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THE STABILITY OF A GENERALIZED
AFFINE FUNCTIONAL EQUATION
IN FUZZY NORMED SPACES

M. Mursaleen and Khursheed J. Ansari

ABSTRACT. We obtain the general solution of the following functional equation

flkx1+xo+- - Fxp) + f(z1 + koot +ap) +-- -+ f(zr +x2+ -+ kay)
+ f(@1) + f(w2) + -+ o) = 2kf(z1 + 22+ -+ +21), k22
We establish the Hyers—Ulam—Rassias stability of the above functional equa-
tion in the fuzzy normed spaces. More precisely, we show under suitable con-
ditions that a fuzzy g-almost affine mapping can be approximated by an affine
mapping. Further, we determine the stability of same functional equation by
using fixed point alternative method in fuzzy normed spaces.

1. Introduction

In modelling applied problems only partial informations may be known (or)
there may be a degree of uncertainty in the parameters used in the model or some
measurements may be imprecise. Due to such features, we are tempted to consider
the study of functional equations in the fuzzy settings. For the last 40 years, the
fuzzy theory has become a very active area of research and a lot of development
has been made in the theory of fuzzy sets [1] to find the fuzzy analogues of the
classical set theory. This branch finds a wide range of applications in the field of
science and engineering. Katsaras [2] introduced an idea of fuzzy norm on a linear
space in 1984. In [3], the authors study the stability problems in fuzzy Banach
spaces. In [4], Felbin introduced an alternative definition of a fuzzy norm on a
linear topological structure of a fuzzy normed linear spaces. Papers [5}, [6), [7] are
good survey papers, in which results and history on stability are given.

In 1940, Ulam [8] raised a question concerning the stability of group homo-
morphism as follows: Let G; be a group and G2 a metric group with the metric
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164 MURSALEEN AND ANSARI

d(.,.). Given € > 0, does there exist any § > 0 such that, if a function f : G; — G2
satisfies the inequality

d(f(l’y), f(m)f(y)) < ¢ for all T,y € Gla

then there exists a homomorphism h : Gy — G5 with
d(f(z),H(z)) <eforall z € G17

The concept of stability for a functional equation arises when we replace the func-
tional equation by an inequality which acts as a perturbation of the equation. In
1941, the case of approximately additive mappings was solved by Hyers [9] under
the assumption that G5 is a Banach space. In 1978, a generalized version of the
theorem of Hyers for approximately linear mapping was given by Rassias [10]. He
proved that for a mapping f : E; — Fs such that f(tx) is continuous in ¢ € R and
for each fixed = € E; assume that there exists a constant € > 0 and p € [0,1) with

(1.1) I fl@+y) = fl@)=f) <= 7+ Ty [I7)
x,y € Fy, then there exists a unique R-Linear mapping 7' : Ey — FE5 such that
2e

If(@) =T(@) I< 5= = | (= € Ev).

The result of Rassias has influenced the development of what is now called the
Hyers—Ulam—Rassias stability theory for functional equations. In 1994, a general-
ization of Rassias’ theorem was obtained by Gavruta [11] by replacing the bound
e(||z||” + ||y||P) by a general control function ¢(x,y). During the last decades, the
stability problems of several functional equations have been extensively investigated
by a number of authors (e.g. [12] etc.). In 1982-1989, Rassias [13], 14] replaced
the sum which appeared on the right-hand side of equation ([II]) by the product of
powers of norms.

In 2003, Radu [15] proposed a new method, successively developed in [16],
to obtain the existence of the exact solutions and the error estimations, based on
the fixed point alternative method. Subsequently, these results were generalized
by Mihet [17]. Recently, Cadariu et al [18] studied the generalized Hyers—Ulam
stability by using the direct method as well as the fixed point method for the affine
type functional equation

fRx4+y)+ fla+2y)+ f(x)+ f(y) =4f(x +y), for all z,y € G.

We obtain the general solution of the functional equation

(1.2)  flkri+ 2o+ 4 xp) + f(er+kro+- -+ ap) + -+ fler+ 22+ +Eay)
+ flwr) + flwe) + -+ flaw) =2kf (e + a2+ +an), k22

where f : X — Y, X and Y are normed spaces. Then, we establish the fuzzy Hyers—
Ulam—Rassias stability of the above functional equation and also we approximate
a fuzzy ¢-almost affine mapping by an affine mapping under suitable conditions.
Further, we determine the stability of functional equation (I2)) by using fixed point
alternative method in fuzzy normed spaces.
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2. Preliminary notes

Before we proceed to the main results, we will give some definitions and ex-
amples to illustrate the idea of fuzzy norm. Quite recently, the stability problem
for the Jensen functional equation, additive functional equation, Pexiderized qua-
dratic functional equation, cubic functional equation and mixed type additive cubic
functional equations have been considered in [19]—[27].

DEFINITION 2.1. Let X be a real linear space. A mapping N : X x R — [0, 1]
(the so-called fuzzy subset) is said to be a fuzzy norm on X if for all z,y € X and
all s, t € R,

(N1) N(z,t) =0 for t < O0;

N(z,.) is a nondecreasing function on R and lim;_, o N(z,t) = 1;

Ng) for z # 0, N(z,.) is continuous on R.
The pair (X, N) is called a fuzzy normed linear space. One may regard N(z,t) as
the truth value of the statement that the norm of x is less than or equal to the real
number .

EXAMPLE 2.1. Let (X, |.||) be a normed linear space. One can easily verify
that for each p > 0,

t .
Np(x’t): m7 t>0, xGX,
0, t<0, v€X

is a fuzzy norm on X.

ExXAMPLE 2.2. Let (X, ||.||) be a normed linear space. The mapping N : X x
R — [0, 1] defined by
2 —|lz||? .
N(a,t) = 4 et Nl
0, t< |l

is a fuzzy norm on X.

DEFINITION 2.2. Let (X, N) be a fuzzy normed linear space. A sequence {z,}

in X is said to be convergent if there exists an x € X such that lim N(z,—z,t) =1
n—oo

for all ¢ > 0. In this case,  is called the limit of the sequence {z,,} and we denote
it by N-limy, 00 N(2p, — 2,t) = .

DEFINITION 2.3. Let (X, N) be a fuzzy normed linear space. A sequence {z,}
in X is said to be Cauchy if for each € > 0 and each § > 0 there exists an ng € N
such that N (2, —zpn,0) > 1 —¢€ (m,n = nyp).

It is well known that every convergent sequence in a fuzzy normed linear space
is a Cauchy sequence. If each Cauchy sequence is convergent, then the fuzzy norm
is said to be complete and the fuzzy normed vector space is called fuzzy Banach
space.
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The remaining part of the paper is organized as follows: we discuss the gen-
eral solution of functional equation (L2 in Subection 2.1. In Subsection 2.2 we
investigate the stability of functional equation ([2)) in fuzzy normed spaces and
we show that, under suitable conditions, a fuzzy g-almost affine mapping can be
approximated by an affine mapping. In Section 3 we prove some fuzzy stability
results for functional equation (L2)) via fixed point alternative method.

Now we proceed to find the general solution of functional equation (L.2).

2.1. Solution. We begin with the following theorem.

THEOREM 2.1. A mapping f: X — Y, where X and Y are normed spaces, is
a solution of functional equation (L2) if and only if it is an affine mapping (i.e.,
it is the sum of a constant and an additive function).

PROOF. We can easily see that any affine function f is a solution of equation
([C2). Conversely, we have two cases:
Case 1: f(0) = 0. If we take o = 23 = -+ = ) = —x; and finally replacing
21 with z in ([2]), we obtain
(2.1) 2f(z)+ (E— 1 f(B—2k)x)+ (k—1)f(—x) =2kf((2— k)x), for all z € X.
Again replacing x7 with z and putting o = 23 = -+ =z, = 0 in (L2), we obtain
(2.2) fkz) = kf(x), for all z € X.
By @2I) and ([Z2]), we have f(—z) = —f(x), for all z € X. It results that f is an
odd mapping. Take x4 = 25 = --- = 2 = 0 in (), we have
f(kxl + x9 + Ig) + f(x1 + kxo + $3) + f(x1 + o + kwg) + f(I1) + f(IQ) + f(Is)
= (k+3)f(z1 4+ z2 + x3).
Replace 3 by —x5 in the last equation, we get
(2.3) f(z1+ (k= Dzo) + f(21 + (L = k)z2) = 2f(z1).
If we replace 1 and x5 by “T'H’ and %, respectively, in (Z3) and using (Z2),
we have f(u+v) = f(u) + f(v), for all u,v € X. So, f is an additive mapping.
Case 2: General case. Let us consider the function g(z) := f(x) — f(0). It is
clear that g(0) = 0 and f(x) = g(x) + f(0). Replacing f in (L2, it results
glkzy + @2+ -+ ap) + g(ar +hra + - +ap) + oo+ glan + a2+ -+ kag)
+g(@1) +g(w2) + -+ g(zx) = 2kg(x1 + @2 + -+ 21),

for all z1,xo,...,2; € X. Taking into account that ¢(0) = 0, from Case 1, we
obtain that ¢ is an additive mapping, hence f(z) = g(x)+ f(0) is an affine function.
(]

2.2. Fuzzy stability. For a given mapping f : X — Y, let us denote

Df(z1,xo,...,x5) = flkx1 + 22+ -+ a) + f(x1 + ks + - +ap) + -+
+ f(@1+ 22+ +kag) + fzn) + f(o2) + -+ fae) — 2k f(z1 + a2+ -+ ap).
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2.2.1. Fuzzy Hyers—Ulam—Rassias stability: non-uniform version. From now
on X* will denote X x X x --- x X (k times).

THEOREM 2.2. Let X be a linear space and (Z,N') a fuzzy normed space.
Let ¢ : X* — Z be a mapping such that for some a # 0 with 0 < a < k we
have N'(p(kx,0,0,...,0),t) > N'(ap(z,0,0,...,0),t) for all z € X, t > 0 and
lim, oo N'(@(k™x1, k™o, ... k"x), k"t) = 1, for all x1,x9,...,2r € X and all
t > 0. Suppose that (Y, N) is a fuzzy Banach space and an odd mapping f : X =Y
satisfies the inequality

(24) N(Df(l’l,l‘g, cee 7xk)7t) =2 N/((p(l‘l,l'Q, v ,I]L‘k),t)

for all x1,xa, ...,z € X and all t > 0. Then the limit A(x) = N-lim f(::z) exists
n—oo
for all x € X and the mapping A : X =Y is the unique affine mapping satisfying

(2.5) N(f(z) — A(z) — f(0),t) = N'(¢(z,0,0,...,0), (k — a)t)
forallxz € X and all t > 0.

PROOF. Letting 9 = 23 = --- = x;, = 0 and replacing x1 by x in (Z4]), we get

(2.6) N(f(kx) = kf(z) + (k = 1)£(0),) = N'(¢(x,0,0,...,0),1)

for all z € X and all t > 0. Let g(z) := f(xz) — f(0) for all x € X. Then (Z.6)
implies N(g(kx) — kg(z),t) = N'(¢(x,0,0,...,0),t). Replacing x by k"z in the
last inequality, we obtain

N(g(k"'z) — kg(k"x),t) > N'(o(k"2,0,0,...,0),1)

g(k" ) g(k"x) ¢ / t
_ > —
N(fes =) = N (0(@,0,0,...,0), —)
g(k"ttx)  g(k"z) o™t
(2.7) V(T - S o) 2 NV e(@.0,0,..,0),)
for all z € X and all t > 0. It follows from
g(k"a) g 1z)  g(kx)
kn Z Litl T kg
and (Z7) that
n—1 ; n—1 ; n—1
g(k™x) ot g(kitir) kjsc
(28) N( kn - g(l’), Z Li+1 =N Li+1 - ) Z _]—‘,—1
Jj=0 j=0 j=0
N g ttz)  g(Wx) o't /
>m1nU N k/’j+1 - k’j ’k/’j+1 2N((p(l‘,0,0,,0),t)

for all z € X and all t > 0. Replacing « by k™z in (Z8), we get

n—1 ;
g(k"tmx)  g(k™zx) alt , t
N( Lntm - Ekm 7; k’j+m+1) > N @(maoaoa"'vo)aa_m
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and so

fen+m km ki+1

n+m m st i
N(g(k 0 _ gli"a) "3 a._’f)w'(so(x,o,o,---,oxw

j=m
o) g(km) t
(2.9) N( . ,t] >N’ (p(x,o,o,...,O),W

j=m ki+1

forall x € X, ¢t > 0 and m,n > 0. Since 0 < a < k and Z;io(%)j < 00,
g(k"x)
k’IL

the Cauchy criterion for convergence and (N5) imply that { } is a Cauchy
sequence in (Y, N). Since (Y, N) is a fuzzy Banach space, this sequence converges
to some point A(x) € Y. Hence, we can define a mapping A : X — Y by A(z) =
N-lim,,_, 00 g(inx) = N-lim,, 00 f(’;nx) for all z € X, namely. Since f is odd, A is
odd. Letting m = 0 in ([29]), we get

g(k"r) ’ t
N< g(l’),t)}N @(maoaoa"'vo)af .
K Yico

Taking the limit as n — oo and using (Ng), we get

' p(a, _
N(A(z) — >N (cp 0,0,...,0), 5=, k“—+)
/(cp(:c, 0; 07 RS O)a (k - a)t)
N(f(z) — A(z) = £(0),t) = N'(¢(2,0,0,...,0), (k — a)t)

for all z € X and all t > 0. Now we claim that A is affine. Replacing 1, x2, ...,k
by k"x1, k"xa, ..., k™, respectively, in (Z4]), we get

1
N(ﬁpf(k”xl,k"xg, N .,k":ck),t) > N'(p(K "z, ks, . .., K 21.), k™)
for all z1,xs,...,2, € X and all ¢ > 0. Since
lim N'(p(k™x1, k™22, .., k" xy), k"t) =
n—oo

A satisfies functional equation ([2). Hence A is affine. To prove the uniqueness of
A, let A’ : X — Y be another affine mapping satisfying (23). Fix « € X. Clearly
A(k"x) = k" A(x) and A'(k"x) = k" A'(x) for all x € X and all n € N. Tt follows
from (23) that

N(AG) - '), 0) = (2B 2D )

kv kn
- min {N(A(::x) B g(/;:x),%), N(g(lzzx) B A'(::x)7 %)}
> Nl(go(knﬂ?,o;oa“"o)v M) > N’(gp(:ﬂ,0,0,...,@,%ﬂ)
k" (k—a)

for all x € X and all ¢ > 0. Since lim = 00, we obtain
n—oo

20

lim N’(ap(x,O,O,...,O),M) —1.

n—00 2a™
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Thus N(A(z) — A'(x), t) =1forall z € X and all ¢t > 0, and so A(zx) = A'(z). O

ExAMPLE 2.3. Let X be a normed space and let N and N’ be the fuzzy norms
on X and R, respectively, defined in Example [Z1] when p = 1. Let ¢ : [0,00) —
(0,00) be a function such that ¥ (kr) < ay(r) for all r > 0, where 0 < a < k.
Define

o(z1, 2, ..., xk) = Y(||kxr + 22 + - + 2k )
+Y(||oy + ko 4+ ap]) + -+ (| F 20+ -+ k)
+ () +(l|z2ll) + - -+ D(llzkll) — 2k([|o1 + 22 + - - + 21]])

for each x1,x9,...,2p € X. Let f(0) = zo(say) € X be a fixed unit vector and
define f: X — X by f(z) = = + ¢¥(||z||)xo. Then for each x1,zo,...,zr € X and
t > 0, we have N(Df(x1,22,...,2x),t) = N'(p(x1,22,...,2k),t). Moreover, for
each x1,x3,...,xr € X and t > 0, we have
t
~ t+p(kx,0,...,0)
t
>
t+ ap(z,0,...,0)

N'(p(kz,0,....,0), )

= N'(ap(x,0,...,0),t).

Therefore, by Theorem [2.2] There exists a unique affine mapping A : X — X such
that for each x € X and t > 0,

N(f(x) — A(z) = £(0),t) > N'(¢(z,0,...,0), (k — a)t).
2.2.2. Fuzzy Hyers—Ulam—Rassias stability: uniform version.

THEOREM 2.3. Let X be a linear space and (Y, N) a fuzzy Banach space. Let
©: X¥ —1[0,00) be a function such that

— 1
(2.10) P(x1, T2, .., xK) = Z k—nga(k”:nl, E"za, ... k"xp) < 00

n=0

for all x1,x9,...,x0, € X. Let f : X — Y be a uniformly approzimately affine
mapping with respect to ¢ in the sense that

(2.11) lim N(Df(x1,x2,...,2k), to(x1, 22, ..., 25)) =1
t— o0
uniformly on X x X x -+ x X (k-times). Then A(x) := N-lim % forallz e X
n—oo
exists and defines an affine mapping A : X — Y such that if for some a >0, § >0
(2.12) N(Df(x1,x2,...,25),00(x1, 22, ...,25)) > «

for all x1,zo,... 2 € X, then N(f(z) — A(x) — f(O),%@(0,0,...,O,:c)) > « for
allz € X.

PROOF. Let & > 0; by ([2I1) we can find ¢ > 0 such that
(2.13) N(Df(x1,x2,...,x8), to(x1, 22, ..., 25)) 21 —¢
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for all x1,x2,...,2, € X and all t > to. Let g(x) := f(x) — £(0). From (ZIJ), we
have

(2.14) N(Dg(z1,x2,...,2k), to(x1, 22, ..., 25)) = 1 —¢

for all x1,xs,...,x2, € X and all ¢t > ty. By induction on n, we will show that
(2.15) N(g(k"z) — kg Z kTl 0,kMx)) > 1—¢
forall x € X, all t > tg and n € N. Putting 1 = x3 = -+ = xx—1 = 0 and for our

convenience replace zy by z in (ZI4), we get [210) for n = 1. Let (ZI3)) hold for
some positive integers n. Then

N (g(k™+1a) = kg ( Z kMo 0, k"z))

>min{N(g(k”+1 ) — kg(k"x), t¢(0,0,...,0,k")),

N(kg(k"z) — k" g(z),t 3 k"™ L0, k™ ))}

m=0

>min{l —¢,1—-¢} =1—c¢.

This completes the induction argument. Let ¢ = ¢ty and put n = p. Then by
replacing z with k™2 in (ZI5), we obtain

p—1
N(g(k"+px) — kPg(k"x),to Z kP=m=1(0,0,...,0, k:"+mx)> >1—¢
m=0
n+p n p—1
(2.16) N(g(znﬂx) _ g(’;nx),to Z k= HmE 00,0, . ,O,k:"+mx)> >1-¢

for all integers n > 0, p > 0. The convergence of (ZI0) and the equation

n+p 1

p—1
> k00,0, ,0, k")) Z k~™p(0,0,...,0, k™)

guarantees that for given § > 0, there exists ng € N such that

n+p 1

Z k~"9(0,0,...,0,k™x) < 6

for all n > ng and p > 0. It follows from (ZIG]) that

n+p$ 7o
(2.17) N(Q(Zﬂp ) g(/]zn ). 5)

—1

gkt g(k"2) | R~ | —(nbmen) ntm
2( kn+p - kn ,tOZk ()0(0507"'707k $)>>1—€

m=0
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gm)

for each n > ng and all p > 0. Hence {#7=} is a Cauchy sequence in Y. Since
Y is a fuzzy Banach space, this sequence converges to some A(z) €Y. Hence we

can define a mapping A : X — Y by A(z) := N-lim % = N-lim f(k , for all
n—oo n—oo
z € X namely. For each t > 0 and x € X

lim N(A(ac) - f(knm),t) =1

n—o00 kn
Now, let x1,22,...,2x € X. Fixt > 0and 0 < € < 1. Since hm F o(k™x,
k™xo,..., k"xy) = 0, there is some ny > ng such that

N(DA(xlaz% .- .,.’L’k),t)

mm{ (A (kes tn 4ot 2) f(E™(kxy —i—ii—i—...—i—xk)), 2k12>’
N(A T+ kg + -+ xp) — [0 +kii+m+xk))’ th+2>’ V
(A st k) fE™ (x4 Jr:czj...Jrkzk))’%iQ ’
(A = xl)’2k12)’
N (4fz2) knm)’ 2kt+2)"' N (4Ger) - f(lj;:ck)’ 2k:t+2>’
N(A ot +xk)_f(k”(x1 +xk2n+.. +Ik))’(2kt+2))’

N(Df(k”xl, Kz, ... k™), 2:—1&2) }

The first (2k + 1) terms on the right-hand side of the above inequality tend to 1 as
n — oo and the last term is greater than N(Df(k"x1, k"o, ..., k"xk), top(k" 21,
k"xa, ..., k"xy)), i.e., by (ZI3), greater than or equal to 1 —e. Thus N(DA(x1,
Zo,...,T),t) =2 1 —cecforallt > 0and 0 < ¢ < 1. It follows that N(DA(x1,
Zay...,2E),t) =1 for all t > 0 and by (Nz2), we have DA(z1,22,...,2) =1, i.e.,

Alkzy +xo+ -+ ag) + A(zr + kao + - 4 a) + -+ Al(xy + 20+ -+ - + k)
+A(x1) + A(ze) + -+ -+ A(xg) = 2kA(x1 + 2 + -+ - + ).

To end the proof, let for some positive o and §, (ZI2) hold. Let

on(T1, T2, ..., 2) 1= Z E=m Dok, kM, . . k™)

for all x1,x9,...,zr € X. Let x € X. By a similar discussion as in the begining of
the proof, we can obtain from (212

(2.18) N(g(k"z) = k"g(x),6 > k"™ D,(0,0,...,0,k™x)) >0
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for all n € N. Let s > 0. We have
N(g(x) — A(z),5¢,(0,0,...,0,2) + s)

> min {N(g(m) — g(]k;:c) ,00,(0,0,...,0, :c)), N(g(:zx) — A(x), s) }

Combining (2.I7), (ZI8) and the fact that

i V(a0 = i N ) =1,

we obtain that N(g(z) — A(z),d¢n(0,0,...,0,2) + s) > « for n large enough. By
the (upper semi) continuity of the real function N(g(z) — A(z),.), we obtain that

N(g(:c) — A(x), %@(0,0, o5 0,2) 4+ s) > a.

Taking the limit as s — 0, we conclude that

N(g(l’) - A(LL‘), %@(ana e .,0,1’)) Z
N () — Aw) ~ F0), 26(0.0.....0.2)) > . O

THEOREM 2.4. Let X be a linear space and (Y, N) a fuzzy Banach space. Let
o : Xk = [0,00) be a function satisfying @I0). Let f : X — Y be a uniformly
approzimately affine mapping with respect to w. Then there is a unique affine
mapping A: X — Y such that

(2.19) tliglo N(f(z)— A(z) — £(0),t¢(0,0,...,0,2)) =1
uniformly on X.

PROOF. The existence of uniform limit (ZI9) immediately follows from The-
orem 2.3l It remains to prove the uniqueness assertion. Let A’ be another affine
mapping satisfying [ZI9). Fix ¢ > 0. Given ¢ > 0, by (ZTI9) for A and A’, we can
find some tg > 0 such that

N(g(l’) 7"4(1')) %95(0;0770733)) 2 1 - g,

N (g(2) = (@), 550,0,...,0,2)) > 1<

for all z € X and all ¢t > t¢. Fix some z € X and find some integer ng such that
to > kT™(0,0,...,0,k™x) < £, for all n > ng. Since

o0 1 o0
> ET9(0,0,...,0,k"x) = i Z k=M= p(0,0,...,0, K™ (k"x))
o

kiiki ..,O,kj(k”:c)):k—lncﬁ(0,0,...,O,k”z),
we have
N(A'(z) — Az),¢) > min{N(g(:zx) ~ Ala), g) N(A’(m) . g(ZZ:c) , g)}
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(A2 (A0
—mm{ (g ),%), N(A'(k”x) —g(k"m),%)}
mm{N(g ), k"o Z k™ ,0,k™x ))

N(A’ ). k"o Z o 0.k)) }
(o

— min {N g ),t0<,5(0,0,...,0,k:"x)),
( g(k"x),t0(0,0,. O,kmm))} >1—e.
It follows that N(A'(x ) — A(z), ¢) =1, for all ¢ > 0. Thus A(x) = A'(x) for all
z e X. (]
Considering the control function p(x1,z2,...,zx) = e(||z1]|P + ||l22||P + -+ +

|zx]|P) for some € > 0, we obtain the following:

COROLLARY 2.1. Let X be a normed linear space, (Y, N) a fuzzy Banach space,
€20, and 0 < p<1. Suppose that f : X — Y is a function such that

lim N(Df(w1, 2, ax), te([za]]” + [lz2l|” + - - + [lzx ) =

n—oo

uniformly on X*. Then there is a unique affine mapping A: X — Y such that

lim N (f(z) - A(x) - £(0),

t—o0

etk!=P||z||P _
El-r —1 ) o
uniformly on X.

ExAMPLE 2.4. Let X be a Banach space, xp € X, 0 < p < 1 and let a and
B be real numbers. Put f(x) := az + B||z||Pxo (z € X) and p(z1,x2,...,T) =

|z1]|P + ||z2||P 4+ - - - + ||z ||P for each x1,x2,...,2 € X. Then
1
o(x1,m2,...,18) = k—n@(kn$17k"$2,---,k"$k)
=0
_ TPl P [l P 4 - A flael]P)

kt-r —1
Moreover, for each fuzzy norm N on X, we have
N(Df(:cl,:ng,...,:Ek),tcp(xl,xg,...,xk))
= N(Bwo(|[kar + w2 + - + ||
+ o1+ kre + - wgl|P o+l e+ R
lwall? + ezl + - -+ lewll” = 2k[ler + 22 + - + 2 ]|”),
(2l + llz2llP + - + llzl”),
where x1,z2,...,zr € X, t > 0. So that
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N(Df(z1,22,...,2k), to(@1, 22, ., 24)) 2 N(ﬂfﬂo, m)

(1,29, -z, € X, t > 0).

Therefore, lim; oo N(Df(x1,22,...,21), to(x1,T2,...,2%)) = 1 uniformly on X*.
Hence the conditions of Corollary 2] are fulfilled.

2.2.3. Approximation of fuzzy almost affine mapping. Let f be a function from
a fuzzy normed space (X, N') into a fuzzy Banach space (Y, N) and ¢ # 1. Then a
function f is called a fuzzy q-almost affine function, if

(2.20) N(f(kxy + a2+ -+ a)
+ flxr+ koo + - tap) o+ flzr + o2+ o+ Ray)
+ flza) + fo) + -+ flak)
—2kf(z1+ a2+ +ap), b1 +la+ o+ tr)
> min{N'(z1, t]), N'(x2, t3),..., N'(zx,t])}
for all x1,xa,...,2; € X and all 1, ta,..., tx € (0,00).
The following result gives a Hyers—Ulam—Rassias stability of the affine equation
flhxy +ao+ -+ o)+ fler + kg + - Fxp) + -+ f(or + 224+ -+ + kay)
+ f@1) + f(@2) + -+ flan) =2kf (21 + a2+ ap), k22
THEOREM 2.5. Let ¢ > 1 and f be a fuzzy g-almost affine function from a fuzzy

normed space (X, N') into a fuzzy Banach space (Y,N). Then there is a unique
affine function A : X —'Y such that for each x € X,

(k17 — 1)

(2.21) N(f(z) — A(z) — £(0),£) = N’ (ac t")(x € X,t>0)

where p = %.

PROOF. Letting 9 = 23 = --- =2y = 0and t; =ty = --- =t =t and
replacing z; by x, in (220), we get
(2.22) N(f(kx) —kf(z)+ (k —1)f(0),kt) > N'(z, t7)

for all z € X and all ¢ > 0. Let g(z) := f(x) — f(0). Then (Z22)) implies that
N(g(kx) — kg(x),kt) > N'(z,t?). Replacing = by k™z in the last inequality, we
obtain N(g(k"*t'z) — kg(k™x), kt) > N'(k™x,t9). It follows that

N(g(k"'2) — kg(k™2), k5 H'¢0) > N'(z, )
(x € X,n>0,¢t>0), whence

g(k" ')
¥
g(k"x)  g(k"x)

N( knJrl - kn

— g(k"z), th) > N'(z,1)

KO > N (2, 1)
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where p = %. If n>m >0, then

(2.23) N<g(knx) 79(2:21”)’ zn: kj(pntp)

k.n
j=m+1
—~ (g(kiz) gk~ ') i)
>N< > ( Mo Rl ), > W
j=m+1 j=m+1
. (9K x) gk ) i(p—1) /
Emm.Uﬂ{N( S kI tp) > N'(z,t)
j=m

xz € X, t>0.Let ¢ >0 and ¢ be given. Since lim,_,o N'(z,t) = 1, there exists
a tg > 0 such that N'(z,t9) > 1 —e. Fix a t > ty9. The convergence of the series
ZZOZI knP=D¢P guarantees that there exists an ng such that for each n > m > no,
the inequality Z?:m 1k (P=1)¢P < ¢ holds. Tt follows that

N(g(k":ﬂ) B g(kmx)’c) N N<g(k”=’ﬂ) _g(kma) zn: kj(p—ntg)

km k™ k™ k™
j=m+1

> N'(z,t0) 2 1—e.

Hence {%} is a Cauchy sequence in (Y, N). Since (Y, N) is a fuzzy Banach
space, this sequence converges to some point A(x) € Y. Hence, we can define
a mapping A : X — Y by A(z) = Nlim, g(Z:x) = N-lim,, 00 % for all
x € X. Since f is odd, A is odd. Moreover, if we put m = 0 in (Z23)), then we get

g(k"x) i)
N< kn *g(l‘),j;k']p tr >N/(:Eat)'

Therefore,
g(k"z) P / t
N( . g(x),t ) >Nz, 72221 i)
g(k"x) / t
. - = ) :
229 C G E ( (T o)’

for all x € X, t > 0. Next we will show that A is affine. Let x1,2z9,..., 2, € X,
then we have

N(DA(xl,xg, ce ,.Z'k),t)

>min{N(A(kl‘1+:L'2+...+zk)if(k (kx1+x2+...+zk)) t )7

kn "2k +2
k™(x1 + ko +---+x t
N(A(x1+kfﬂ2+~..+l'k)*f( (o k‘i k))a2k+2)a~ )

f(k”(xl-i-xz-i-"""kxk)) t ) .

N(A _
(A + 22+ k) o "2+ 2
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GV f(k ) ¢
N(A(xz1) — N(A —
( K 2k+2)’ ((m) K ’2k+2)’
knl‘k) t
N(A b))
2kf(E™(x1 +z2 4+ -+ 1)) t
( o f2kA(:c1+x2+~~+:ck),2k+2),

N(Df(k;”xl,k”xg,...,k”xk, 2:?9)}

The first (2k + 1) terms on the right-hand side of the above inequality tend to 1 as
n — oo and the last term, by (2Z20)) is greater than or equal to

n—1 n—1 n—1
min{N<knx1’<2kk+;)q)’N<knx2’<§k+;)q)"" ’N<knx’“’<§k+;)q)}

. nla— t q n(a— t q
:mln{N<x1’k : 1)<2k(k+1)) )’N(”’k “ 1)<2k;(k:+1)) )

N (et () )}

which tends to 1 as n — oo (since g > 1). Therefore

N(A(kxy + 2o+ -+ ap)+ Al + ko + -+ ap) + -+ Alxg + a0+ -+ - + k)
+A(x1) + A(xe) + - - + A(zg) — 2kA(x1 + 22 + -+ -+ a3),8) =1

for all x1,x3,...,x2, € X and ¢t > 0. This means that
Alkry +xo 4+ ap) + Ay + kg + - o) + -+ Ay + 22 + - + kay)
+A(x1) + A(za) + - - + Axg) = 2kA(z1 + 22 + -+ - + 1)

for all x1,29,...,2; € X and ¢t > 0. Next, we approximate the difference between
f and A in a fuzzy sense. For every « € X and ¢t > 0, by (Z24)), for large enough
n, we have

Therefore

N(A(@) - g(2),t) > N, wﬂ)
N(f(2) = A(2) = £(0),6) > N'(a, wtq)

forallz € X, ¢ > 0. To prove the uniqueness of A, let A’ : X — Y be another affine
mapping satisfying (Z21I)). Fix x € X, clearly A(k"x) = k"A(x) and A'(k"x) =
k" A'(z) for all z € X and n € N. It follows from (N4) and (2.2I) that

N(A(z) — A'(2),t) = N(A(k"z) — A'(k"z), k"?)
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> min {N(A’(k”x) —g(k"x), %),N(g(knx) — A(k"z), ﬁ)}

2
1-p _ 1\q n 1-p _ 1)q nag
> V(2. u(k_)qtq) - /(. uk_tq)
2 2 2.2m 24
for each n € N. Due to ¢ > 1, we have lim,, N’(ac, (kl;%;l)q k;: tq) =1 for each
x € X and ¢t > 0. Therefore A(x) = A'(x). O

REMARK 2.1. If N(f(z) — A(z) — f(0),.) is assumed to be right continuous
at each point of (0,00), then we get a better fuzzy approximation than ([Z2I)) as
follows.

N(f(z) = A(z) = £(0),s +1) = N(A(z) — g(x),5 + 1)
> min {N(A(ac) _ gk , s) , N(g(k”:c) - g(x),t) }

Letting s — 0, we infer

N(F(@) — AG) 10, > N(EEZ ). 0)

(kl*p — 1)(1 q1q9\ _ AT/ (kl*p — 1)(1 q

>N’<:c,

REMARK 2.2. Consider a mapping f : X — Y satisfying (220) for all x,
To,...,Tr € X and a real number ¢ < 0. Take any ¢ > 0. If we choose a real
number s with 0 < ks < t, then we have

N(Df(x1,xa,...,xk),t) =2 N(Df(x1,22,...,2%), kS)
> min{N'(z1, s9), N'(z2,59),..., N'(zx, s7)}
for all z1,xs,...,x, € X. Since ¢ < 0, we have Slir& s? = oco. This implies that
i V(e = Jg, V) ==l N =
and so N(Df(z1,xa,...,25),t) = 1forall zy,za,..., 21 € X and t > 0. By (Na), it
allows us to get D f(z1,22,...,2,) = 0 for all 1,29,...,2, € X. In other words, f

is itself an affine mapping if f is a fuzzy g-almost affine mapping for the case ¢ < 0.

REMARK 2.3. Using Hyer’s type sequence {k" f(;% )} one can get ‘dual’ version

of Theorem when ¢ < 1. The case where ¢ = 1 remains open.

3. Fuzzy stability via fixed point approach

In this section, we deal with the stability problem via the fixed point method
in fuzzy normed space. Before proceeding further, we should recall the following
results related to the concept of fixed point.

THEOREM 3.1 (Banach contraction principle). Let (X,d) be a complete gener-
alized metric space and consider a mapping J : X — X being a strictly contractive
mapping, i.e., d(Jx,Jy) < Ld(z,y), for all x,y € X for some (Lipschitz constant)
L < 1. Then
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(i) The mapping has one and only one fized point J(x*) = x*;
(ii) The fized point x* is globally attractive, that is lim, . J"x = x*, for any
starting point x € X;
(iii) One has the following estimation inequalities for all x € X andn > 0:
(a) d(J"x,x*) < L™d(x, x*)
(b) d(J"z,z*) g 1 d(Jnx, JV )
(¢) d(z,z*) < (Jac x).

THEOREM 3.2 (The alternative of fixed point [28]). Let (X,d) be a complete
generalized metric space and J: X — X a strictly contractive mapping with Lips-
chitz constant L < 1. Then for each v € X, either d(J"z, J" tx) = oo for all
n > 0, or there exists a positive integer ng such that d(J"z, J"x) < oo, for all
n = ng. If the second alternative holds, then

17

(i) the sequence {J™x} converges to a fized point y* of J;
(i) y* is the unique fized point of J in the setY = {y € X : d(J™z,y) < co};
(i) d(y,y") < Tpd(y, Jy)., for ally € Y.

Using the fixed point alternative, we can prove the Hyers—Ulam—Rassias sta-
bility in fuzzy normed spaces. First, we prove the following lemma which will be
used in our main result.

LEMMA 3.1. Let (Z,N') be a fuzzy normed space and o : X* — Z a function.
Let S={¢': X = Y;4'(0) =0} and define

d(g',h) =inf {p € R* : N(¢'(z) — h(z), ut) = N'(¢(,0,0,...,0), t),
forallz e X andt>0}
for allh € S. Then d is a complete generalized metric on S.
PRrOOF. Let ¢',h,k € S, d(¢',h) < (1 and d(h, k) < (5. Then
N(¢'(z) — h(x),1t) = N'(o(2,0,0,...,0),t) and
N(h(z) — k(z),¢at) = N'(¢(z,0,0,...,0),t)
for all x € X and ¢ > 0. Thus

N(g'(x) = k(x), Q1 + ¢2)t) = min{N(g'(x) — h(z), 1), N (h(z) — k(z), C2t)}

mi
N'(p(2,0,0,...,0),1)
for each z € X and ¢ > 0. By definition g(h,k) < {1 + (2. This proves the

triangle inequality for d. The rest of the proof can be done along the same lines as
in Lemma 2.1 [29]. O

WV \\/

THEOREM 3.3. Let X be a linear space and (Z,N') a fuzzy normed space. Sup-
pose that a function p : X* — Z satisfies p(kx1, kxo, ..., kry) = ap(z1, T2, .., 21)
for all x1,xa,...,2; € X and o # 0. Suppose that (Y, N) is a fuzzy Banach space
and f: X =Y is a mapping satisfying

(3.1) N(Df(z1,22,...,2x),t) = N'(p(x1, 22, ..., 2k), t)
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forallxy,xq,...,x € X and t > 0. If for some 0 < a < k
(3.2) N'(p(kx,0,...,0),t) = N'(ap(x,0,...,0),t), Vo € X and t >0

and limy, oo N'(p(k"x1, k"2, ..., k"xk), k™t) = 1, for all x1,xa,...,2r € X and
t > 0. Then there exists a unique affine mapping A : X — Y such that

N(f(z) — A(z) — f(0),t) = N'(¢o(2,0,...,0),(k—a)t), Vz € X and t > 0.
PROOF. Put 22 = z3 = --- = 0 and replacing x; by z in 1), we get
(3.3) N(f(kx) — kf(z) + (k —1)f(0),t) = N'(p(x,0,0,...,0),t)
for all x € X and all ¢ > 0. Let g(z) := f(x) — f(0). Then B3]) implies

N(Q(ZI) —g(x), %) > N'(¢(2,0,0,...,0),1).

Consider the set S = {¢': X — Y, ¢'(0) = 0} together with the mapping d defined
on S x S by

d(g',h) = inf{p € RT: N(¢'(z)—h(z), ut) = N'(¢(z,0,0,...,0),t),Vz € X, t > 0}.

It is known that (d, S) is a complete generalized metric space by Lemma B.Jl Now,
we define the linear mapping J : S — S such that J¢'(z) = %g’(kx). It is easy to
see that J is a strictly contractive self-mapping of S with the Lipschitz constant .
Indeed, let ¢’, h € S be given such that d(¢g’,h) = e. Then

N(¢'(z) — h(z),et) = N'(¢(z,0,...,0),t)
for all z € X and t > 0. Thus
N(Jg'(x) — Jh(z), %Et) = N(%g'(lm) - %h(kzx), %575)
= N(¢'(kx) — h(kx),act) > N'(p(kz,0,...,0), at).
It follows from (3.2)) that
N(Jg'(:c) — Jh(z), %st) > N'(ay(,0,...,0),at) = N'(¢(z,0,....,0),t)
for all z € X and t > 0. Therefore
d(g',h) = e = d(Jg', Jh) < %g.

This means that d(Jg’, Jh) < $d(g’, h), for all g’, h € S. Next, from

k
N o), @) > N0, 00, )
we have d(g, Jg) < % Using the fixed point alternative, we deduce the existence of
a fixed point of J, that is, there exists a mapping A : X — Y such that A is a fixed
point of J, i.e., kA(z) = A(kx), for all x € X. Moreover, we have d(J"g, A) — 0,
which implies

Ale) = Ntim 85 iy w Vo € X.

b
n—o00 n n—o00 n
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Also d(g,A) < ﬁd(g, Jg) implies d(g, A) < (kia). This implies that

t
N(A - 7) > N'(o(2,0,...,0),t
(@) = 9(x), Gy 2 V(0. 0),)
N(A(x) — g(x),t) = N'(p(x,0,...,0), (k — a)t)
forallz € X, ¢ > 0. Let z1,2xs,...,2, € X. Then
N(DA(z1,22,...,78),t) = N'(o(z1, 22, ..., 78),1).
Replacing z1, 2, ...,z by k" x1, k™29, . . ., k" x}), respectively, in the above inequal-
ity, we obtain
N(DA(k”:El, k"xa, ..., k"xy)
kn
for all 21, xa,...,2, € X, t > 0. Since li_>m N'(p(k™xy, k™xy, ... k"xy), k"t) = 1,
n (oo}

we conclude that A fulfills (T2).
The uniqueness of A follows from the fact that A is the unique fixed point of
J with the following property that there exists p € (0, 00) such that

N(A(z) — g(z), ut) = N'(¢(z,0,...,0),t)
N(f(z) = A(z) — £(0), ut) = N'((,0,...,0),t)
forallz € X and ¢t > 0. O

at) = N/(C,O(k'nl‘l, kana sy knmk)v knt)
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