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A NOTE ON THE FEKETE–SZEGÖ PROBLEM
FOR CLOSE-TO-CONVEX FUNCTIONS

WITH RESPECT TO CONVEX FUNCTIONS

Bogumiła Kowalczyk, Adam Lecko, and H. M. Srivastava

Abstract. We discuss the sharpness of the bound of the Fekete–Szegö func-
tional for close-to-convex functions with respect to convex functions. We also
briefly consider other related developments involving the Fekete–Szegö func-
tional |a3 − λa2

2
| (0 6 λ 6 1) as well as the corresponding Hankel determinant

for the Taylor–Maclaurin coefficients {an}n∈Nr{1} of normalized univalent
functions in the open unit disk D, N being the set of positive integers.

1. Introduction

A classical problem in geometric function theory of complex analysis, which
was settled by Fekete and Szegö [4], is to find for each λ ∈ [0, 1] the maximum
value of the coefficient functional Φλ(f) given by

(1.1) Φλ(f) :=
∣

∣a3 − λa2
2

∣

∣

over the class S of univalent functions f in the open unit disk

D := {z : z ∈ C and |z| < 1}
of the following normalized form (see, for details, [5,22,24]):

(1.2) f(z) = z +

∞
∑

n=2

anzn (z ∈ D).

By applying the Loewner method, Fekete and Szegö [4] proved that

max
f∈S

Φλ(f) =

{

1 + 2 exp
(

− 2λ
1−λ

)

(0 6 λ < 1)

1 (λ = 1).
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For various compact subclasses F of the class A of all analytic functions f in
D of the form (1.2), as well as with λ being an arbitrary real or complex number,
many authors computed

(1.3) max
f∈F

Φλ(f)

or calculated the upper bound of (1.3) (see, e.g., [2,8,11,21]).
Let S∗ denote the class of starlike functions, that is, f ∈ S∗ if

f ∈ A and Re

(

zf ′(z)

f(z)

)

> 0 (z ∈ D).

Given δ ∈ (− π
2 , π

2 ) and g ∈ S∗, let Cδ(g) denote the class of functions called close-

to-convex with argument δ with respect to g, that is, the class of all functions f ∈ A
such that

(1.4) Re

(

eiδ zf ′(z)

g(z)

)

> 0 (z ∈ D).

We also suppose that, given g ∈ S∗, C(g) :=
⋃

g∈S∗ Cδ(g) and that, given δ ∈
(− π

2 , π
2 ), Cδ :=

⋃

g∈S∗ Cδ(g). Let

C :=
⋃

δ∈(− π

2
, π

2
)

⋃

g∈S∗

Cδ(g)

denote the class of close-to-convex functions (see, for details, [20, pp. 184–185],
[6,10]).

For the whole class C, the sharp bound of the Fekete–Szegö coefficient functional
Φλ for λ ∈ [0, 1], given by (1.1), was calculated by Koepf [13] who extended the
earlier result for the class C0 and for λ ∈ R due to Keogh and Merkes [11], namely,
it holds

max
f∈C

Φλ(f) = max
f∈C0

Φλ(f) =











|3 − 4λ|
(

λ ∈
(

− ∞, 1
3

]

∪ [1, ∞)
)

1
3 + 4

9λ

(

λ ∈
[

1
3 , 2

3

])

1
(

λ ∈
[

2
3 , 1

])

.

For various subclasses of the class of close-to-convex functions, the problem to
estimate the coefficient functional Φλ is continued in several subsequent works (see,
for details, [9,12,14–16]). Some interesting and important subclasses of the class
C are the classes Cc

δ and Cc, which are defined below.
Let Sc denote the class of convex functions, that is, f ∈ Sc if

f ∈ A and Re

(

1 +
zf ′′(z)

f ′(z)

)

> 0 (z ∈ D).

Since Sc ( S∗, the class Cc
δ :=

⋃

g∈Sc Cδ(g) is a proper subclass of the class Cδ and
the class

Cc :=
⋃

δ∈(− π

2
, π

2
)

⋃

g∈Sc

Cδ(g)

is a proper subclass of the class C.
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The class Cc
0 was defined by Abdel-Gawad and Thomas [1]. The class Cc of

close-to-convex functions with respect to convex functions was introduced by Srivas-
tava, Mishra and Das [23]. In both of these cited papers, the authors (Abdel-Gawad
and Thomas [1] and Srivastava, Mishra and Das [23]) considered the coefficient
functional Φλ with λ ∈ [0, 1] also. In fact, in Srivastava, Mishra and Das [23] ex-
tended, for the class Cc, the earlier result of Abdel-Gawad and Thomas [1] for the
class Cc

0. However, in each of the above-cited papers, the proof for the sharpness of
the bound in (1.3) for λ ∈

(

2
3 , 1

]

was proposed incorrectly as 5/6.
This note is motivated essentially by the earlier papers [1] and [23]. The main

purpose of our investigation here is to discuss such sharpness results for the bound
in (1.3). We also provide a rather brief consideration of other related develop-
ments involving the Fekete–Szegö functional

∣

∣a3 − λa2
2

∣

∣ (0 6 λ 6 1) in (1.1) as
well as the corresponding Hankel determinant for the Taylor–Maclaurin coefficients
{an}n∈Nr{1} of normalized univalent functions of the form (1.2).

2. Main Observation

As we remarked in Section 1, in both of the afore cited papers [1,23], the upper
bounds of the Fekete–Szegö coefficient functional Φλ (0 6 λ 6 1) for the classes
Cc

0 and Cc, were computed. In fact, Theorems 5 and 6 of Srivastava, Mishra and
Das [23] state that the following sharp inequality

(2.1) max
f∈Cc

Φλ(f) 6 5
6

(

λ ∈
[

2
3 , 1

])

holds true and that this result is the same as in [1] for the class Cc
0 (a part of

Theorem 3). However, the assertion that the extremal function, for which the
equality in (2.1) is satisfied when λ ∈ (2

3 , 1], belongs to Cc is incorrect. Indeed, here
in this section, we note that the above-cited papers [1, 23] contain a statement to
the effect that the equality in (2.1) is attained by a function f ∈ A given by

(2.2)
zf ′(z)

h(z)
=

1 + ω(z)

1 − ω(z)
(z ∈ D),

where h ∈ Sc is of the form

(2.3) h(z) = z +
∞

∑

n=2

bnzn (z ∈ D; b2 = b3 := 1)

and ω is a function of the form

(2.4) ω(z) =

∞
∑

n=1

βnzn (z ∈ D)

with

(2.5) β1 :=
2 − 3λ

6λ
± i

√
6λ − 4

6λ
and β2 := 1 − β2

1 .

Unfortunately, however, ω is not a Schwarz function for λ ∈ (2
3 , 1]. We recall here

that a Schwarz function means an analytic self-mapping of D with ω(0) := 0. Let us
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denote the class of Schwarz functions by B0. In order to see that ω /∈ B0, we verify
(by straightforward computation) that, for λ ∈ (2

3 , 1], the following inequality:

(2.6) |β2| 6 1 − |β1|2

is false, so a necessary condition for ω to be in B0 (see, for example, [5, Vol. II,
p. 78]) does not hold true. Alternatively, in order to get a contradiction, we suppose
that ω with its coefficients in (2.5) is a Schwarz function. Thus, clearly, (2.6) holds
true. Hence we find from (2.5) that 1 − |β1|2 > |β2| = |1 − β2

1 | > 1 − |β1|2. Thus we
have |1 − β2

1 | = 1 − |β1|2 and, therefore, β1 = |β1| or β1 = −|β1|. This means that
β1 is a real number, which by (2.5) is possible only for λ = 2

3 . Consequently, for

λ ∈ (2
3 , 1], the function ω with its coefficients in (2.5) does not belong to B0. So,

in light of (2.2), it does not follow that f is in Cc or in Cc
0.

Equivalently, let

(2.7) p(z) :=
1 + ω(z)

1 − ω(z)
(z ∈ D),

where ω is as given above. Then

(2.8) p(z) = 1 +

∞
∑

n=1

cnzn (z ∈ D),

where, in view of (2.7), (2.4) and (2.5), we have c1 = 2β1 and c2 = 2(β2 + β2
1) = 2.

We observe further that, for λ ∈ (2
3 , 1], the function p does not belong to the

Carathéodory class. We recall here that the Carathéodory class, denoted as P ,
contains analytic functions p of the form (2.8) with a positive real part. In order to
see that p /∈ P, we verify for λ ∈ (2

3 , 1] that the inequality
∣

∣c2 − c2
1/2

∣

∣ 6 2 − |c1|2/2,
is false, which happens to be a necessary condition for p to be in the class P (see,
for example, [22, p. 166]).

3. Concluding remarks and further developments

By means of Theorem 3 of Abdel-Gawad and Thomas [1], Theorems 1 to 4 of
Srivastava, Mishra and Das [23], and in light of our observation in Section 2, we
arrive at the following result.

Theorem 1. Each of the following assertions holds true:

max
f∈Cc

Φλ(f) = max
f∈Cc

0

Φλ(f) =

{

5
3 − 9λ

4

(

λ ∈
[

0, 2
9

])

2
3 + 1

9λ

(

λ ∈
[

2
9 , 2

3

])(3.1)

max
f∈Cc

Φλ(f) 6 5
6

(

λ ∈
(

2
3 , 1

])

.(3.2)

Remark 1. The sharpness of the inequality in (3.2) for the classes Cc and Cc
0

is an open problem.

We now note that, by Loewner Theorem (see, for example, [5, Vol. I, p. 1127]),
the function h ∈ Sc of the form (2.3) (with b2 = b3 := 1) is uniquely determined,
that is, h(z) = z

1−z
=

∑∞
n=1 zn (z ∈ D). Then (1.4) with g := h is of the form

(3.3) Re(eiδ(1 − z)f ′(z)) > 0 (z ∈ D)
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and defines the class Cδ(h), and further the class C(h). For the first time, the
inequality in (3.3), treated as the univalence criterion, was distinguished explicitly
in [20, p. 185]. For the class C(h), the upper bound of the Fekete–Szegö coefficient
functional Φλ for λ ∈ R was recently obtained in [14], where the following result
was proven.

Theorem 2. It is asserted that

(3.4) max
f∈C(h)

Φλ(f) 6

{
∣

∣

1
3 − 1

4 λ
∣

∣ + 2
3 |2 − 3λ|

(

λ ∈
(

− ∞, 2
9

]

∪
[

10
9 , ∞

))

1
12 · (2−3λ)2

2−|2−3λ| +
∣

∣

1
3 − 1

4 λ
∣

∣ + 2
3

(

λ ∈
[

2
9 , 10

9

])

.

For each λ ∈
(

− ∞, 2
3

]

∪
[

4
3 , ∞

)

, the inequality is sharp and the equality in (2) is

attained by a function in C0(h).

Remark 2. For λ ∈
(

− ∞, 2
3

]

∪
[

4
3 , ∞

)

, we can rewrite (3.4) as the following
corollary.

Corollary 1. The following assertion holds true:

(3.5) max
f∈C(h)

Φλ(f) =

{

∣

∣

5
3 − 9λ

4

∣

∣

(

λ ∈
(

− ∞, 2
9

]

∪
[

4
3 , ∞

))

2
3 + 1

9λ

(

λ ∈
[

2
9 , 2

3

])

.

Remark 3. For λ ∈
[

0, 2
3

]

, the result (3.5) asserted by Corollary 3.5 coincides
with (3.1). Thus, naturally, Theorem 1 and Theorem 2 yield Corollary 2 below.

Corollary 2. Each of the following assertions holds true:

max
f∈C(h)

Φλ(f) = max
f∈Cc

0

Φλ(f) = max
f∈Cc

Φλ(f)
(

λ ∈
[

0, 2
3

])

,

max
f∈C(h)

Φλ(f) 6
9λ2 − 30λ + 26

6(4 − 3λ)
6

5

6

(

λ ∈
(

2
3 , 1

])

.

Remark 4. The maximum of Φλ for λ ∈
[

0, 2
3

]

, over the class Cc of close-
to-convex functions with respect to convex functions and over its subclass C(h) of
close-to-convex functions with respect to convex function h, are identical.

Remark 5. The sharpness of the inequality in (3.4) for λ ∈
(

2
3 , 4

3

)

is an open

problem.

Remark 6. We reiterate the fact that the Fekete–Szegö coefficient functional
∣

∣a3 − λa2
2

∣

∣ is well known for its rich history in geometric function theory. Its origin
was in the disproof by Fekete and Szegö [4] of the 1933 conjecture of Littlewood and
Paley that the coefficients of odd univalent functions are bounded by unity (see,
for details, [4]). The λ-generalized Fekete–Szegö coefficient functional

∣

∣a3 − λa2
2

∣

∣

has since received great attention, particularly in connection with many subclasses
of the class S of normalized analytic and univalent functions. On the other hand,
in the year 1976, Noonan and Thomas [17] defined the qth Hankel determinant of
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the function f in (1.2) by

Hq(n) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

an an+1 · · · an+q−1

an+1 an+2 · · · an+q

...
...

...
...

an+q−1 an+q · · · an+2q−2

∣

∣

∣

∣

∣

∣

∣

∣

∣

(n, q ∈ N; a1 := 1).

The determinant Hq(n) has also been considered by several other authors. For
example, Noor [18] determined the rate of growth of Hq(n) as n → ∞ for functions
f given by (1.1) with bounded boundary. In particular, sharp upper bounds on
H2(2) were obtained in the recent works [7, 18] for different classes of functions.
We note, in particular, that

H2(1) =

∣

∣

∣

∣

a1 a2

a2 a3

∣

∣

∣

∣

= a3 − a2
2 and H2(2) =

∣

∣

∣

∣

a2 a3

a3 a4

∣

∣

∣

∣

= a2a4 − a2
3.

The Hankel determinant H2(1) = a3 − a2
2 is the classical Fekete–Szegö coefficient

functional. The upper bounds of H2(2) for some specific analytic function classes
were discussed quite recently by Deniz et al. [3] (see also [19]).
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