
PUBLICATIONS DE L’INSTITUT MATHÉMATIQUE
Nouvelle série, tome 100(114) (2016), 299–304 DOI: 10.2298/PIM1614299Z

ABOUT A CONJECTURE

ON DIFFERENCE EQUATIONS IN

QUASIANALYTIC CARLEMAN CLASSES

Hicham Zoubeir

Abstract. We consider the difference equation
∑q

j=1
aj(x)ϕ(x+αj ) = χ(x)

where α1 < · · · < αq (q > 3) are given real constants, aj (j = 1, . . . , q) are
given holomorphic functions on a strip Rδ (δ > 0) such that a1 and aq vanish
nowhere on it, and χ is a function belonging to a quasianalytic Carleman class
CM {R}. We prove, under a growth condition on the functions aj , that the
difference equation above is solvable in CM {R}.

1. Introduction

Belitskii, Dyn’kin and Tkachenko in [1] formulated the following conjecture.

Conjecture. Let χ, aj, j = 1, . . . , q, be functions in a Carleman class CM {R}
such that a1 and aq nowhere vanish on R, and α1 < · · · < αq some real numbers.

Then the difference equation

(1.1)

q
∑

j=1

aj(x)ϕ(x + αj) = χ(x)

is solvable in the Carleman class CM {R}.

In that paper, the authors, relying on a result of decomposition in Carleman
classes, proved the conjecture in the particular cases where the coefficients aj are
constants or when the coefficients are variables with q = 2. They also suggested
that the same method could be used to show the solvability of equation (1.1) in
a quasianalytic Carleman class CM {R}, if we assume that the functions 1

a1
, 1

aq
,

a2

a1
, . . . ,

aq

a1
, a1

aq
, . . . ,

aq−1

aq
(q > 3) can be continued in a strip Rδ := {z ∈ C :

| Im(z)| < δ} as analytic functions increasing on Rδ, not too rapidly in infinity. As
an example of such coefficients, they mentioned the class of rational functions. Our
aim here is to give a precise meaning to this assertion, by proving that the result is
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true even if the functions 1
a1

, 1
aq

, a2

a1
, . . . ,

aq

a1
, a1

aq
, . . . ,

aq−1

aq
have more rapid increase

in infinity, provided that it is of the form exp(eC| Re(z)|) where C > 0 is a constant.

2. Notations, definitions and statement of the main result

We set for every ρ > 0, a > 0

Rρ := {z ∈ C : | Im(z)| < ρ}, R
±
ρ := {z ∈ Rρ : ± Re(z) > ρ}

Rρ,a := {z ∈ Rρ : | Re(z)| 6 a}

∆ρ := {z ∈ C : |z| < ρ}, ∆±
ρ := {z ∈ ∆ρ : ± Re(z) 6 0}

Γρ := {z ∈ C : |z| = ρ}, Γ±
ρ := {z ∈ Γρ : ± Re(z) 6 0}

For every nonempty subset V of C and every z ∈ C and n ∈ N
∗ we set

V (0) := V, V (n) := {u1 + · · · + un : uj ∈ V, j = 1, . . . , n}, n > 1

z + V := {z + u : u ∈ V }, z − V := {z − u : u ∈ V }

Denote by dm(ζ) the Lebesgue measure on C. Let S be a nonempty subset of
C. By O(S) we denote the set of holomorphic functions on some neighborhood of
S. Let F : U ⊂ C → C be a function of class C1 on an open subset U of C. For all
z ∈ U we set

∂F (z) :=
1

2

[∂F

∂x
(z) + i

∂F

∂y
(z)

]

;

∂ is called the operator of Cauchy–Riemann.
Let M := (Mn)n>0 be a sequence of strictly positive real numbers. The Carle-

man class CM {R} is the set of all functions f : R → C of class C∞ such that

‖f (n)‖∞,I 6 CIρn
I Mn, n ∈ N

for every compact interval I of R with some constants CI , ρI > 0. The Carleman
class CM {R} is said to be quasinalytic if every function f ∈ CM {R} such that
f (n)(u) = 0 for some u ∈ R and every n ∈ N is identically equal to 0. The
Carleman class CM {R} is called regular when the following conditions hold

( Mn+1

(n + 1)!

)2
6

Mn

n!

Mn+2

(n + 2)!
, n ∈ N

sup
n∈N

( Mn+1

(n + 1)Mn

)
1
n

< +∞,

lim
n→+∞

M
1
n

n = +∞

To the Carleman CM {R} we associate its weight HM defined by the following
relation

HM (x) := lim
n∈N

[Mn

n!
xn

]

, x > 0

In this paper, the following result will play a crucial role.



ABOUT A CONJECTURE ON DIFFERENCE EQUATIONS 301

Theorem 2.1. [3] We assume that the Carleman class CM {R} is regular. A

function f : R → C belongs to CM {R} if and only if there exists for every compact

interval I of R a compactly supported function F : C → C of class C1 such that

F is an extension to C of the restriction to I of the function f and satisfies the

following estimate

|∂F (z)| 6 AIHM (BI | Im(z)|), z ∈ C

where AI , BI > 0 are constants.

Throughout the paper, we assume that the Carleman class CM {R} is regular
and quasianalytic. Our main result is the following.

Theorem 2.2. Let q ∈ N∗ r {1, 2}, δ > 0, χ ∈ CM {R}, and aj ∈ O(Rδ)
(j = 1, . . . , q) such that a1 and aq nowhere vanish on Rδ. We assume that the

following growth condition holds

(2.1) sup
z∈Rδ

( q
∑

j=2

∣

∣

∣

aj(z)

a1(z)

∣

∣

∣
+

q−1
∑

j=1

∣

∣

∣

aj(z)

aq(z)

∣

∣

∣
+

1

|a1(z)|
+

1

|aq(z)|

)

e−eC| Re z|

< +∞

for a constant C > 0. Then difference equation (1.1) is solvable in the class CM {R}.

3. Proof of the main result

Let us first prove the following lemma.

Lemma 3.1. Given f ∈ CM {R}, C0 > 0 and ρ ∈
]

0; π
2C0

[

, there exist two

functions f± :
(

C r ∆±
ρ

)

∪ R → C which are holomorphic on C r
(

Γ±
ρ ∪ ∆±

ρ

)

,

whose restrictions to R belong to CM {R}, and such that the following conditions

hold

f(x) = f+(x) + f−(x), x ∈ [−ρ, ρ]

|f±(z)| 6 D0 exp
(

− cos (ρC0) eC0| Re(z)|
)

, z ∈ R
±
ρ

where D0 > 0 is a constant.

Proof. Since f belongs to CM {R}, there exists, according to Dyn’kin’s theo-
rem [3], a compactly supported function F : C → C of class C1 such that F is an
extension of the restriction of f to the interval [−ρ, ρ] and satisfies the following
estimate

|∂F (z)| 6 AHM (B| Im(z)|), z ∈ C

where A, B > 0 are constants. Following the same approach as that of [1, pp. 34,35],
[2, pp. 148–150], but using the Cauchy–Pompeiu formula on the disk ∆ρ, for the
function exp(eC0z + e−C0z)f(z), we show that the functions

f±(z) =
1

2iπ
exp(−eC0z − e−C0z)

∫

Γ±
ρ

exp(eC0ζ + e−C0ζ)F (ζ)

ζ − z
dζ

−
1

π
exp(−eC0z − e−C0z)

∫∫

∆±
ρ

exp(eC0ζ + e−C0ζ)∂F (ζ)

ζ − z
dm(ζ)

satisfy the required conditions. �
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Now we set

βj := αj − α1, j = 2, . . . , q, bj(z) := −
aj(z)

a1(z)
, z ∈ Rδ, j = 2, . . . , q

γj := αq − αj , j = 1, . . . , q − 1, cj(z) := −
aj(z)

aq(z)
, z ∈ Rδ, j = 1, . . . , q − 1

Let C1 > C
( βq

β2
+ γ1

γq−1

)

and δ0 ∈
]

0, min(δ, π
2C1

)
[

. Then according to the lemma

above, there exists a constant D1 > 0 and two functions χ± : (C r ∆±
δ0

) ∪ R → C

which are holomorphic on Cr(Γ±
δ0

∪∆±
δ0

), whose restrictions to R belong to CM {R},
and such that the following conditions hold

(3.1)
χ(x) = χ+(x) + χ−(x), x ∈ [−δ0, δ0],

|χ±(z)| 6 D1 exp
(

− cos(C1δ0)eC1| Re(z)|
)

, z ∈ R
±
δ0

.

Let (gn)n∈N and (hn)n∈N be the sequences of complex valued functions defined
on the strip Rδ0 by

g0(z) :=
χ+(z)

a1(z)
, gn+1(z) :=

q
∑

j=2

bj(z)gn(z + βj),

h0(z) :=
χ−(z)

aq(z)
, hn+1(z) :=

q−1
∑

j=1

cj(z)hn(z − γj).

It is clear that all the functions gn|R and hn|R belong to CM {R}.
Let us set

K1 := {βj : j = 2, . . . , q}, K2 := {γj : j = 1, . . . , q − 1}.

It follows from (2.1) that we have for every n ∈ N, z ∈ Rδ0

|gn+1(z)| 6 exp(LeC| Re(z)|) max
u∈z+K1

|gn(u)|,

|hn+1(z)| 6 exp(LeC| Re(z)|) max
u∈z−K2

|hn(u)|

where L > 1 is a constant. Then we have for all n ∈ N∗, z ∈ Rδ0

|gn(z)| 6 exp

(n−1
∑

j=0

LeC (| Re(z)|+jβq)
)

max
u∈z+K

(n)
1

|g0(u)|

6 exp
(

nLeC(| Re(z)|+nβq)) max
u∈z+K

(n)
1

|χ+(u)|,

|hn(z)| 6 exp

( n−1
∑

j=0

LeC(| Re(z)|+jγ1|)
)

max
u∈z−K

(n)
2

|h0(u)|

6 exp
(

nLeC(| Re(z)|+nγ1)) max
u∈z−K

(n)
2

|χ−(u)|.
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Let a > 0. There exists Na ∈ N∗ such that (β2 + γq−1)Na > a and

z + K
(n)
1 ⊂ R

+
δ0

, n > Na, z ∈ Rδ0,a,

z − K
(n)
2 ⊂ R

−
δ0

, n > Na, z ∈ Rδ0,a.

It follows then from (3.1) that we have for all n > Na, z ∈ Rδ0,a

max
u∈z+K

(n)
1

|χ+(u)| 6 D1 exp
(

− cos(C1δ0) exp
(

C1 min
u∈z+K

(n)
1

| Re(u)|
))

6 D1 exp
(

− cos(C1δ0)eC1(−a+nβ2)),

max
u∈z−K

(n)
1

|χ−(u)| 6 D1 exp
(

− cos(C1δ0) exp
(

C1 min
u∈z−K

(n)
1

| Re(u)|
))

6 D1 exp
(

− cos(C1δ0)eC1(−a+nγq−1)).

Consequently we have for all n > Na, z ∈ Rδ0,a

|gn(z)| 6 D1 exp
(

nLeC(a+nβq) − cos(C1δ0)eC1(−a+nβ2)),

|hn(z)| 6 D1 exp
(

nLeC(a+nγ1) − cos(C1δ0)eC1(−a+nγq−1)|
)

.

On the other hand we have

nLeC(a+nβq) = o
n→+∞

[

cos(C1δ0)eC1(−a+nβ2)],

nLeC(a+nγ1) = o
n→+∞

[

cos(C1δ0)eC1(−a+nγq−1)|
]

.

So, there exist real constants Da > 0 and Ea > 0 and an integer Pa > Na such
that the following inequalities hold

|gn(z)| 6 Da exp
(

− EaeC1(−a+nβ2)), z ∈ Rδ0,a, n > Pa,

|hn(z)| 6 Da exp
(

− EaeC1(−a+nγq−1)|
)

, z ∈ Rδ0,a, n > Pa.

It follows that the function series
∑

gn|Rδ0
and

∑

hn|Rδ0
are uniformly convergent

on every compact subset of Rδ0 and that the functions
∑+∞

n=Pa
gn and

∑+∞
n=Pa

hn

are holomorphic on Rδ0,a for every a > 0. Let G+ and G− be the sums of
∑

gn|Rδ0

and
∑

hn|Rδ0
, respectively. Since all the functions gn|R and hn|R belong to CM {R},

it follows that the functions g+ := G+|R and g− := G−|R belong to CM {R}.
Elementary computations show that

q
∑

j=1

aj(x) g+(x + αj) = χ+(x), x ∈ R,

q
∑

j=1

aj(x) g−(x + αj) = χ−(x), x ∈ R.

Then it follows from (3.1) that the function g := g+ + g− is a solution on the
interval [−δ0, δ0] of the difference equation (1.1). But the function

x 7→

q
∑

j=1

aj(x) g(x + αj) − χ(x)
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belongs to the quasianalytic Carleman class CM {R}. Consequently the function
g ∈ CM {R} is a solution on R of difference equation (1.1). The proof of the main
result is complete.
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