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NEW IMMERSION THEOREMS FOR

GRASSMANN MANIFOLDS G3,n

Zoran Z. Petrović and Branislav I. Prvulović

Abstract. A Gröbner basis for the ideal determining mod 2 cohomology of
Grassmannian G3,n, obtained in a previous paper, is used, along with the
method of obstruction theory, to establish some new immersion results for
these manifolds.

1. Introduction

The theory of Gröbner bases is one of the most powerful tools for deciding
whether a certain polynomial in two or more variables belongs to a given ideal.
An example where this problem is of particular interest is the mod 2 cohomology
algebra of Grassmann manifold Gk,n = O(n + k)/O(n) × O(k). By Borel’s de-
scription, this algebra is just the polynomial algebra on the Stiefel–Whitney classes
w1, w2, . . . , wk of the canonical vector bundle γk over Gk,n modulo the ideal Jk,n

generated by the dual classes w̄n+1, w̄n+2, . . . , w̄n+k.
A reduced Gröbner basis for the ideal J2,n has been obtained in [6]. Based

on that result for odd n, some new immersions of Grassmannians G2,2l+1 were
established.

In [9] reduced Gröbner bases for all ideals Jk,n were determined. We use this
result and the method of modified Postnikov towers (MPT) developed by Gitler
and Mahowald [3] to get new immersion results. In the following, imm(G3,n) stands
for the immersion dimension of Grassmannians G3,n

imm(G3,n) := min{d | G3,n immerses into Rd}.

Some lower bounds for imm(G3,n) were established by Oproiu in [5], where
he used the method of the Stiefel–Whitney classes, and from the general result
of Cohen [1] one has an upper bound for imm(G3,n). In [7] it is shown that
imm(G3,n) = 6n − 3 if n is a power of two.

Now we have the following new immersion results.
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Theorem 1.1. If n > 3 and n ≡ 1 (mod 8), then G3,n immerses into R6n−6.

This theorem improves Cohen’s result whenever α(3n) < 6 (as usual, α(3n)
denotes the number of ones in the binary expansion of 3n). For example, if n =

1 + 2r +
∑s

j=1 2r+2j−1 = 1 + 2r + 2r+1 · 22s
−1

3 for some r > 3 and s > 0, we have

that 3n = 3 + 2r + 2r+2s+1, so α(3n) = 4. When s = 0, i.e., n = 2r + 1 (r > 3), by
Theorem 1.1 and Oproiu’s result, we have that 6 · 2r − 3 6 imm(G3,2r+1) 6 6 · 2r.

Theorem 1.2. If n ≡ 6 (mod 8), then G3,n immerses into R6n−5.

The best improvement of Cohen’s general result obtained from Theorem 1.2 is
in the case n = 2 +

∑s

j=1 22j , s > 1. Then 3n = 2 + 22s+2 and so we are able to

decrease the upper bound for imm(G3,n) by 3. For example, by this theorem and
Oproiu’s result, we have that 29 6 imm(G3,6) 6 31.

Theorem 1.3. If n > 3 and n ≡ 2 (mod 8), then G3,n immerses into R6n−7.

Again, there is a number of cases in which Theorem 1.3 improves previously
known results. In particular, when n = 2r + 2, r > 3, we have an improvement
by 3. In this case, using Oproiu’s result and this theorem, we have 6 · 2r − 3 6

imm(G3,2r+2) 6 6 · 2r + 5.

In this paper we present only a proof of Theorem 1.1. The other theorems may
be proved by using the same techniques.

Remark 1.1. The detailed proofs of all three theorems can be found in [8].
Actually, this paper is an abridged version of [8]. In addition to these proofs, the
preprint [8] contains the already mentioned result from [7] and the construction of
Gröbner bases for J3,n. This construction is not included in this paper, since these
Gröbner bases are obtained in full generality in [9].

2. Gröbner bases

Throughout this section, we denote by N0 the set of all nonnegative integers
and the set of all positive integers is denoted by N.

Let Gk,n be the Grassmann manifold of unoriented k-dimensional vector sub-
spaces in Rn+k, and w1, w2, . . . , wk the Stiefel–Whitney classes of the canonical
bundle γk over Gk,n. It is known that the cohomology algebra H∗(Gk,n;Z2)
is isomorphic to the quotient Z2[w1, w2, . . . , wk]/Jk,n of the polynomial algebra
Z2[w1, w2, . . . , wk] by the ideal Jk,n generated by the polynomials w̄n+1, . . . , w̄n+k.
These are obtained from the equation

(1 + w1 + w2 + · · · + wk)(1 + w̄1 + w̄2 + · · · ) = 1.

For k = 3 (which is the case from now on), one has

w̄r =
∑

a+2b+3c=r

(

a+b+c
a

)(

b+c
b

)

wa
1 wb

2wc
3, r ∈ N,

where it is understood that a, b, c ∈ N0.
Let n > 3 be a fixed integer. We define a set of polynomials in Z2[w1, w2, w3].
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Definition 2.1. For m, l ∈ N0, let

gm,l :=
∑

a+2b+3c=n+1+m+2l

(

a+b+c−m−l
a

)(

b+c−l
b

)

wa
1 wb

2wc
3.

As before, it is understood that a, b, c ∈ N0. Note that g0,0 = w̄n+1.
The following theorem is a special case of Theorem 14 from [9].

Theorem 2.1. The set G = {gm,l | m + l 6 n + 1, m, l ∈ N0} is the reduced

Gröbner basis for the ideal J3,n = (w̄n+1, w̄n+2, w̄n+3) with respect to the grlex

ordering on monomials with w1 > w2 > w3.

The polynomials gm,l ∈ G for l = n + 1 and l = n are calculated directly from
Definition 2.1:

g0,n+1 = wn+1
3 , g0,n = w1wn

3 , g1,n = w2wn
3 .

Now, the following equalities may be obtained by using the well-known formula
(

a
b

)

=
(

a−1
b

)

+
(

a−1
b−1

)

, a, b ∈ Z (it is understood that
(

a
b

)

= 0 if b is negative), along
with some convenient index shifting

gm+2,l = gm,l+1 + w2gm,l + w1gm+1,l,

gm+1,l+1 = w3gm,l + w1gm,l+1,

gm,l+2 = w3gm+1,l + w2gm,l+1.

We list a few elements from G which will be needed in the following section.
One may obtain them by the repeated use of the previous equalities

g1,n−2 = w2
1w2wn−2

3 + w1wn−1
3 + w2

2wn−2
3 ,

g2,n−3 = w2
1w2

2wn−3
3 + w3

2wn−3
3 + wn−1

3 ,

g3,n−3 = w1w3
2wn−3

3 + w2
2wn−2

3 ,

g3,n−4 = w2
1w3

2wn−4
3 + w1w2

2wn−3
3 + w4

2wn−4
3 + w2wn−2

3 ,

g5,n−4 = w5
2wn−4

3 + w1wn−1
3 ,

g4,n−5 = w2
1w4

2wn−5
3 + w5

2wn−5
3 ,

g6,n−5 = w6
2wn−5

3 + wn−1
3 .

In the following, we will also use the fact that the set {wa
1 wb

2wc
3 | a + b + c 6 n}

is a vector space basis for H∗(G3,n;Z2) (see, e.g., [9, Proposition 13]).

3. Immersions

As before, let wi be the i-th Stiefel–Whitney class of the canonical vector bundle
γ3 over G3,n (n > 3) and let r be the (unique) integer such that 2r+1 < 3n < 2r+2,
i.e., 2

3 · 2r < n < 4
3 · 2r. It is well known (see [5, p. 183]) that for the stable normal

bundle ν of G3,n one has

(3.1) w(ν) = (1 + w4
1 + w2

2 + w2
1w2

2 + w2
3)(1 + w1 + w2 + w3)2r+1

−n−3.

For n 6 2r − 3, by the result of Stong [10] ht(w1) = 2r − 1 and by the result of
Dutta and Khare [2] ht(w2) 6 2r − 1. Also, w2r

3 = 0 since 3 · 2r > 3 · (2r − 3) >
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3n = dim(G3,n) and we have that (1 + w1 + w2 + w3)2r

= 1. This means that in
this case (2

3 · 2r < n 6 2r − 3) formula (3.1) simplifies to

(3.2) w(ν) = (1 + w4
1 + w2

2 + w2
1w2

2 + w2
3)(1 + w1 + w2 + w3)2r

−n−3.

In order to shorten the upcoming calculations, we give two equalities concerning
the action of the Steenrod algebra A2 on H∗(G3,n;Z2) which can be obtained by
using the basic properties of A2 and formulas of Wu and Cartan. It is understood
that a, b and c are nonnegative integers.

Sq1(wa
1 wb

2wc
3) = (a + b + c)wa+1

1 wb
2wc

3 + bwa
1 wb−1

2 wc+1
3 ,

Sq2(wa
1 wb

2wc
3) =

(

a+b+c
2

)

wa+2
1 wb

2wc
3 + b(a + c)wa+1

1 wb−1
2 wc+1

3

+ (b + c)wa
1 wb+1

2 wc
3 +

(

b
2

)

wa
1 wb−2

2 wc+2
3 .

In the rest of the paper, it is understood that n is a fixed integer such that
n > 3 and n ≡ 1 (mod 8).

Lemma 3.1. If ν is the stable normal bundle of G3,n, then

(a) wi(ν) = 0 for i > 3n − 8;

(b) w1(ν) = w2(ν) = 0;

(c) w4(ν) = w2
2.

Proof. As above, let r > 3 be the integer such that 2r+1 < 3n < 2r+2. If
n > 2r, then n must be > 2r + 1. So we have that 2r+1 6 2n − 2. The top class

in expression (3.1), (w2
1w2

2 + w2
3)w2r+1

−n−3
3 , is in degree 6 + 3 · (2r+1 − n − 3) 6

6 + 3 · (n − 5) = 3n − 9 and (a) follows in this case.
If n < 2r, then we actually have that n < 2r − 2 (since n ≡ 1 (mod 8)), so

formula (3.2) holds. The top class there is in degree 6 + 3 · (2r − n − 3) and, since
3n > 2r+1, we have that 2r < 3

2 n, implying 6 + 3 · (2r − n − 3) < 6 + 3 · n−6
2 <

6 + 3 · (n − 6) = 3n − 12. This proves (a).
Parts (b) and (c) we read off from formula (3.1) (using the fact that 2r+1 −n−

3 ≡ 4 (mod 8))

w1(ν) = (2r+1 − n − 3)w1 = 0,

w2(ν) =
(2r+1

−n−3
2

)

w2
1 + (2r+1 − n − 3)w2 = 0,

w4(ν) = w4
1 + w2

2 +
(2r+1

−n−3
4

)

w4
1 +

(2r+1
−n−3
3

)(3
1

)

w2
1w2

+
(2r+1

−n−3
2

)(2
1

)

w1w3 +
(2r+1

−n−3
2

)

w2
2 = w2

2 ,

and the lemma follows. �

Lemma 3.2. For the map Sq2 : H3n−6(G3,n;Z2) → H3n−4(G3,n;Z2), we have

Sq2(w2
1w2

2wn−4
3 ) = w2

1wn−2
3 + w1w2

2wn−3
3 + w4

2wn−4
3 + w2wn−2

3 ;

Sq2(w1w2wn−3
3 ) = w2

1wn−2
3 + w1w2

2wn−3
3 ;

Sq2(wn−2
3 ) = w2

1wn−2
3 + w2wn−2

3 .
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Proof. We use the Gröbner basis G to calculate:

Sq2(w2
1w2

2wn−4
3 ) =

(

n
2

)

w4
1w2

2wn−4
3 + 2(n − 2)w3

1w2wn−3
3

+ (n − 2)w2
1w3

2wn−4
3 +

(2
2

)

w2
1wn−2

3

= w2
1w3

2wn−4
3 + w2

1wn−2
3

= g3,n−4 + w1w2
2wn−3

3 + w4
2wn−4

3 + w2wn−2
3 + w2

1wn−2
3 .

Since gm,l = 0 in H∗(G3,n;Z2), we obtain the first equality. Also,

Sq2(w1w2wn−3
3 ) =

(

n−1
2

)

w3
1w2wn−3

3 + (n − 2)w2
1wn−2

3 + (n − 2)w1w2
2wn−3

3

and using the congruence n ≡ 1 (mod 8), we directly get the second equality.
Similarly,

Sq2(wn−2
3 ) =

(

n−2
2

)

w2
1wn−2

3 + (n − 2)w2wn−2
3 = w2

1wn−2
3 + w2wn−2

3 ,

and we are done. �

Lemma 3.3. The map Sq2 : H3n−4(G3,n;Z2) → H3n−2(G3,n;Z2) is given by

the following equalities:

Sq2(w2
1wn−2

3 ) = w1wn−1
3 + w2

2wn−2
3 ,

Sq2(w1w2
2wn−3

3 ) = Sq2(w4
2wn−4

3 ) = Sq2(w2wn−2
3 ) = w1wn−1

3 .

Proof. The set {w2
1wn−2

3 , w1w2
2wn−3

3 , w4
2wn−4

3 , w2wn−2
3 } is a vector space ba-

sis for H3n−4(G3,n;Z2). We proceed to the calculation.

Sq2(w2
1wn−2

3 ) =
(

n
2

)

w4
1wn−2

3 + (n − 2)w2
1w2wn−2

3 = w2
1w2wn−2

3

= g1,n−2 + w1wn−1
3 + w2

2wn−2
3 = w1wn−1

3 + w2
2wn−2

3 ,

Sq2(w1w2
2wn−3

3 ) =
(

n
2

)

w3
1w2

2wn−3
3 + 2(n − 2)w2

1w2wn−2
3

+ (n − 1)w1w3
2wn−3

3 +
(2

2

)

w1wn−1
3 = w1wn−1

3 ,

Sq2(w4
2wn−4

3 ) =
(

n
2

)

w2
1w4

2wn−4
3 + 4 · (n − 4)w1w3

2wn−3
3 + nw5

2wn−4
3

+
(4

2

)

w2
2wn−2

3 = w5
2wn−4

3 = g5,n−4 + w1wn−1
3 = w1wn−1

3 ,

Sq2(w2wn−2
3 ) =

(

n−1
2

)

w2
1w2wn−2

3 + (n − 2)w1wn−1
3 + (n − 1)w2

2wn−2
3

= w1wn−1
3 . �

Lemma 3.4. The map Sq1 : H3n−3(G3,n;Z2) → H3n−2(G3,n;Z2) is given by

Sq1(w1w2wn−2
3 ) = w2

2wn−2
3 , Sq1(w3

2wn−3
3 ) = Sq1(wn−1

3 ) = 0.

Proof. We know that the classes w1w2wn−2
3 , w3

2wn−3
3 and wn−1

3 form an
additive basis for H3n−3(G3,n;Z2). Using the Gröbner basis G, we have

Sq1(w1w2wn−2
3 ) = nw2

1w2wn−2
3 + w1wn−1

3 = g1,n−2 + w2
2wn−2

3 = w2
2wn−2

3 ,

Sq1(w3
2wn−3

3 ) = nw1w3
2wn−3

3 + 3w2
2wn−2

3 = w1w3
2wn−3

3 + w2
2wn−2

3 = g3,n−3 = 0,

Sq1(wn−1
3 ) = (n − 1)w1wn−1

3 = 0,

and the lemma is proved. �
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In the proof of the following lemma, we shall make use of the fact that for any
cohomology class u and any nonnegative integers m and k,

Sqm(u2k

) =

{

(Sq
m

2k u)2k

, 2k | m

0, 2k ∤ m

The case k = 1 is obtained from the Cartan formula and the rest is easily proved
by induction on k.

Lemma 3.5. For the class w1w4
2wn−5

3 ∈ H3n−6(G3,n;Z2), we have

(a) Sq2Sq1(w1w4
2wn−5

3 ) = wn−1
3 ,

(b) Sq2(w1w4
2wn−5

3 ) = 0,

(c) (Sq4 + w2
2)(w1w4

2wn−5
3 ) = 0.

Proof. One has

Sq1(w1w4
2wn−5

3 ) = nw2
1w4

2wn−5
3 + 4w1w3

2wn−4
3

= w2
1w4

2wn−5
3 = g4,n−5 + w5

2wn−5
3 = w5

2wn−5
3 ;

and

Sq2Sq1(w1w4
2wn−5

3 ) =
(

n
2

)

w2
1w5

2wn−5
3 +5(n − 5)w1w4

2wn−4
3 + nw6

2wn−5
3 +

(5
2

)

w3
2wn−3

3

= w6
2wn−5

3 = g6,n−5 + wn−1
3 = wn−1

3 .

This proves (a). Also,

Sq2(w1w4
2wn−5

3 ) =
(

n
2

)

w3
1w4

2wn−5
3 + 4(n − 4)w2

1w3
2wn−4

3

+ (n − 1)w1w5
2wn−5

3 +
(4

2

)

w1w2
2wn−3

3

and since n ≡ 1 (mod 8), this is obviously equal to zero.
Finally, for (c) we use the Cartan formula and we get

(Sq4 + w2
2)(w1w4

2wn−5
3 ) = w2

1Sq3(w4
2wn−5

3 ) + w1Sq4(w4
2wn−5

3 ) + w1w6
2wn−5

3 .

Now, since n − 5 is divisible by 4, w4
2wn−5

3 =
(

w2w
n−5

4

3

)4
and so Sq3(w4

2wn−5
3 ) = 0

and

Sq4(w4
2wn−5

3 ) =
(

Sq1
(

w2w
n−5

4

3

))4
=

(

(

1 + n−5
4

)

w1w2w
n−5

4

3 + w
n−5

4
+1

3

)4
= wn−1

3

where the latter equality holds because n−5
4 is an odd integer (since n ≡ 1 (mod 8)).

We conclude that

(Sq4 + w2
2)(w1w4

2wn−5
3 ) = w1wn−1

3 + w1w6
2wn−5

3 = w1g6,n−5 = 0,

and the proof of the lemma is completed. �

Lemma 3.6. For the classes w1w2
2wn−3

3 , w2wn−2
3 ∈ H3n−4(G3,n;Z2), we have

(a) Sq1(w1w2
2wn−3

3 ) = w3
2wn−3

3 + wn−1
3 , Sq1(w2wn−2

3 ) = wn−1
3 ;

(b) Sq2(w1w2
2wn−3

3 + w2wn−2
3 ) = 0.
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Proof. (a) We have

Sq1(w1w2
2wn−3

3 ) = nw2
1w2

2wn−3
3 + 2w1w2wn−2

3 = w2
1w2

2wn−3
3

= g2,n−3 + w3
2wn−3

3 + wn−1
3 = w3

2wn−3
3 + wn−1

3 ,

Sq1(w2wn−2
3 ) = (n − 1)w1w2wn−2

3 + wn−1
3 = wn−1

3 .

(b) Similarly,

Sq2(w1w2
2wn−3

3 +w2wn−2
3 ) = n

2 w3
1w2

2wn−3
3 +2(n−2)w2

1w2wn−2
3 +(n−1)w1w3

2wn−3
3

+
(2

2

)

w1wn−1
3 +

(

n−1
2

)

w2
1w2wn−2

3 + (n − 2)w1wn−1
3 + (n − 1)w2

2wn−2
3 = 0,

and we are done. �

Lemma 3.7. For the class w1wn−2
3 ∈ H3n−5(G3,n;Z2), we have

Sq2(w1wn−2
3 ) = w1w2wn−2

3 .

Proof. We simply calculate:

Sq2(w1wn−2
3 ) =

(

n−1
2

)

w3
1wn−2

3 + (n − 2)w1w2wn−2
3 = w1w2wn−2

3 ,

and the lemma is proved. �

Proof of Theorem 1.1. It is well known that the Grassmann manifold Gk,n

is orientable if and only if n + k is even, and therefore, G3,n is orientable (the
orientability of G3,n can also be deduced from Lemma 3.1 (b)). We shall use the
theorem of Hirsch [4] which states that a smooth orientable compact m-manifold
Mm immerses into Rm+l if and only if the classifying map fν : Mm → BSO of the
stable normal bundle ν of Mm lifts up to BSO(l).

Mm BSO
fν //

BSO(l)

BSO

p

��
Mm

BSO(l)
<<
③

③

③

③

③

③

The dimension of G3,n is 3n, and hence, we need to lift fν : G3,n → BSO up to
BSO(3n − 6). The 3n-MPT for the fibration p : BSO(3n − 6) → BSO is given in
Diagram 1 (Km stands for the Eilenberg–MacLane space K(Z2, m)).

The table of k-invariants is the following one.

k1
1 : (Sq2 + w2)w3n−5 = 0

k1
2 : (Sq2 + w2)Sq1w3n−5 + Sq1w3n−3 = 0

k1
3 : (Sq4 + w4)w3n−5 + Sq2w3n−3 = 0

k2
1 : (Sq2 + w2)k1

1 + Sq1k1
2 = 0

According to Lemma 3.1 (a), f∗
ν (w3n−5) = w3n−5(ν) = 0 and f∗

ν (w3n−3) =
w3n−3(ν) = 0, so there is a lifting g1 : G3,n → E1 of fν .
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G3,n BSO
fν // BSO K3n−5 × K3n−3

w3n−5×w3n−3 //

E1

BSO

q1

��

E1 K3n−4 × K3n−3 × K3n−2
k1

1×k1
2×k1

3 //

E2

E1

q2

��

E2 K3n−3
k2

1 //

BSO(3n − 6)

E2

q3

��

G3,n

E1

g

88
q

q
q

q
q

q
q

q

G3,n

E2

h

AA
✂

✂

✂

✂

✂

✂

✂

✂

✂

✂

✂

✂

Diagram 1.

Let us remark here that for every lifting g : G3,n → E1 of fν , one has

(3.3) Sq2(g∗(k1
1)) = Sq1(g∗(k1

2)).

This is obtained by applying g∗ to the relation (Sq2 +w2)k1
1 = Sq1k1

2 in H∗(E1;Z2)
(which produces the k-invariant k2

1) and using Lemma 3.1 (b).
We have a lifting g1 : G3,n → E1 and in order to make the next step (to lift fν up

to E2), we need to modify g1 (if necessary) to a lifting g such that g∗(k1
1) = g∗(k1

2) =
g∗(k1

3) = 0. By choosing a map α×β : G3,n → K3n−6×K3n−4 = Ω(K3n−5×K3n−3)
(i.e., classes α ∈ H3n−6(G3,n;Z2) and β ∈ H3n−4(G3,n;Z2)), we get another lifting
g2 : G3,n → E1 (induced by g1, α and β) as the composition:

G3,n
△
−→ G3,n × G3,n

(α×β)×g1

−−−−−−→ K3n−6 × K3n−4 × E1
µ
−→ E1

where △ is the diagonal mapping and µ : Ω(K3n−5×K3n−3)×E1 → E1 is the action
of the fibre in the principal fibration q1 : E1 → BSO. By looking at the relations
that produce the k-invariants k1

1 , k1
2 and k1

3 and using Lemma 3.1, we conclude that
the following equalities hold (see [3, p. 95]):

g∗
2(k1

1) = g∗
1(k1

1) + (Sq2 + w2(ν))(α) = g∗
1(k1

1) + Sq2α;
g∗

2(k1
2) = g∗

1(k1
2)+(Sq2 +w2(ν))Sq1α +Sq1β = g∗

1(k1
2)+Sq2Sq1α +Sq1β;

g∗
2(k1

3) = g∗
1(k1

3)+(Sq4+w4(ν))(α)+Sq2β = g∗
1(k1

3)+(Sq4+w2
2)(α)+Sq2β.

First, we need to prove that g∗
1(k1

1) is in the image of Sq2 : H3n−6(G3,n;Z2) →
H3n−4(G3,n;Z2). Let us assume, to the contrary, that g∗

1(k1
1) is not in this image.

The classes w2
1wn−2

3 , w1w2
2wn−3

3 , w4
2wn−4

3 and w2wn−2
3 form a vector space basis for

H3n−4(G3,n;Z2) and from Lemma 3.2 we conclude that the sum of all basis elements
and the sum of any two basis elements are in the image of Sq2. This means that
g∗

1(k1
1) is either a basis element or a sum of three distinct basis elements. Now, by

looking at Lemma 3.3, we see that Sq2(g∗
1(k1

1)) ∈ {w1wn−1
3 , w1wn−1

3 + w2
2wn−2

3 }
and from formula (3.3) we have that Sq2(g∗

1(k1
1)) = Sq1(g∗

1(k1
2)). But according
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to Lemma 3.4 and the fact that the set {w1wn−1
3 , w2

2wn−2
3 } is a vector space basis

for H3n−2(G3,n;Z2), Sq1(g∗
1(k1

2)) cannot belong to {w1wn−1
3 , w1wn−1

3 + w2
2wn−2

3 }.
This contradiction proves that we can find a class α ∈ H3n−6(G3,n;Z2) such that
Sq2α = g∗

1(k1
1).

Since {w1wn−1
3 , w2

2wn−2
3 } is a basis for H3n−2(G3,n;Z2), by Lemma 3.3, there

is a class β ∈ H3n−4(G3,n;Z2) such that Sq2β = g∗
1(k1

3) + (Sq4 + w2
2)(α), and so we

have a lifting g2 : G3,n → E1 (induced by g1 and these classes α and β) such that
g∗

2(k1
1) = g∗

2(k1
3) = 0.

There is one more obstruction for lifting fν up to E2: g∗
2(k1

2) ∈ H3n−3(G3,n;Z2).
Since g∗

2(k1
1) = 0, by equality (3.3) we have that Sq1(g∗

2(k1
2)) = 0 and according

to Lemma 3.4, g∗
2(k1

2) must be in the subgroup of H3n−3(G3,n;Z2) generated by

w3
2wn−3

3 and wn−1
3 . Observe the classes α′ := w1w4

2wn−5
3 ∈ H3n−6(G3,n;Z2) and

β′ := w1w2
2wn−3

3 + w2wn−2
3 ∈ H3n−4(G3,n;Z2). By Lemma 3.5 (a), Sq2Sq1α′ =

wn−1
3 and according to Lemma 3.6 (a), Sq1β′ = w3

2wn−3
3 . This means that we

can choose the coefficients a, b ∈ {0, 1} such that Sq2Sq1(aα′) + Sq1(bβ′) = g∗
2(k1

2).
Finally, from Lemma 3.5, parts (b) and (c), and Lemma 3.6(b), we conclude that for
the lifting g : G3,n → E1 induced by g2 and the classes aα′ and bβ′, all obstructions
vanish, i.e., g∗(k1

1) = g∗(k1
2) = g∗(k1

3) = 0.
Therefore, the lifting g lifts up to E2, i.e., there is a map h : G3,n → E2 such

that q1 ◦ q2 ◦ h = q1 ◦ g = fν .
For the final step, we observe that the set {w1w2wn−2

3 , w3
2wn−3

3 , wn−1
3 } is a

vector space basis for H3n−3(G3,n;Z2). By looking at the relation that produces
the k-invariant k2

1 and according to Lemma 3.6(a), Lemma 3.7 and Lemma 3.1(b),
one sees that the indeterminacy of k2

1 is all of H3n−3(G3,n;Z2). Hence, the lifting
h : G3,n → E2 can be chosen such that h∗(k2

1) = 0. This completes the proof of the
theorem. �
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