . be the corresponding normal sequence
of isolator covers of (X, τ).

Now we shall consider the collection µ′

1 of covers consisting of all normally open
covers of (X, τ), the covers {U1, U2, . . .} and the covers {V∧Uk : k = 1, 2, . . . ; V ∈ µ},
where µ is the collection of all normally open covers of (X, τ).
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So by Lemma 3.2, µ′

1 is a base for some uniformity on X , which generates a
stronger Tychonoff(or uniformizable) topology τµ′

1
on X (i.e. τµ′

1
⊃ τ) such that

(X, τµ′

1
) is T2 and contains no isolated points. Then τ = τµ′

1
, by the maximality of

τ as a Tychonoff (or uniformizable) topology. So we can write τµ′

1
⊂ τ .

Now {St(x; W) : W ∈ µ′

1} is a local base at x ∈ X in (X, τµ′

1
) and {St(x; W ′) :

W ′ ∈ µ} is a local base at x ∈ X in (X, τ). By the Hausdorff criterion, for U2 ∈ µ′

1,
there exists a V ∈ µ such that St(x; V) ⊂ St(x; U2). Take a Vx ∈ V containing x.
Then Vx ∈ St(x; V) ⊂ St(x; U2) ⊂ St(U2; U2) [for some U2 ∈ U2 containing x]. As

U2
⋆
< U1 = U , there exists some Ux ∈ U1 = U such that St(U2; U2) ⊂ Ux. So

Vx ⊂ Ux. Therefore the cover W = {Vx : x ∈ X} is the required open cover of
(X, τ), which is a refinement of U .

(ii) ⇒ (i): Let the condition holds and if possible let τ1 be a Tychonoff (or
uniformizable) topology that contains no isolated points satisfying τ ⊂ τ1. It is
sufficient to prove that τ1 ⊂ τ .

Let U ∈ τ1. Consider the collection µ1 of all normally open covers of (X, τ1).
Then for x ∈ U ∈ τ1, there exists a U ′ ∈ µ1 such that x ∈ St(x; U ′) ⊂ U . But as U ′

is a normal isolator cover of (X, τ1), it is therefore so in (X, τ), as well. Hence the
assumption shows the existence of an open cover W of (X, τ) satisfying W < U ′.
Obviously x ∈ St(x; W) ⊂ St(x; U ′) ⊂ U and hence U ∈ τ as U is a neighborhood
of x in (X, τ). So τ1 ⊂ τ and hence (i) is followed.

(ii)⇒(iii): Let (ii) holds i.e. every normal isolator cover of (X, τ) has a τ -open
refinement. Let U be a normal isolator cover of (X, τ) with . . . , U3, U2, U1 = U be
the corresponding normal sequence of isolator covers. Since U2 is also a normal
isolator cover, by (ii), it has a τ -open refinement V . Now for V ∈ V , there exists a
U2 ∈ U2, such that V ⊂ U2. So St(V ; V) ⊂ St(U2; U2), as V < U2 and every member
of V which intersects V must be contained in a member of U2 intersecting U2. Since

U2
⋆
< U , St(V ; V) ⊂ St(U2; U2) ⊂ U for some U ∈ U . That is for V ∈ V , there exists

a U ∈ U such that St(V ; V) ⊂ U and hence V is a star refinement of U .
(iii)⇒(ii): As every star refinement of a cover W is obviously a refinement of

W , (iii)⇒(ii) follows obviously. �

Corollary 3.1. In a maximal Tychonoff space (X, τ), a subset G of X is
open if and only if for every x ∈ G there exists a normal isolator cover U of (X, τ)
such that x ∈ St(x; U) ⊂ G

Proof. Let G be an open subset of (X, τ) and x ∈ G. Now we know that the
collection of all normally open covers µ (say) of (X, τ) forms a base for a uniformity
on X , which generates τ on X where βx = {St(x; V) : V ∈ µ} forms a local base
at x ∈ X in (X, τ). Hence the necessary part is followed as every normally open
cover is also a normal isolator cover.

Conversely, let G be a subset of X such that for every x ∈ G there exists a
normal isolator cover U of (X, τ) with x ∈ St(x; U) ⊂ G. Since (X, τ) is maxi-
mal Tychonoff, then by Theorem 3.1 the normal isolator cover U has an τ -open
refinement V (say). Now if U is a member of V containing x, then obviously
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x ∈ U ⊂ St(x; U) and so x ∈ U ⊂ G. Hence G is a τ -neighborhood of x and this is
true for every x ∈ G. Thus G is an open set in (X, τ). �

Basu and Mandal [2] recently characterized various disconnectedness in terms
of star refinement of covers. Here using the tool of normal isolator covers, we have
shown that a maximal Tychonoff (or maximal uniformizable) space is extremally
disconnected.

Theorem 3.2. Let (X, τ) be a maximal Tychonoff space. Then for every
nonempty proper subset G of X containing no isolated points in G (with the induced
subspace topology), cl(G) is open.

Proof. Let G be a nonempty proper subset of X containing no isolated points
in (X, τ). If cl(G) = X , then cl(G) is obviously open; so let cl(G) ( X . Then
X − cl(G) is an open set and obviously contains no isolated points in (X, τ). Also
cl(G) obviously contains no isolated points in (X, τ).

Now we consider the cover U = {cl(G), X − cl(G)} of X . Here we see that for
any normally open cover V of (X, τ) if x belongs to X − cl(G), then St(x; U ∧ V)
being a union of open sets is itself an open set and hence is infinite. Let x ∈ cl(G).
Now if x ∈ G, then x is not an isolated point of G. So when an open set containing
x intersects G, it intersects at infinite number of points. Again if x is a limit point of
G, then as (X, τ) is T1, every open set containing x intersects G at infinite number
of points. So in both cases St(x; U ∧ V) is infinite. Hence U is an isolator cover of
(X, τ). Also . . . , U , U , U is a normal sequence and so U is a normal isolator cover
of (X, τ). Thus by Theorem 3.1, U has a τ -open refinement. So cl(G) is obviously
τ -open. Hence the result follows. �

L. Feng and S. Garcia-Ferreira, in their paper [12], have established that every
maximal Tychonoff space is extremally disconnected [12, Lemma 1.6]. Here an
alternative proof of this result is established.

Corollary 3.2. A maximal Tychonoff space is extremally disconnected.

Proof. As in a maximal Tychonoff space, every nonempty proper open set
contains no isolated points in that space, so by Theorem 3.2, the closure of every
open set is open and hence a maximal Tychonoff space is extremally disconnected.

�

Corollary 3.3. A maximal Tychonoff space is zero dimensional space.

Proof. The proof follows immediately, since an extremally disconnected reg-
ular space is zero-dimensional. �

Theorem 3.3. In a maximal Tychonoff space (X, τ), for any proper nonempty
subset G containing no isolated points in (X, τ), cl(G) is maximal Tychonoff.

Proof. Let (X, τ) be maximal Tychonoff and G be a proper nonempty subset
of X such that G contains no isolated points and also let cl(G) 6= X . Then obviously
(cl(G), τcl(G)) is T2, uniformizable and also contains no isolated points.



224 BASU AND MANDAL

Now if U is any normal isolator cover of (cl(G), τcl(G)), then U ∪ {X − cl(G)}
is also a normal isolator cover of (X, τ).

As (X, τ) is maximal Tychonoff, by Theorem 3.1, U ∪{X −cl(G)} has a τ -open
refinement V ′, which is also a cover of X . Now V = V ′

cl(G) = {V ∩ cl(G) : V ∈ V ′}
is an open cover of cl(G) and it refines U . So V is a τcl(G)-open refinement of U i.e.,
every normal isolator cover of (cl(G), τcl(G)) has a τcl(G)-open refinement. Hence
by Theorem 3.1, (cl(G), τcl(G)) is a maximal Tychonoff space. �

Corollary 3.4. In a maximal Tychonoff space (X, τ), for every proper non-
empty open set A, cl(A) is maximal Tychonoff.

Proof. As every proper nonempty open set contains no isolated points, the
proof follows from Theorem 3.3. �

Corollary 3.5. A topological space (X, τ) is maximal Tychonoff if and only
if every nonempty open subset is maximal Tychonoff.

Proof. The proof follows from Corollary 3.4. �
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