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Abstract. A d-hypercube of order n is an n × · · · × nd (d times) array with
nd elements from a set Q of cardinality n. We recall several connections
between d-hypercubes of order n and d-ary operations of order n. We give con-
structions of orthogonal d-ary operations that generalize a result of Belyavskaya
and Mullen. Our main result is a general construction of d-orthogonal d-ary
operations from d-ary quasigroups.

1. Introduction

In this paper we work with positive integers and we assume that d > 2. A
hypercube of order n and dimension d (or d-hypercube of order n, or d-dimensional

hypercube of order n) is an n × · · · × nd (d times) array with nd elements obtained
from the set of n distinct symbols. For 1 6 t 6 d, a t-subarray is a subset of a
d-hypercube of order n which is obtained by fixing d − t of the coordinates and
allowing the other t coordinates to vary. Given d-hypercube of order n has type t,
0 6 t 6 d−1, if each symbol occurs exactly nd−t−1 times in each (d−t)-dimensional
subarray [12]. It is clear that every d-hypercube of order n and type t, has also
type i, for each 0 6 i 6 t − 1. A Latin square of order n is a 2-hypercube of order
n and type 1.

A d-ary operation f on a nonempty set Q is a mapping f : Qd → Q defined by
f : (x1, . . . , xd) 7→ xd+1, for which we write f(x1, . . . , xd) = xd+1. A d-ary groupoid
(d > 1) is an algebra (Q, f) on a nonempty set Q as its universe and with one
d-ary operation f . A d-ary groupoid (Q, f) is called a d-ary quasigroup if any d
of the elements a1, a2, . . . , ad+1 ∈ Q, satisfying f(a1, a2, . . . , ad) = ad+1, uniquely
specifies the remaining one.
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A d-ary operation f defined on Q is said to be i-invertible if the equation

f(a1, . . . , ai−1, x, ai+1, . . . , ad) = ad+1

has a unique solution x for each d-tuple (a1, . . . , ai−1, ai+1, . . . , ad, ad+1) of Qd.
Equivalently, we can define a d-ary quasigroup to be a d-ary groupoid (Q, f) such
that the d-ary operation f is i-invertible for each i = 1, . . . , d.

Given a d-ary quasigroup (Q, f), d new d-ary operations (i)f , i = 1, 2, . . . , d,
can be defined by

(i)f(x1, x2, . . . , xd) = xd+1 ⇔ f(x1, . . . , xi−1, xd+1, xi+1, . . . , xd) = xi.

Then (Q,(i)f) are d-ary quaisgroups too. The operation (i)f is called the i-th inverse

operation of f [1]. We note that the following equalities are identities in the algebra
(Q, f, (i)f):

f
(

x1, . . . , xi−1,(i)f(x1, x2, . . . , xd), xi+1, . . . , xd

)

= xi,

(i)f
(

x1, . . . , xi−1, f(x1, x2, . . . , xd), xi+1, . . . , xd

)

= xi.

A d-ary groupoid (Q, f) is of order n when |Q| = n. Belyavskaya and Mullen
[4] proved that a d-ary quasigroup of order n is an algebraic equivalent of a d-
hypercube of order n and type d − 1.

In this paper we give generalizations of some results given in [4]. In Section 2 we
survey the definitions that can be found in the literature of orthogonality and con-
nections between d-ary hypercubes, d-ary operations and d-ary quasigroups. The
main results are given in Section 3, where several new constructions of orthogonal
d-tuple are presented.

2. d-ary hypercubes, d-ary operations,

d-ary quasigroups and orthogonality

The usual definition of orthogonality states that two d-hypercubes of order n
are orthogonal if each ordered pair occurs exactly nd−2 times upon superimposition.
Similarly, two d-ary operations f and h defined on a set Q of cardinality n are said
to be orthogonal if the pair of equations f(x1, . . . , xd) = u and h(x1, . . . , xd) = v
has exactly nd−2 solutions for any given elements u, v ∈ Q.

A set of d hypercubes of order n and dimension d is said to be d-orthogonal (or
d-wise orthogonal) if, when superimposed, each of the nd ordered d-tuples occurs
exactly once. (This is the concept of dimensional orthogonality in [8, 9] and of
variational cube in [10]). The set of m > d hypercubes of order n and dimension
d is called mutually d-orthogonal (MdOH) if, given any d hypercubes from the set,
they are d-orthogonal (also known as d-dimensional variational set in [7]).

One can define a general form of orthogonality that includes standard form of
d-orthogonality. For 2 6 k 6 d, a set of k hypercubes of order n and dimension d
is said to be k-orthogonal if, when superimposed, each of the nk ordered k-tuples
occurs exactly nd−k times. A set of j > k hypercubes of order n and dimension d
is called mutually k-orthogonal if, given any k hypercubes from the set, they are
k-orthogonal.

For d-ary operations we have the following definitions.
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Definition 2.1 ([2, 3] for k = d, [4]). A k-tuple 〈f1, f2, . . . , fk〉, 1 6 k 6 d, of
distinct d-ary operations defined on a set Q is orthogonal if the system of equations
{fi(x1, . . . , xd) = ai}

k
i=1 has exactly nd−k solutions for any a1, . . . , ak ∈ Qn.

Definition 2.2. [4] A set Σ = {f1, f2, . . . , fs} of d-ary operations is k-ortho-

gonal, 1 6 k 6 d, k 6 s, if every k-tuple fi1
, fi2

, . . . , fik
of distinct d-ary operations

of Σ is orthogonal.

A set of k-orthogonal d-hypercubes of order n correspond to a set of k-orthog-
onal d-ary operations of order n.

Let 〈f1, f2, . . . , fd〉 be a d-tuple of d-ary operations defined on a set Q. Then a
unique mapping θ = (f1, f2, . . . , fd) : Qn → Qn is defined by

θ : (x1, . . . , xd) 7→ (f1(x1, . . . , xd), f2(x1, . . . , xd), . . . , fd(x1, . . . , xd)).

The following proposition gives a connection between the orthogonal d-tuple of
d-ary operations and the permutations on Qd.

Proposition 2.1. [3] A d-tuple 〈f1, f2, . . . , fd〉 of different d-ary operations

on Q is orthogonal if and only if the mapping θ = (f1, f2, . . . , fd) is a permutation

on Qn.

Further, we give another connection between d-ary hypercubes of order n and
d-ary operations of order n. The d-ary operation Ij , 1 6 j 6 d, defined on Q by
Ij(x1, x2, . . . , xd) = xj , is called the j-th selector or the j-th projection.

Definition 2.3. [3] A set Σ = {f1, f2, . . . , fr} of distinct d-ary operations
defined on a set Q is strong orthogonal (or strong d-wise orthogonal) if the set
{I1, . . . , Id, f1, f2, . . . , fr} is d-orthogonal, where each Ij , 1 6 j 6 d, is the j-th
selector.

It follows that each operation of a strong orthogonal set, which is not a se-
lector, is a quasigroup operation. Clearly, if r > d, a strong d-orthogonal set is
d-orthogonal, as well.

Similarly, a set of r hypercubes of order n and dimension d is called mutu-

ally strong d-orthogonal (MSdOH) if upon superimposition of corresponding j-sub-
arrays of any j hypercubes in the set, 1 6 j 6 min(d, r), each ordered j-tuple
appears exactly once [8]. Letting j = 1, it implies that each hypercube in the
set is of type d − 1, and for d = 2 and r > 2, this definition is equivalent to the
definition of MOLS (mutually orthogonal Latin squares). Additionally, if r > d,
strong d-orthogonality implies d-orthogonality. There are at most n − 1 mutually
strong d-orthogonal hypercubes of dimension d and order n.

A set of r mutually strong d-orthogonal d-hypercubes of order n corresponds
to a set of r mutually strong d-orthogonal d-ary operations of order n.

3. Constructions of orthogonal d-ary operations

The main motivation for our first construction is the following theorem.
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Theorem 3.1. [4] Let 〈f1, f2, . . . , fd〉 be a d-tuple of d-ary operations defined

on a set Q and let fi, 1 6 i 6 d, be (d − i + 1)-invertible d-ary operation. Then the

d-tuple 〈F1, F2, . . . , Fd〉, defined by

F1(x1, . . . , xd) = f1(x1, . . . , xd),

F2(x1, . . . , xd) = f2(x1, . . . , xd−1, F1(x1, . . . , xd)),

F3(x1, . . . , xd) = f3(x1, . . . , xd−2, F1(x1, . . . , xd), F2(x1, . . . , xd)),
...

Fd(x1, . . . , xd) = fd(x1, F1(x1, . . . , xd), F2(x1, . . . , xd), . . . , Fd−1(x1, . . . , xd)),

is orthogonal.

Similarly, we can go one step further.

Theorem 3.2. Let 〈f1, f2, . . . , fd〉 be d-ary operations defined on a set Q and

let fi, 1 6 i 6 d, be i-invertible d-ary operation. Then the d-tuple 〈F1, F2, . . . , Fd〉,
defined by

F1(x1, . . . , xd) = f1(x1, . . . , xd),

F2(x1, . . . , xd) = f2(F1(x1, . . . , xd), x2, . . . , xd),

F3(x1, . . . , xd) = f3(F2(x1, . . . , xd), F1(x1, . . . , xd), x3, . . . , xd),
...

Fd(x1, . . . , xd) = fd(Fd−1(x1, . . . , xd), . . . , F1(x1, . . . , xd), xd),

is orthogonal.

Proof. Consider the system {Fi(x1, . . . , xd) = ai}
d
i=1 and substitute the val-

ues of F1, . . . , Fd−1 into the last of previous equalities

Fd(x1, . . . , xd) = ad = fd(ad−1, ad−2, . . . , a1, xd).

We obtain a unique solution xd = bd since the fd is d-invertible operation, and
so the Fd is d-invertible operation. Next, we substitute this value of xd and the
values of F1, . . . , Fd−2 into the (d − 1)-th equation

Fd−1(x1, . . . , xd−1, bd) = fd−1(ad−2, ad−3, . . . , a1, xd−1, bd) = ad−1,

and we obtain a unique xd−1 = bd−1 using the (d − 1)-invertibility of fd−1; Fd−1 is
(d − 1)-invertible too. So, we do similar substitutions in all equalities till the first
one, in which we would obtain

F1(x1, b2, . . . , bd) = f1(x1, b2, . . . , bd) = a1,

and again we obtain a unique x1 = b1 from 1-invertibility of f1.
So, the given system has a unique solution x1 = b1, x2 = b2, . . . , xd = bd and

the d-tuple F1, . . . , Fd is orthogonal. �

Now, we give the following generalization of the previous result.

Theorem 3.3. Let 〈f1, f2, . . . , fd〉 be d-ary operations defined on a set Q and

let fi, 1 6 i 6 d, be pi-invertible d-ary operations, where p1, . . . , pd is a permutation

of the positions 1, . . . , d. Let the d-tuple 〈F1, F2, . . . , Fd〉 be defined by the procedure

F1(x1, . . . , xd) = f1(x1, . . . , xd),
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F2(x1, . . . , xd) = f2(x1, . . . , xp1−1, F1(x1, . . . , xd), xp1+1, . . . , xd),

Fi(x1, . . . , xd) = fi(y1, . . . , yd), i = 3, . . . , d,

where ypi−1
= F1(x1, . . . , xd), ypi−2

= F2(x1, . . . , xd),. . . , yp1
= Fi−1(x1, . . . , xd),

and yj = xj for j /∈ {p1, . . . , pi−1}. Then, the d-tuple 〈F1, F2, . . . , Fd〉 is orthogonal.

Proof. Consider the system {Fi(x1, . . . , xd) = ai}
d
i=1 and substitute the val-

ues of F1, . . . , Fd−1 into the last equation:

Fd(x1, . . . , xd) = fd(y1, . . . , yd) = ad

where ypd−1
= a1, ypd−2

= a2, . . . , yp1
= ad−1, and ypd

= xpd
. We obtain a unique

xpd
= bpd

since the fd is pd-invertible operation, and so the Fd is pd-invertible
operation. Next, we substitute this value of xpd

and the values of F1, . . . , Fd−2 into
the (d − 1)-th equation:

Fd−1(x1, . . . , xpd−1, bpd
, xpd+1, . . . , xd) = fd−1(y1, . . . , yd) = ad−1,

where ypd−2
= a1, ypd−3

= a2, . . . , yp1
= ad−2, ypd

= bpd
, and ypd−1

= xpd−1
. We

obtain a unique xpd−1
= bpd−1

using the pd−1-invertibility of fd−1. So, we do similar
substitutions in all equalities till the first one, in which we would obtain

F1(b1, . . . , bp1−1, xp1
, bp1+1, . . . , bd) = f1(b1, . . . , bp1−1, xp1

, bp1+1, . . . , bd) = a1,

and again we obtain a unique xp1
= bp1

from p1-invertibility of f1.
So, the given system has a unique solution x1 = b1, x2 = b2, . . . , xd = bd and

the d-tuple F1, . . . , Fd is orthogonal. �

The systems from Theorem 3.1 and Theorem 3.2 are special cases of Theo-
rem 3.3, where we use the permutation d, d−1, . . . , 1 in the first case, and 1, 2, . . . , d
in the second case.

Another special case of Theorem 3.3 is when f1 = · · · = fd = f , where f is
d-ary quasigroup operation.

Corollary 3.1. Let f be a d-ary quasigroup operation, and let p1, . . . , pd be a

permutation of the positions 1, . . . , d. Then the system of operations 〈F1, . . . , Fd〉:

F1(x1, . . . , xd) = f(x1, . . . , xd),

F2(x1, . . . , xd) = f(x1, . . . , xp1−1, F1(x1, . . . , xd), xp1+1, . . . , xd),

Fi(x1, . . . , xd) = f(y1, . . . , yd), i = 3, . . . , d,

where ypi−1
= F1(x1, . . . , xd), ypi−2

= F2(x1, . . . , xd),. . . , yp1
= Fi−1(x1, . . . , xd),

and yj = xj for j /∈ {p1, . . . , pi−1} is orthogonal.

Example 3.1. Let (Q, f) be the 4-ary quasigroup on Q = {0, 1, 2, 3} defined
by f(x1, x2, x3, x4) = x1 + x2 + x3 + x4 mod 4. Take in Corollary 3.1 the permu-
tation 3, 1, 2, 4 of the positions 1, 2, 3, 4. Then the following 4-tuple 〈F1, F2, F3, F4〉
of orthogonal 4-ary operations is obtained, where F2, F3, and F4 are not 4-ary
quasigroup operations:

F1(x1, x2, x3, x4) = f(x1, x2, x3, x4) = x1 + x2 + x3 + x4 mod 4,

F2(x1, x2, x3, x4) = f(x1, x2, F1(x1, x2, x3, x4), x4) = 2x1 + 2x2 + x3 + 2x4 mod 4,
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F3(x1, x2, x3, x4) = f(F1(x1, x2, x3, x4), x2, F2(x1, x2, x3, x4), x4)

= 3x1 + 2x3 mod 4,

F4(x1, x2, x3, x4) = f(F2(x1, x2, x3, x4), F1(x1, x2, x3, x4), F3(x1, x2, x3, x4), x4)

= 2x1 + 3x2 mod 4.

One can see that F2 is 3-invertible, F3 is 1-invertible and F4 is 2-invertible
4-ary operation.

We will prove that this system of functions can not be obtained from some
other set of linear 4-ary operations by using Belyavskaya and Mullen method from
Theorem 3.1. Let suppose the opposite - that the system F1, F2, F3, F4 can be ob-
tained by a set 〈g1, g2, g3, g4〉 of linear 4-ary operations using Theorem 3.1, where
g1 is 4-invertible, g2 is 3-invertible, g3 is 2-invertible, and g4 is 1-invertible oper-
ation. In other words, we suppose that 〈G1, G2, G3, G4〉 = 〈F1, F2, F3, F4〉, where
Gi are got from gi as in Theorem 3.1. It is clear from Theorem 3.1 that if gi is
k-invertible, then Gi is k-invertible too. Then, the following system with unknown
linear functions gi on (Z4, +) should be satisfied:

G1(x1, x2, x3, x4) = g1(x1, x2, x3, x4) = F1(x1, x2, x3, x4)

= x1 + x2 + x3 + x4 mod 4,

G2(x1, x2, x3, x4) = g2(x1, x2, x3, G1(x1, x2, x3, x4)) = F2(x1, x2, x3, x4)

= 2x1 + 2x2 + x3 + 2x4 mod 4,

G3(x1, x2, x3, x4) = g3(x1, x2, G1(x1, . . . , x4), G2(x1, . . . , x4))

= F3(x1, . . . , x4) = 3x1 + 2x3 mod 4,

G4(x1, x2, x3, x4) = g4(x1, G1(x1, . . . , x4), G2(x1, . . . , x4), G3(x1, . . . , x4))

= F4(x1, . . . , x4) = 2x1 + 3x2 mod 4.

It can be easily seen that this system has no 4-ary linear function solutions g1, g2,
g3, g4. Hence, we conclude that our generalization of Theorems 1 and 2 is sound.

Proposition 3.1. Every d-ary quasigroup (Q, f) of order n can rise at most

d! different d-tuples 〈F1, F2, . . . , Fd〉 of orthogonal d-ary operations generated by the

procedure given in Corollary 3.1, where f1 = · · · = fd = f .

The following proposition is a generalization of Proposition 7 in [4].

Proposition 3.2. Let (Q, f) be a d-ary quasigroup of order n. Then the (d+1)-
tuple 〈F1, F2, . . . , Fd+1〉, defined by

F1(x1, . . . , xd) = f(x1, . . . , xd),

F2(x1, . . . , xd) = f(x1, . . . , xd−1, F1(x1, . . . , xd)),

F3(x1, . . . , xd) = f(x1, . . . , xd−2, F1(x1, . . . , xd), F2(x1, . . . , xd)),
...

Fd(x1, . . . , xd) = f(x1, F1(x1, . . . , xd), F2(x1, . . . , xd), . . . , Fd−1(x1, . . . , xd)),

Fd+1(x1, . . . , xd) = f(F1(x1, . . . , xd), F2(x1, . . . , xd), . . . , Fd(x1, . . . , xd)),

is d-orthogonal.
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Proof. Orthogonality of the d-tuple 〈F1, F2, . . . , Fd〉 follows from Theorem 3.1.

Consider the system {Fi(x1, . . . , xd) = ai}
d+1
i=2 . From the last equation ad+1 =

Fd+1(x1, . . . , xd), we have f(f(x1, . . . , xd), a2, . . . , ad) = ad+1 and it follows that

F1(x1, . . . , xd) = f(x1, . . . , xd) =(1) f(ad+1, a2, . . . , ad) = a1

for some a1 ∈ Q, where (Q,(1)f) is the 1-th inverse d-ary quasigroup for (Q, f).
Now, as before, the system {Fi(x1, . . . , xd) = ai}

d
i=1 has a unique solution

x1 = b1, x2 = b2, . . . , xd = bd over Q. Since

Fd+1(b1, . . . , bd) = f(F1(b1, . . . , bd), F2(b1, . . . , bd), . . . , Fd(b1, . . . , bd))

= f((1)f(ad+1, a2, . . . , ad), a2, . . . , ad) = ad+1,

we have that x1 = b1, x2 = b2, . . . , xd = bd is the unique solution of the system
{Fi(x1, . . . , xd) = ai}

d+1
i=2 as well, meaning the system is orthogonal.

Finally, for 2 6 j 6 d, consider the system

{Fi(x1, . . . , xd) = ai | i ∈ {1, . . . , j − 1, j + 1, . . . , d + 1}}.

We have Fj(x1, . . . , xd) = f(x1, . . . , xd−j+1, a1, . . . , aj−1). By replacing the values
for Ft, 1 6 t 6 d, in the equation Fd+1(x1, . . . , xd) = ad+1, we obtain

ad+1 = f(a1, . . . , aj−1, f(x1, . . . , xd−j+1, a1, . . . , aj−1), aj+1, . . . , ad),

which implies

f(x1, . . . , xd−j+1, a1, . . . , aj−1) =(j) f(a1, . . . , aj−1, ad+1, aj+1, . . . , ad) = aj ,

for some aj ∈ Q. As before, the system {Fi(x1, . . . , xd) = ai}
d
i=1 has a unique

solution x1 = b1, x2 = b2, . . . , xd = bd over Q. Now we compute

Fd+1(b1, . . . , bd) = f(F1(b1, . . . , bd), F2(b1, . . . , bd), . . . , Fd(b1, . . . , bd))

= f(a1, . . . , aj−1,(j)f(a1, . . . , aj−1, ad+1, aj+1, . . . , ad), aj+1, . . . , ad) = ad+1.

We conclude that the system

{Fi(x1, . . . , xd) = ai | i ∈ {1, . . . , j − 1, j + 1, . . . , d + 1}}

has the unique solution x1 = b1, x2 = b2, . . . , xd = bd over Q. This completes the
proof of the theorem. �

Now we can give the second main construction, which is a generalization of
Proposition 3.2.

Theorem 3.4. Let (Q, f) be a d-ary quasigroup of order n. Let p1, . . . , pd be

a permutation of the positions 1, . . . , d. Then the (d + 1)-tuple 〈F1, F2, . . . , Fd+1〉,
defined by

F1(x1, . . . , xd) = f(x1, . . . , xd),

F2(x1, . . . , xd) = f(x1, . . . , xp1−1, F1(x1, . . . , xd), xp1+1, . . . , xd),

Fi(x1, . . . , xd) = f(y1, . . . , yd), i = 3, . . . , d + 1,

where ypi−1
= F1(x1, . . . , xd), ypi−2

= F2(x1, . . . , xd),. . . , yp1
= Fi−1(x1, . . . , xd),

and yj = xj for j /∈ {p1, . . . , pi−1}, is d-wise orthogonal.
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Proof. Orthogonality of the d-tuple 〈F1, F2, . . . , Fd〉 follows from Proposi-
tion 3.2.

Consider the system {Fi(x1, . . . , xd) = ai}
d+1
i=2 . From the last equation, we have

Fd+1(x1, . . . , xd) = f(y1, . . . , yd) = ad+1, where ypk
= ad+1−k for k = 1, . . . , d − 1

and ypd
= F1(x1, . . . , xd) = f(x1, . . . , xd).

It follows that ad+1 = f(y1, . . . , ypd−1, f(x1, . . . , xd), ypd+1, . . . , yd), and that

implies f(x1, . . . , xd) =(pd) f(y1, . . . , ypd−1, ad+1, ypd+1, . . . , yd) ∈ Q, since yt ∈ Q.
So, F1(x1, . . . , xd) = f(x1, . . . , xd) = a1 for some a1 ∈ Q.

Next we replace the value a1 of F1(x1, . . . , xd) in the equation for Fd, obtaining
Fd(x1, . . . , xd) = f(y1, . . . , yd) = ad, where ypd

= xpd
, ypd−1

= a1 and ypk
= ad−k

for k = 1, . . . , d − 2. Because f is pd-invertible operation, we obtain a unique
xpd

= bpd
∈ Q.

For i = d−1, . . . , 2, we substitute the value a1 of F1(x1, . . . , xd) and the already
obtained unique new values bpd

, . . . , bpi+1
of Fd, . . . , Fi+1, respectively, and we ob-

tain Fi(x1, . . . , xd) = f(y1, . . . , yd) = ai, where ypi
= xpi

, ypi−1
= a1, ypk

= bpk
for

k = d, . . . , i + 1, and ypk
= ai−k for k = 1, . . . , i − 1. Because f is pi-invertible

operation, this leads to a unique xpi
= bpi

.
Finally, in the equation F1(x1, . . . , xd) = f(x1, . . . , xd) = a1, we replace xpk

with bpk
for k = 2, . . . , d, and because f is p1-invertible operation, we obtain a

unique xp1
= bp1

. So, the system {Fi(x1, . . . , xd) = ai}
d+1
i=2 is orthogonal.

To complete the proof, we have to show that the d-tuples 〈Fi | i 6= j, i = 1,
. . . , d+1〉 for each j, 2 6 j 6 d, are orthogonal. For that aim, consider the systems

of equations {Fi(x1, . . . , xd) = ai}
d+1
i=1,i6=j for each j, 2 6 j 6 d. We have

Fd+1(x1, . . . , xd) = f(y1, . . . , yd) = ad+1,

where ypd+1−k
= ak for k 6= j and k = 1, . . . , d, and ypd+1−j

= Fj(x1, . . . , xd).
From the equality f(y1, . . . , ypd+1−j−1, Fj(x1, . . . , xd), ypd+1−j+1, . . . , yd) = ad+1,

since yt ∈ Q, it follows that

Fj(x1, . . . , xd) =(pd+1−j) f(y1, . . . , ypd+1−j−1, ad+1, ypd+1−j+1, . . . , yd) ∈ Q,

hence we have Fj(x1, . . . , xd) = aj for some aj ∈ Q.
There are two cases to consider.

Case j = d. We have Fd(x1, . . . , xd) = ad, and the system {Fi(x1, . . . , xd) = ai}
d
i=1

has a unique solution b1, b2, . . . , bd according to Theorem 4. We compute

Fd+1(b1, . . . , bd) = f(y1, . . . , yd),

where ypd+1−k
= Fk(b1, . . . , bd) = ak for k = 1, . . . , d − 1 and

yp1
= Fd(b1, . . . , bd) =(p1) f(y1, . . . , yp1−1, ad+1, yp1+1, . . . , yd).

The last equation implies f(y1, . . . , yd) = ad+1, i.e., Fd+1(b1, . . . , bd) = ad+1, hence

b1, . . . , bd is the unique solution of the system {Fi(x1, . . . , xd) = ai}
d+1
i6=d,i=1. So, the

d-tuple 〈Fi| i = 1, . . . , d − 1, d + 1〉 is orthogonal.

Case j < d. We replace the value aj of Fj(x1, . . . , xd) in the equation for Fd,
obtaining Fd(x1, . . . , xd) = f(y1, . . . , yd) = ad, where ypd

= xpd
, ypd−j

= aj and
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ypd−k
= ak for k 6= j and k = 1, . . . , d − 1. Because f is pd-invertible operation, we

obtain a unique xpd
= bpd

.
In the same way, from Fd−1(x1, . . . , xd) = f(y1, . . . , yd) = ad−1, where ypd

=
xpd

= bpd
, ypd−1

= xpd−1
, ypd−1−j

= aj and ypd−1−k
= ak for k 6= j and k = 1,

. . . , d − 2, we can compute the value xpd−1
= bpd−1

, since f is pd−1-invertible.
Continuing, we can compute the values xpd

= bpd
, xpd−1

= bpd−1
, . . . , xpj+1

= bpj+1
.

For i = j − 1, . . . , 1, we substitute obtained new values in the equation for Fi

and we obtain Fi(x1, . . . , xd) = f(y1, . . . , yd) = ai, where ypi
= xpi

, ypi−k
= bpk

for k = d, . . . , i + 1, and ypk
= ak for k = 1, . . . , i − 1. Because f is pi-invertible

operation, this leads to a unique xpi
= bpi

.
Finally, in the equation Fj(x1, . . . , xd) = aj , we replace xpk

with bpk
for k 6= j

and k = 1, . . . , d, and because f is pj-invertible operation, we obtain a unique
xpj

= bpj
.

We compute Fd+1(b1, . . . , bd) = f(y1, . . . , yd), where ypd+1−k
= Fk(b1, . . . , bd) =

ak for k = 1, . . . , d, k 6= j, and

ypd+1−j
= Fj(b1, . . . , bd) =(pd+1−j) f(y1, . . . , ypd+1−j−1, ad+1, ypd+1−j+1, . . . , yd).

The last equation implies f(y1, . . . , yd) = ad+1, i.e., Fd+1(b1, . . . , bd) = ad+1, hence

b1, . . . , bd is the unique solution of the system {Fi(x1, . . . , xd) = ai}
d+1
i6=d,i=1. So, the

d-tuple 〈Fi | i = 1, . . . , j − 1, j + 1, . . . , d + 1〉 is orthogonal. �

At the end, we give one more construction.

Theorem 3.5. Let 〈f1, f2, . . . , fd〉 be d-ary operations defined on a set Q and

let fi, 1 6 i 6 d, be 1-invertible d-ary operation. Then the d-tuple 〈F1, F2, . . . ,
. . . , Fd〉, defined by

F1(x1, . . . , xd) = f1(x1, . . . , xd),

F2(x1, . . . , xd) = f2(x2, . . . , xd, F1(x1, . . . , xd)),

F3(x1, . . . , xd) = f3(x3, . . . , xd, F1(x1, . . . , xd), F2(x1, . . . , xd)),
...

Fd(x1, . . . , xd) = fd(xd, F1(x1, . . . , xd), F2(x1, . . . , xd), . . . , Fd−1(x1, . . . , xd)),

is orthogonal.

Proof. Consider the system {Fi(x1, . . . , xd) = ai}
d
i=1 and substitute the val-

ues of F1, . . . , Fd−1 into the last equation:

Fd(x1, . . . , xd) = fd(xd, a1, a2, . . . , ad−1) = ad.

We obtain a unique xd = bd since the fd is 1-invertible operation, and so the
Fd is d-invertible operation. Next, we substitute this value of xd and the values of
F1, . . . , Fd−2 into the (d − 1)-th equation:

Fd−1(x1, . . . , xd−1, bd) = fd−1(xd−1, bd, a1, a2, . . . , ad−2) = ad−1,

and we obtain a unique xd−1 = bd−1 using the 1-invertibility of fd−1; again, we
have that Fd−1 is a (d − 1)-invertible operation. Proceeding in the same way, we
do similar substitution in all equations till the first one,

F1(x1, b2, . . . , bd) = f1(x1, b2, . . . , bd) = a1.
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We obtain a unique x1 = b1 from 1-invertibility of f1.
So, the given system has a unique solution x1 = b1, x2 = b2, . . . , xd = bd and

the d-tuple 〈F1, . . . , Fd〉 is orthogonal. �

A special case of Theorem 3.5 is when f1 = · · · = fd = f, where (Q, f) is
an arbitrary d-ary quasigroup (this special case of Theorem 3.5 is firstly proved
in [11]). The operations F1, F2, . . . , Fd are known as recursive derivatives of f
[5, 6]. Recursive derivatives are also the functions defined by Fi+d(x1, . . . , xd) =
f(Fi(x1, . . . , xd), . . . , Fi+d−1(x1, . . . , xd)), i > 1. A d-ary quasigroup (Q, f) is called
recursively r-differentiable if all recursive derivatives F2, . . . , Fr+1 are quasigroup
operations.

Example 3.2. Let (Q, f) be the 4-ary quasigroup on Q = {0, 1, 2, 3, 4} with
the operation

f(x1, x2, x3, x4) = x1 + x2 + x3 + x4 mod 5.

We compute by Theorem 3.5 the 4-ary operations

F2(x1, x2, x3, x4) = x1 + 2x2 + 2x3 + 2x4 mod 5,

F3(x1, x2, x3, x4) = 2x1 + 3x2 + 4x3 + 4x4 mod 5,

F4(x1, x2, x3, x4) = 4x1 + x2 + 2x3 + 3x4 mod 5.

All of the operations F2, F3, F4 are quasigroup operations, so (Q, f) is an example
of a recursively 3-differentiable quasigroup.
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