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POSITIVE ENERGY UNITARY
IRREDUCIBLE REPRESENTATIONS
OF THE SUPERALGEBRA osp(1⋃︀8,R)

Vladimir Dobrev𝑎 and Igor Salom𝑏

Abstract. We continue the study of positive energy (lowest weight) unitary
irreducible representations of the superalgebras osp(1⋃︀2𝑛,R). We present the
full list of these UIRs. We give a proof of the case osp(1⋃︀8,R).

1. Introduction

Recently, superconformal field theories in various dimensions are attracting
more interest, in particular, due to their duality to AdS supergravities. This makes
the classification of the UIRs of these superalgebras very important. Until recently
only those for 𝐷 ⩽ 6 were studied since in these cases the relevant superconformal
algebras satisfy [24] the Haag–Lopuszanski–Sohnius theorem [19]. Thus, such clas-
sification was known only for the 𝐷 = 4 superconformal algebras su(2, 2⇑𝑁) [17]
(for 𝑁 = 1), [10–13] (for arbitrary 𝑁). More recently, the classification for 𝐷 = 3
(for even 𝑁), 𝐷 = 5, and 𝐷 = 6 (for 𝑁 = 1, 2) was given in [23] (some results are
conjectural), and then the 𝐷 = 6 case (for arbitrary 𝑁) was finalized in [8].

On the other hand the applications in string theory require the knowledge of
the UIRs of the conformal superalgebras for 𝐷 > 6. Most prominent role play
the superalgebras osp(1⋃︀2𝑛). Initially, the superalgebra osp(1⋃︀32) was put forward
for 𝐷 = 10 [18, 26]. Later it was realized that osp(1⋃︀2𝑛) would fit any dimension,
though they are minimal only for 𝐷 = 3, 9, 10, 11 (for 𝑛 = 2, 16, 16, 32, resp.) [2,3,16].
In all cases we need to find at first the UIRs of osp(1⋃︀2𝑛,R) the study of which was
started in [15] and [9]. Later, in [14], we finalized the UIR classification of [15]
as Dobrev–Zhang–Salom (DZS) Theorem. In [14] we proved the DZS Theorem for
osp(1⋃︀6).
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In the present paper, we prove the DZS Theorem for osp(1⋃︀8). For the lack of
space, we refer to [14,15] for extensive literature on the subject.

2. Preliminaries on representations

Our basic references for Lie superalgebras are [20–22], although in this expo-
sition we follow [15].

The even subalgebra of 𝒢 = osp(1⋃︀2𝑛,R) is the algebra sp(2𝑛,R) with maximal
compact subalgebra 𝒦 = 𝑢(𝑛) ≅ su(𝑛) ⊕ 𝑢(1).

We label the relevant representations of 𝒢 by the signature

(2.1) 𝜒 = (︀𝑑 ; 𝑎1 , . . . , 𝑎𝑛−1 ⌋︀
where 𝑑 is the conformal weight, and 𝑎1, . . . , 𝑎𝑛−1 are non-negative integers which
are Dynkin labels of the finite-dimensional UIRs of the subalgebra su(𝑛) (the simple
part of 𝒦).

In [15] were classified (with some omissions to be spelled out below) the positive
energy (lowest weight) UIRs of 𝒢 following the methods used for the 𝐷 = 4, 6
conformal superalgebras, cf. [8, 10–13], resp. The main tool was an adaptation
of the Shapovalov form [25] on the Verma modules 𝑉 𝜒 over the complexification
𝒢C = osp(1⋃︀2𝑛) of 𝒢.

We recall some facts about 𝒢C = osp(1⋃︀2𝑛) (denoted 𝐵(0, 𝑛) in [20, 21]) as
used in [15]. The root systems are given in terms of 𝛿1 . . . , 𝛿𝑛, (𝛿𝑖, 𝛿𝑗) = 𝛿𝑖𝑗 ,
𝑖, 𝑗 = 1, . . . , 𝑛. The even and odd roots systems are [20,21]

Δ0̄ = {±𝛿𝑖 ± 𝛿𝑗 , 1 ⩽ 𝑖 < 𝑗 ⩽ 𝑛; ±2𝛿𝑖, 1 ⩽ 𝑖 ⩽ 𝑛}, Δ1̄ = {±𝛿𝑖, 1 ⩽ 𝑖 ⩽ 𝑛}
(we remind that the signs ± are not correlated). We shall use the following distin-
guished simple root system [20,21] Π = {𝛿1 − 𝛿2, . . . , 𝛿𝑛−1 − 𝛿𝑛, 𝛿𝑛}, or, introducing
standard notation for the simple roots,

Π = {𝛼1, . . . , 𝛼𝑛}, 𝛼𝑗 = 𝛿𝑗 − 𝛿𝑗+1, 𝑗 = 1, . . . , 𝑛 − 1, 𝛼𝑛 = 𝛿𝑛.

The root 𝛼𝑛 = 𝛿𝑛 is odd, the other simple roots are even. The Dynkin diagram is

○
1
−− ⋅ ⋅ ⋅ −− ○

𝑛−1
Ô⇒ ●

𝑛
.

The black dot is used to signify that the simple odd root is not nilpotent. In
fact, the superalgebras 𝐵(0, 𝑛) = osp(1⋃︀2𝑛) have no nilpotent generators unlike all
other types of basic classical Lie superalgebras [20,21].

The corresponding to Π positive root system is

(2.2) Δ+

0̄ = {𝛿𝑖 ± 𝛿𝑗 , 1 ⩽ 𝑖 < 𝑗 ⩽ 𝑛; 2𝛿𝑖, 1 ⩽ 𝑖 ⩽ 𝑛}, Δ+

1̄ = {𝛿𝑖, 1 ⩽ 𝑖 ⩽ 𝑛}
We record how the elementary functionals are expressed through the simple roots:

𝛿𝑘 = 𝛼𝑘 + ⋅ ⋅ ⋅ + 𝛼𝑛.

From the point of view of representation theory, more relevant is the restricted
root system, such that

Δ̄+ = Δ̄+

0̄ ∪Δ+

1̄ , Δ̄+

0̄ ≡ {𝛼 ∈ Δ+

0̄ ⋃︀
1
2 𝛼 ∉ Δ+

1̄} = {𝛿𝑖 ± 𝛿𝑗 , 1 ⩽ 𝑖 < 𝑗 ⩽ 𝑛}



POSITIVE ENERGY UIRS OF osp(1⋃︀8,R) 51

The superalgebra 𝒢 = osp(1⋃︀2𝑛,R) is a split real form of osp(1⋃︀2𝑛) and has
the same root system.

The above simple root system is also the simple root system of the complex
simple Lie algebra 𝐵𝑛 (dropping the distinction between even and odd roots) with
Dynkin diagram

○
1
−− ⋅ ⋅ ⋅ −− ○

𝑛−1
Ô⇒ ○

𝑛
.

Naturally, for the 𝐵𝑛 positive root system we drop the roots 2𝛿𝑖

Δ+

B𝑛
= {𝛿𝑖 ± 𝛿𝑗 , 1 ⩽ 𝑖 < 𝑗 ⩽ 𝑛; 𝛿𝑖, 1 ⩽ 𝑖 ⩽ 𝑛} ≅ Δ̄+

This shall be used essentially below.
Besides (2.1), we shall use the Dynkin-related labelling:

(Λ, 𝛼∨𝑘) = −𝑎𝑘, 1 ⩽ 𝑘 ⩽ 𝑛,

where 𝛼∨𝑘 ≡ 2𝛼𝑘⇑(𝛼𝑘, 𝛼𝑘), and the minus signs are related to the fact that we work
with lowest weight Verma modules (instead of the highest weight modules used
in [22]) and to Verma module reducibility w.r.t. the roots 𝛼𝑘 (this is explained in
detail in [13,15]).

Obviously, 𝑎𝑛 must be related to the conformal weight 𝑑 which is a matter of
normalization so as to correspond to some known cases. Thus, our choice is

𝑎𝑛 = −2𝑑 − 𝑎1 − ⋅ ⋅ ⋅ − 𝑎𝑛−1.

The actual Dynkin labelling is given by 𝑚𝑘 = (𝜌 − Λ, 𝛼∨

𝑘) where 𝜌 ∈ ℋ∗ is
given by the difference of the half-sums 𝜌0̄, 𝜌1̄ of the even, odd, resp., positive roots
(cf. (2.2)

𝜌 ≐ 𝜌0̄ − 𝜌1̄ = (𝑛 − 1
2)𝛿1 + (𝑛 − 3

2)𝛿2 + ⋅ ⋅ ⋅ + 3
2 𝛿𝑛−1 + 1

2 𝛿𝑛,

𝜌0̄ = 𝑛𝛿1 + (𝑛 − 1)𝛿2 + ⋅ ⋅ ⋅ + 2𝛿𝑛−1 + 𝛿𝑛,

𝜌1̄ = 1
2(𝛿1 + ⋅ ⋅ ⋅ + 𝛿𝑛).

Naturally, the value of 𝜌 on the simple roots is 1: (𝜌, 𝛼∨𝑖 ) = 1, 𝑖 = 1, . . . , 𝑛.
Unlike 𝑎𝑘 ∈ Z+ for 𝑘 < 𝑛, the value of 𝑎𝑛 is arbitrary. In the cases when 𝑎𝑛 is

also a non-negative integer, and then 𝑚𝑘 ∈ N (for all 𝑘) the corresponding irreps
are the finite-dimensional irreps of 𝒢 (and of 𝐵𝑛).

Having in hand the values of Λ on the basis, we can recover them for any
element of ℋ∗. We shall need only (Λ, 𝛽∨) for all positive roots 𝛽 as given in [15]

(Λ, (𝛿𝑖 − 𝛿𝑗)∨) = (Λ, 𝛿𝑖 − 𝛿𝑗) = −𝑎𝑖 − ⋅ ⋅ ⋅ − 𝑎𝑗−1

(Λ, (𝛿𝑖 + 𝛿𝑗)∨) = (Λ, 𝛿𝑖 + 𝛿𝑗) = 2𝑑 + 𝑎1 + ⋅ ⋅ ⋅ + 𝑎𝑖−1 − 𝑎𝑗 − ⋅ ⋅ ⋅ − 𝑎𝑛−1

(Λ, 𝛿∨𝑖 ) = (Λ, 2𝛿𝑖) = 2𝑑 + 𝑎1 + ⋅ ⋅ ⋅ + 𝑎𝑖−1 − 𝑎𝑖 − ⋅ ⋅ ⋅ − 𝑎𝑛−1(2.3)
(Λ, (2𝛿𝑖)∨) = (Λ, 𝛿𝑖) = 𝑑 + 1

2(𝑎1 + ⋅ ⋅ ⋅ + 𝑎𝑖−1 − 𝑎𝑖 − ⋅ ⋅ ⋅ − 𝑎𝑛−1)
To introduce Verma modules we use the standard triangular decomposition

𝒢C = 𝒢+ ⊕ℋ⊕𝒢−

where 𝒢+, 𝒢−, resp., are the subalgebras corresponding to the positive, negative,
roots, resp., and ℋ denotes the Cartan subalgebra.
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We consider lowest weight Verma modules, so that 𝑉 Λ ≅ 𝑈(𝒢+) ⊗ 𝑣0 where
𝑈(𝒢+) is the universal enveloping algebra of 𝒢+, and 𝑣0 is a lowest weight vector
𝑣0 such that

𝑍𝑣0 = 0, 𝑍 ∈ 𝒢−; 𝐻𝑣0 = Λ(𝐻)𝑣0, 𝐻 ∈ ℋ.

Further, for simplicity we omit the sign ⊗, i.e., we write 𝑝 𝑣0 ∈ 𝑉 Λ with 𝑝 ∈ 𝑈(𝒢+).
Adapting the criterion of [22] (which generalizes the BGG-criterion [1] to the

super case) to lowest weight modules, one finds that a Verma module 𝑉 Λ is reducible
w.r.t. the positive root 𝛽 iff the following holds [15]

(2.4) (𝜌 −Λ, 𝛽∨) = 𝑚𝛽 , 𝛽 ∈ Δ+, 𝑚𝛽 ∈ N.

If a condition from (2.4) is fulfilled, then 𝑉 Λ contains a submodule which is a
Verma module 𝑉 Λ′ with shifted weight given by the pair 𝑚, 𝛽: Λ′ = Λ +𝑚𝛽. The
embedding of 𝑉 Λ′ in 𝑉 Λ is provided by mapping the lowest weight vector 𝑣′0 of 𝑉 Λ′

to the singular vector 𝑣𝑚,𝛽
𝑠 in 𝑉 Λ which is completely determined by the conditions

𝑋𝑣𝑚,𝛽
𝑠 = 0, 𝑋 ∈ 𝒢−,

𝐻𝑣𝑚,𝛽
𝑠 = Λ′(𝐻)𝑣0, 𝐻 ∈ ℋ, Λ′ = Λ +𝑚𝛽.

Explicitly, 𝑣𝑚,𝛽
𝑠 is given by a polynomial in the positive root generators [4,13]

𝑣𝑚,𝛽
𝑠 = 𝑃 𝑚,𝛽𝑣0, 𝑃 𝑚,𝛽 ∈ 𝑈(𝒢+).

Thus, the submodule 𝐼𝛽 of 𝑉 Λ which is isomorphic to 𝑉 Λ′ is given by 𝑈(𝒢+)𝑃 𝑚,𝛽𝑣0.
Note that the Casimirs of 𝒢C take the same values on 𝑉 Λ and 𝑉 Λ′ .
Certainly, (2.4) may be fulfilled for several positive roots (even for all of them).

Let ΔΛ denote the set of all positive roots for which (2.4) is fulfilled, and let us
denote 𝐼Λ ≡ ⋃𝛽∈ΔΛ 𝐼𝛽 . Clearly, 𝐼Λ is a proper submodule of 𝑉 Λ. Let us also denote
𝐹 Λ ≡ 𝑉 Λ⇑𝐼Λ.

Further we shall use also the following notion. The singular vector 𝑣1 is called
descendant of the singular vector 𝑣2 ∉ C𝑣1 if there exists a homogeneous polynomial
𝑃12 in 𝑈(𝒢+) so that 𝑣1 = 𝑃12𝑣2. Clearly, in this case we have: 𝐼1 ⊂ 𝐼2 where 𝐼𝑘 is
the submodule generated by 𝑣𝑘.

The Verma module 𝑉 Λ contains a unique proper maximal submodule 𝐼Λ (⊇ 𝐼Λ)
[1, 22]. Among the lowest weight modules with lowest weight Λ there is a unique
irreducible one, denoted by 𝐿Λ, i.e., 𝐿Λ = 𝑉 Λ⇑𝐼Λ. (If 𝑉 Λ is irreducible, then
𝐿Λ = 𝑉 Λ.)

It may happen that the maximal submodule 𝐼Λ coincides with the submodule
𝐼Λ generated by all singular vectors. This is, e.g., the case for all Verma modules
if rank𝒢 ⩽ 2, or when (2.4) is fulfilled for all simple roots (and, as a consequence,
for all positive roots). Here we are interested in the cases when 𝐼Λ is a proper
submodule of 𝐼Λ. We need the following notion.

Definition 2.1. [1, 6, 7] Let 𝑉 Λ be a reducible Verma module. A vector
𝑣ssv ∈ 𝑉 Λ is called a subsingular vector if 𝑣su ∉ 𝐼Λ and 𝑋𝑣su ∈ 𝐼Λ, for all 𝑋 ∈ 𝒢−
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Going from the above more general definitions to 𝒢 we recall that in [15] it
was established that from (2.4) follows that the Verma module 𝑉 Λ(𝜒) is reducible
if one of the following relations holds (following the order of (2.3

N ∋ 𝑚−

𝑖𝑗 = 𝑗 − 𝑖 + 𝑎𝑖 + ⋅ ⋅ ⋅ + 𝑎𝑗−1(2.5a)
N ∋ 𝑚+

𝑖𝑗 = 2𝑛 − 𝑖 − 𝑗 + 1 + 𝑎𝑗 + ⋅ ⋅ ⋅ + 𝑎𝑛−1 − 𝑎1 − ⋅ ⋅ ⋅ − 𝑎𝑖−1 − 2𝑑(2.5b)
N ∋ 𝑚𝑖 = 2𝑛 − 2𝑖 + 1 + 𝑎𝑖 + ⋅ ⋅ ⋅ + 𝑎𝑛−1 − 𝑎1 + ⋅ ⋅ ⋅ − 𝑎𝑖−1 − 2𝑑(2.5c)
N ∋ 𝑚𝑖𝑖 = 𝑛 − 𝑖 + 1

2(1 + 𝑎𝑖 + ⋅ ⋅ ⋅ + 𝑎𝑛−1 − 𝑎1 + ⋅ ⋅ ⋅ − 𝑎𝑖−1) − 𝑑 .(2.5d)

Further we shall use the fact from [15] that we may eliminate the reducibilities and
embeddings related to the roots 2𝛿𝑖. Indeed, since 𝑚𝑖 = 2𝑚𝑖𝑖, whenever (2.5d) is
fulfilled also (2.5c) is fulfilled.

For further use we introduce notation for the root vector 𝑋+

𝑗 ∈ 𝒢+, 𝑗 = 1, . . . , 𝑛,
corresponding to the simple root 𝛼𝑗 . Naturally, 𝑋−

𝑗 ∈ 𝒢− corresponds to −𝛼𝑗 .
Further, we notice that all reducibility conditions in (2.5a) are fulfilled. In

particular, for the simple roots from those condition, (2.5a) is fulfilled with 𝛽 → 𝛼𝑖 =
𝛿𝑖−𝛿𝑖+1, 𝑖 = 1, . . . , 𝑛−1 and 𝑚−

𝑖 ≡ 𝑚−

𝑖,𝑖+1 = 1+𝑎𝑖. The corresponding submodules 𝐼𝛼𝑖 =
𝑈(𝒢+)𝑣𝑖

𝑠, where Λ𝑖 = Λ + 𝑚−

𝑖 𝛼𝑖 and 𝑣𝑖
𝑠 = (𝑋+

𝑖 )1+𝑎𝑖𝑣0. These submodules generate
an invariant submodule which we denote by 𝐼Λ

𝑐 ⊂ 𝐼Λ. Since these submodules are
nontrivial for all our signatures in the question of unitarity instead of 𝑉 Λ, we shall
consider also the factor-modules 𝐹 Λ

𝑐 = 𝑉 Λ⇑𝐼Λ
𝑐 ⊃ 𝐹 Λ. We shall denote the lowest

weight vector of 𝐹 Λ
𝑐 by ⋃︀Λ𝑐̃︀ and the singular vectors above become null conditions

in 𝐹 Λ
𝑐 , i.e., (𝑋+

𝑖 )1+𝑎𝑖 ⋃︀Λ𝑐̃︀ = 0, 𝑖 = 1, . . . , 𝑛 − 1.
If the Verma module 𝑉 Λ is not reducible w.r.t. the other roots, i.e., (2.5b,c,d)

are not fulfilled, then 𝐹 Λ
𝑐 = 𝐹 Λ is irreducible and is isomorphic to the irrep 𝐿Λ with

this weight.
In fact, for the factor-modules reducibility is controlled by the value of 𝑑, or in

more detail:
The maximal 𝑑 coming from the different possibilities in (2.5b) are obtained

for 𝑚+

𝑖𝑗 = 1 and they are

𝑑𝑖𝑗 ≡ 𝑛 + 1
2(𝑎𝑗 + ⋅ ⋅ ⋅ + 𝑎𝑛−1 − 𝑎1 − ⋅ ⋅ ⋅ − 𝑎𝑖−1 − 𝑖 − 𝑗),

the corresponding root being 𝛿𝑖 + 𝛿𝑗 .
The maximal 𝑑 coming from the different possibilities in (2.5c,d), resp., are

obtained for 𝑚𝑖 = 1, 𝑚𝑖𝑖 = 1, resp., and they are:

𝑑𝑖 ≡ 𝑛 − 𝑖 + 1
2(𝑎𝑖 + ⋅ ⋅ ⋅ + 𝑎𝑛−1 − 𝑎1 − ⋅ ⋅ ⋅ − 𝑎𝑖−1), 𝑑𝑖𝑖 = 𝑑𝑖 − 1

2 ,

the corresponding roots being 𝛿𝑖, 2𝛿𝑗 , resp.
There are some orderings between these maximal reduction points [15]:

𝑑1 > 𝑑2 > ⋅ ⋅ ⋅ > 𝑑𝑛,(2.6)
𝑑𝑖,𝑖+1 > 𝑑𝑖,𝑖+2 > ⋅ ⋅ ⋅ > 𝑑𝑖𝑛,

𝑑1,𝑗 > 𝑑2,𝑗 > ⋅ ⋅ ⋅ > 𝑑𝑗−1,𝑗 ,

𝑑𝑖 > 𝑑𝑗𝑘 > 𝑑ℓ, 𝑖 ⩽ 𝑗 < 𝑘 ⩽ ℓ.
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Obviously the first reduction point is

𝑑1 = 𝑛 − 1 + 1
2(𝑎1 + ⋅ ⋅ ⋅ + 𝑎𝑛−1).

3. Unitarity

The first results on the unitarity were given in [15], and then improved in [14].
Thus, the statement below should be called Dobrev–Zhang–Salom Theorem.

Theorem DZS 1. All positive energy unitary irreducible representations of the
superalgebras osp(1⋃︀2𝑛,R) characterized by the signature 𝜒 in (2.1) are obtained
for real 𝑑 and are given as follows:

𝑑 ⩾ 𝑛 − 1 + 1
2(𝑎1 + ⋅ ⋅ ⋅ + 𝑎𝑛−1) = 𝑑1, 𝑎1 ≠ 0,

𝑑 ⩾ 𝑛 − 3
2 +

1
2(𝑎2 + ⋅ ⋅ ⋅ + 𝑎𝑛−1) = 𝑑12, 𝑎1 = 0, 𝑎2 ≠ 0,

𝑑 = 𝑛 − 2 + 1
2(𝑎2 + ⋅ ⋅ ⋅ + 𝑎𝑛−1) = 𝑑2 > 𝑑13, 𝑎1 = 0, 𝑎2 ≠ 0,

𝑑 ⩾ 𝑛 − 2 + 1
2(𝑎3 + ⋅ ⋅ ⋅ + 𝑎𝑛−1) = 𝑑2 = 𝑑13, 𝑎1 = 𝑎2 = 0, 𝑎3 ≠ 0,

𝑑 = 𝑛 − 5
2 +

1
2(𝑎3 + ⋅ ⋅ ⋅ + 𝑎𝑛−1) = 𝑑23 > 𝑑14, 𝑎1 = 𝑎2 = 0, 𝑎3 ≠ 0,

𝑑 = 𝑛 − 3 + 1
2(𝑎3 + ⋅ ⋅ ⋅ + 𝑎𝑛−1) = 𝑑3 = 𝑑24 > 𝑑15, 𝑎1 = 𝑎2 = 0, 𝑎3 ≠ 0,

⋮
𝑑 ⩾ 𝑛 − 1 − 𝜅 + 1

2(𝑎2𝜅+1 + ⋅ ⋅ ⋅ + 𝑎𝑛−1), 𝑎1 = ⋅ ⋅ ⋅ = 𝑎2𝜅 = 0, 𝑎2𝜅+1 ≠ 0,

𝜅 = 1
2 , 1, . . . , 1

2(𝑛 − 1),
𝑑 = 𝑛 − 3

2 − 𝜅 + 1
2(𝑎2𝜅+1 + ⋅ ⋅ ⋅ + 𝑎𝑛−1), 𝑎1 = ⋅ ⋅ ⋅ = 𝑎2𝜅 = 0, 𝑎2𝜅+1 ≠ 0,

⋮
𝑑 = 𝑛 − 1 − 2𝜅 + 1

2(𝑎2𝜅+1 + ⋅ ⋅ ⋅ + 𝑎𝑛−1), 𝑎1 = ⋅ ⋅ ⋅ = 𝑎2𝜅 = 0, 𝑎2𝜅+1 ≠ 0,
⋮

𝑑 ⩾ 1
2(𝑛 − 1), 𝑎1 = ⋅ ⋅ ⋅ = 𝑎𝑛−1 = 0

𝑑 = 1
2(𝑛 − 2), 𝑎1 = ⋅ ⋅ ⋅ = 𝑎𝑛−1 = 0

⋮
𝑑 = 1

2 , 𝑎1 = ⋅ ⋅ ⋅ = 𝑎𝑛−1 = 0
𝑑 = 0, 𝑎1 = ⋅ ⋅ ⋅ = 𝑎𝑛−1 = 0

where the last case is the trivial one-dimensional irrep.

The theorem was partially proved [15], while in [14] was given a sketch of a
proof, and the case 𝑛 = 3 was proved. We are going to give a proof for osp(1⋃︀8).

4. The case of osp(1⋃︀8)
For 𝑛 = 4 formula (2.6) simplifies to

𝑑1 > 𝑑12 > 𝑑2 > 𝑑23 > 𝑑3 > 𝑑34 > 𝑑4

Ç > 𝑑13 > ÄÇ > 𝑑24 > Ä
Ç > 𝑑14 > Ä

In the case of osp(1⋃︀8) Theorem DZS reads:
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Theorem 4.1. All positive energy unitary irreducible representations of the
superalgebras osp(1⋃︀8,R) characterized by the signature 𝜒 in (2.1) are obtained for
real 𝑑 and are given as follows

𝑑 ⩾ 3 + 1
2(𝑎1 + 𝑎2 + 𝑎3) = 𝑑1, 𝑎1 ≠ 0,

𝑑 ⩾ 5
2 +

1
2(𝑎2 + 𝑎3) = 𝑑12, 𝑎1 = 0, 𝑎2 ≠ 0,

𝑑 = 2 + 1
2(𝑎2 + 𝑎3) = 𝑑2 > 𝑑13, 𝑎1 = 0, 𝑎2 ≠ 0,

𝑑 ⩾ 2 + 1
2 𝑎3 = 𝑑2 = 𝑑13, 𝑎1 = 𝑎2 = 0, 𝑎3 ≠ 0

𝑑 = 3
2 +

1
2 𝑎3 = 𝑑23 > 𝑑14, 𝑎1 = 𝑎2 = 0, 𝑎3 ≠ 0

𝑑 = 1 + 1
2 𝑎3 = 𝑑3 > 𝑑24, 𝑎1 = 𝑎2 = 0, 𝑎3 ≠ 0

𝑑 ⩾ 3
2 = 𝑑23 = 𝑑14, 𝑎1 = 𝑎2 = 𝑎3 = 0

𝑑 = 1 = 𝑑3 = 𝑑24, 𝑎1 = 𝑎2 = 𝑎3 = 0
𝑑 = 1

2 = 𝑑34, 𝑎1 = 𝑎2 = 𝑎3 = 0,

𝑑 = 0 = 𝑑4, 𝑎1 = 𝑎2 = 𝑎3 = 0

where the last case is the trivial one-dimensional irrep.

Proof. For 𝑑 > 𝑑1 there are no singular vectors and we have unitarity. At
𝑑 = 𝑑1 there is a singular vector of weight 𝛿1 = 𝛼1 + 𝛼2 + 𝛼3 + 𝛼4 [5,15]:

𝑣1
𝛿1
=

1
∑

𝑘1=0

1
∑

𝑘2=0

1
∑

𝑘3=0
𝑏𝑘1,𝑘2,𝑘3(𝑋+

1 )1−𝑘1(𝑋+

2 )1−𝑘2(𝑋+

3 )1−𝑘3(4.1)

×𝑋+

4 (𝑋+

3 )𝑘3(𝑋+

2 )𝑘2(𝑋+

1 )𝑘1𝑣0 ≡ 𝒫1,𝛿1𝑣0,

𝑏𝑘1,𝑘2,𝑘3 = (−1)𝑘1+𝑘2+𝑘3(𝑎1 + 𝑘1)
2 + 𝑎1 + 𝑎2

1 + 𝑎1 + 𝑎2 − 𝑘2

3 + 𝑎1 + 𝑎2 + 𝑎3

3 + 𝑎1 + 𝑎2 + 𝑎3 − 𝑘3

where 𝐻𝑠 = 𝐻̂1 + 𝐻̂2 + ⋅ ⋅ ⋅ + 𝐻̂𝑠, and a basis in terms of simple root vectors only is
used. This singular vector is nontrivial for 𝑎1 ≠ 0 and must be eliminated to obtain
a UIR. Below 𝑑 < 𝑑1 this vector is not singular but has negative norm and thus
there is no unitarity for 𝑎1 ≠ 0. On the other hand for 𝑎1 = 0 and any 𝑑 vector (4.1)
is descendant of the compact root singular vector 𝑋+

1 𝑣0 which is already factored
out for 𝑎1 = 0.

Thus, below we discuss only the cases with 𝑎1 = 0, when we have unitarity for
𝑑 > 𝑑12 = 5

2 +
1
2(𝑎2 + 𝑎3). Then at the next reducibility point 𝑑 = 𝑑12, we have a

singular vector corresponding to the root 𝛿1 + 𝛿2 = 𝛼1 + 2𝛼2 + 2𝛼3 + 2𝛼4 which is
given by

𝑣1
𝛿1+𝛿2

= 1
2 + 2𝑎2 + 𝑎3

×
(4.2)

(− 1
2(𝑌4𝑌3𝑋+

3 (𝑋+

2 )2𝑋+

1 ) − 1
4(𝑌

2
4 (𝑋+

3 )2(𝑋+

2 )2𝑋+

1 ) + (𝑌 2
4 𝑋+

3 𝑋+

23𝑋+

2 𝑋+

1 )𝑎2

− 2(𝑌4𝑌2𝑋+

23𝑋+

1 )𝑎2(𝑎2 + 1) − (𝑌 2
4 𝑋+

23𝑋+

23𝑋+

1 )𝑎2(𝑎2 + 1)
− (𝑌4𝑌3𝑋+

23𝑋+

2 𝑋+

1 )(𝑎3 + 2) − 2(𝑌3𝑌2𝑋+

2 𝑋+

1 )(𝑎2 + 𝑎3 + 1)(𝑎2 + 𝑎3 + 2)
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− (𝑌 2
3 (𝑋+

2 )2𝑋+

1 )(𝑎2 + 𝑎3 + 1)(𝑎2 + 𝑎3 + 2)
− 4(𝑌 2

2 𝑋+

1 )𝑎2(𝑎2 + 1)(𝑎2 + 𝑎3 + 1)(𝑎2 + 𝑎3 + 2)
+ (𝑌23𝑋+

2 𝑋+

1 )(2𝑎2+1)(𝑎2+𝑎3+1)(𝑎2+𝑎3+2)+(𝑌4𝑌2𝑋+

3 𝑋+

2 𝑋+

1 )(2𝑎2+𝑎3+2)
+ 1

4(𝑌34𝑋+

3 (𝑋+

2 )2𝑋+

1 )2𝑎2 + 2𝑎3 + 3) + (𝑌24𝑋+

23𝑋+

1 )𝑎2(𝑎2 + 1)(2𝑎2 + 2𝑎3 + 3)
+ 1

2(𝑌34𝑋+

23𝑋+

2 𝑋+

1 )(𝑎3 − 2𝑎2(𝑎2 + 𝑎3 + 1) + 2)
− 1

2(𝑌24𝑋+

3 𝑋+

2 𝑋+

1 )(𝑎3 + 2𝑎2(𝑎2 + 𝑎3 + 2) + 2)
+ (𝑎2 + 1)(𝑎2 + 𝑎3 + 2)
× (2(𝑌4𝑌3𝑋+

13𝑋+

2 ) − (𝑌34𝑋+

13𝑋+

2 ) − 2(𝑌4𝑌3𝑋+

23𝑋+

12) + (𝑌34𝑋+

23𝑋+

12)
+ 2(𝑌4𝑌2𝑋+

3 𝑋+

12) − (𝑌24𝑋+

3 𝑋+

12) − 2(𝑌4𝑌1𝑋+

3 𝑋+

2 ) + (𝑌14𝑋+

3 𝑋+

2 ))
+ 𝑎2(𝑎2+1)(𝑎2+𝑎3+2)(− 4(𝑌4𝑌2𝑋+

13)+2(𝑌24𝑋+

13)+4(𝑌4𝑌1𝑋+

23)−2(𝑌14𝑋+

23))
+ (𝑎2 + 1)(𝑎2 + 𝑎3 + 1)(𝑎2 + 𝑎3 + 2) ×
(− 4(𝑌3𝑌2𝑋+

12) + 2(𝑌23𝑋+

12) + 4(𝑌3𝑌1𝑋+

2 ) − 2(𝑌13𝑋+

2 ) − 8(𝑌2𝑌1)𝑎2 + 4𝑎2𝑌12))𝑣0

where the root vector 𝑋+

𝑗𝑘 corresponds to the compact root 𝛿𝑗 − 𝛿𝑘+1 = 𝛼𝑗 + 𝛼𝑗+1 +
⋅ ⋅ ⋅+𝛼𝑘, 𝑌𝑘 corresponds to the odd (noncompact) root 𝛿𝑘 = 𝛼𝑘+𝛼𝑘+1+⋅ ⋅ ⋅+𝛼𝑛, (thus
𝑌4 ≡ 𝑋+

4 ), 𝑌𝑗𝑘 corresponds to the even noncompact root 𝛿𝑗 + 𝛿𝑘. In (4.2) it is more
convenient to use a PBW type of basis with the compact roots 𝑋+

... to the right of
the noncompact roots 𝑌.... The norm of (4.2) is

64𝑎2(𝑎2 + 1)2(𝑎2 + 2)(𝑎2 + 𝑎3 + 1)(𝑎2 + 𝑎3 + 2)2(𝑎2 + 𝑎3 + 3)
× (−2𝑑 + 𝑎2 + 𝑎3 + 4)(−2𝑑 + 𝑎2 + 𝑎3 + 5)⇑(2𝑎2 + 𝑎3 + 2)2.

For 𝑑 = 𝑑12, 𝑎1 = 0, 𝑎2 ≠ 0 the singular vector (4.2) is nontrivial and gives rise to a
invariant subspace which must be factored out for unitarity. For 𝑑 < 5

2 +
1
2(𝑎2 +𝑎3),

the vector (4.2) is not singular, but has negative norm and there is no unitarity for
𝑎2 ≠ 0, except at the isolated unitary point 𝑑 = 2+ 1

2(𝑎2+𝑎3) = 𝑑2 > 𝑑13 where vector
(4.2) has zero norm and can not spoil the unitarity. For that value of 𝑑 there is a
singular vector 𝑣1

𝛿2
of weight 𝛿2 = 𝛼2 + 𝛼3 + 𝛼4 [5,15]:

𝑣1
𝛿2
=

1
∑

𝑘1=0

1
∑

𝑘2=0
𝑏𝑘1,𝑘2(𝑋+

2 )1−𝑘1(𝑋+

3 )1−𝑘2

×𝑋+

4 (𝑋+

3 )𝑘2(𝑋+

2 )𝑘1𝑣0 ≡ 𝒫1,𝛿2𝑣0,

𝑏𝑘1,𝑘2 = (−1)𝑘1+𝑘2 𝑎2 + 𝑘1

1 + 𝑎2 + 𝑎3 − 𝑘2

which has to be factored out for unitarity for 𝑎2 ≠ 0, while for 𝑎2 = 0 it is descendant
of the compact vector 𝑋+

2 𝑣0.
Overall no further unitarity is possible for 𝑎2 ≠ 0, thus below we consider only

the cases 𝑎1 = 𝑎2 = 0. Then the singular vectors above are descendants of compact
root singular vectors 𝑋+

1 𝑣0 and 𝑋+

2 𝑣0, thus, there is no obstacle for unitarity for
𝑑 > 2 + 1

2 𝑎3 = 𝑑2 = 𝑑13 (for 𝑎1 = 𝑎2 = 0). The next reducibility point is 𝑑 = 𝑑13 = 𝑑2.
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The singular vector for 𝑑 = 𝑑13 and 𝑚 = 1 has weight 𝛿1 + 𝛿3 = 𝛼1 + 𝛼2 + 2𝛼3 + 2𝛼4:

𝑣1
𝛿1+𝛿3

=
( − 4𝑎1(𝑌4𝑌3𝑋+

3 𝑋+

12) − 2𝑎1(𝑌 2
4 (𝑋+

3 )2𝑋+

12) − 2(𝑎1 + 𝑎2 + 1)(𝑌 2
4 𝑋+

3 𝑋+

23𝑋+

1 )
+ 4𝑎1(𝑎1+ 𝑎2+1)(𝑌 2

4 𝑋+

3 𝑋+

13)+ 4(𝑎3+ 1)(𝑌4𝑌3𝑋+

23𝑋+

1 )− 8𝑎1(𝑎3+ 1)(𝑌4𝑌3𝑋+

13)
− 4(𝑎1 + 𝑎2 + 𝑎3 + 2)(𝑌4𝑌2𝑋+

3 𝑋+

1 ) + 8𝑎1(𝑎1 + 𝑎2 + 𝑎3 + 2)(𝑌4𝑌1𝑋+

3 )
+ 8𝑎3(𝑎1 + 𝑎2 + 𝑎3 + 2)(𝑌3𝑌2𝑋+

1 ) + 4𝑎3(𝑎1 + 𝑎2 + 𝑎3 + 2)(𝑌 2
3 𝑋+

2 𝑋+

1 )
− 8𝑎1𝑎3(𝑎1+ 𝑎2+ 𝑎3+ 2)(𝑌 2

3 𝑋+

12) + 2(𝑎1(𝑎3− 1) + 𝑎2(𝑎3− 1) − 2)(𝑌34𝑋+

23𝑋+

1 )
− 4𝑎1(𝑎1(𝑎3 − 1) + 𝑎2(𝑎3 − 1) − 2)(𝑌34𝑋+

13)
+ 2(𝑎1 + 𝑎2 + 2)(𝑎1 + 𝑎2 + 𝑎3 + 2)(𝑌24𝑋+

3 𝑋+

1 )
− 4𝑎1(𝑎1 + 𝑎2 + 2)(𝑎1 + 𝑎2 + 𝑎3 + 2)(𝑌14𝑋+

3 )
− 4(𝑎1 + 𝑎2 + 2)𝑎3(𝑎1 + 𝑎2 + 𝑎3 + 2)(𝑌23𝑋+

1 )
− (𝑎1+ 𝑎2+ 2𝑎3+ 2)(𝑌34𝑋+

3 𝑋+

2 𝑋+

1 ) + 2𝑎1(𝑎1+ 𝑎2+ 2𝑎3+ 2)(𝑌34𝑋+

3 𝑋+

12)
+ 8𝑎1(𝑎1+ 𝑎2+ 2)𝑎3(𝑎1+ 𝑎2+ 𝑎3+ 2)𝑌13 − 16𝑎1𝑎3(𝑎1+ 𝑎2+ 𝑎3+ 2)(𝑌3𝑌1)

+ 2(𝑌4𝑌3𝑋+

3 𝑋+

2 𝑋+

1 ) + 𝑌 2
4 (𝑋+

3 )2𝑋+

2 𝑋+

1 )𝑣0.

For 𝑎1 = 𝑎2 = 0 it is descendant of the compact root singular vector 𝑋+

1 𝑣0. However,
there is a subsingular vector

𝑣ss
2,13 =
(2𝑎3(𝑌23𝑌1) − 2𝑎3(𝑌13𝑌2) + 2𝑎3(𝑌3(𝑌12)) − 4𝑎3(𝑌3𝑌2𝑌1) + 2(𝑌4𝑌3𝑌2𝑋+

13)
− 𝑌34𝑌2𝑋+

13+ 𝑌24𝑌3𝑋+

13− 𝑌4𝑌23𝑋+

13− 2(𝑌4𝑌3𝑌1𝑋+

23)+ 𝑌34𝑌1𝑋+

23− 𝑌14𝑌3𝑋+

23

+ 𝑌4𝑌13𝑋+

23 + 2(𝑌4𝑌2𝑌1𝑋+

3 ) − 𝑌24𝑌1𝑋+

3 + 𝑌14𝑌2𝑋+

3 − 𝑌4(𝑌12)𝑋+

3 )𝑣0

with the norm −16𝑎3(𝑎3 + 3)(−2𝑑 + 𝑎3 + 2)(−2𝑑 + 𝑎3 + 3)(−2𝑑 + 𝑎3 + 4). This vector
must be factorized in order to obtain UR at 𝑑 = 𝑑2 = 𝑑13. But below this value,
the vector 𝑣ss

2,13 above has negative norm if 𝑎3 ≠ 0 and there is no unitarity, except
at the isolated unitary point 𝑑 = 3

2 +
1
2 𝑎3 = 𝑑23 > 𝑑14. At that value of 𝑑 there is a

singular vector of weight 𝛿2 + 𝛿3 = 𝛼2 + 2𝛼3:

𝑣1
𝛿2+𝛿3

=(2(𝑎3 + 1)(𝑌4𝑌3𝑋+

23) − 2(𝑎3 + 1)(𝑌4𝑌2𝑋+

3 ) + 2𝑎3(𝑎3 + 1)(𝑌 2
3 𝑋+

2 )
− (𝑎3 + 1)(𝑌34𝑋+

23) + (𝑎3 + 1)(𝑌24𝑋+

3 ) − 1
2(2𝑎3 + 1)(𝑌34𝑋+

3 𝑋+

2 )
−2𝑎3(𝑎3+1)𝑌23+ 4𝑎3(𝑎3+1)(𝑌3𝑌2)+𝑌4𝑌3𝑋+

3 𝑋+

2 + 1
2(𝑌

2
4 (𝑋+

3 )2𝑋+

2 ))𝑣0(4.3)

with the norm 16𝑎3(𝑎3 +1)2(𝑎3 +2)(−2𝑑+𝑎3 +2)(−2𝑑+𝑎3 +3). For 𝑎3 ≠ 0, singular
vector (4.3) should be factored for unitarity, while for 𝑎3 = 0 it is descendant of the
compact singular vectors.

In the same range for 𝑎3 ≠ 0 at 𝑑 = 𝑑3 = 1 + 1
2 𝑎3 there is a singular vector of

weight 𝛿3 = 𝛼3 + 𝛼4:

(4.4) 𝑣1
𝛿3
=

1
∑
𝑘=0
(−1)𝑘(𝑎3 + 𝑘)(𝑋+

3 )1−𝑘𝑋+

4 (𝑋+

3 )𝑘𝑣0 ≡ 𝒫1,𝛿3𝑣0
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which must be factored out for unitarity.
On the other hand, for 𝑎1 = 𝑎2 = 𝑎3 = 0 all (sub)singular vectors above are

descendants of the compact singular vectors 𝑋+

𝑘 𝑣0, 𝑘 = 1, 2, 3, and there is no
obstacle for unitarity for 𝑑 > 3

2 = 𝑑23 = 𝑑14. For 𝑎3 = 0 and 𝑑 = 3
2 there is also a

singular vector of weight 𝛿1 + 𝛿4:
𝑣1

𝛿1+𝛿4
= (− 4(𝑌4𝑌2𝑋+

1 ) − 2(𝑌 2
4 𝑋+

23𝑋+

1 ) + 2(𝑌4𝑌3𝑋+

2 𝑋+

1 )
+ 𝑌 2

4 𝑋+

3 𝑋+

2 𝑋+

1 − 3(𝑌34𝑋+

2 𝑋+

1 ) + 6(𝑌24𝑋+

1 ))𝑣0

but it is also descendant of compact singular vectors. Finally, for 𝑑 = 3
2 there is a

subsingular vector of weight 𝛿1 + 𝛿2 + 𝛿3 + 𝛿4:

(4.5) 𝑣𝑠𝑠
𝛿1+𝛿2+𝛿3+𝛿4

=
4
∑

𝑖,𝑗,𝑘,ℓ=1
𝜖𝑖𝑗𝑘ℓ𝑌𝑖𝑌𝑗𝑌𝑘𝑌ℓ 𝑣0

where 𝜖𝑖𝑗𝑘ℓ is the totally antisymmetric symbol so that 𝜖1234 = 1. The norm of the
vector (4.5) is 2304(−1 + 𝑑)𝑑(−3 + 2𝑑)(−1 + 2𝑑). Thus, for 3

2 > 𝑑 > 1 there is no
unitarity since then the vector (4.5) has negative norm. In all cases there will be
no unitarity for 𝑑 ⩽ 1, except possibly when 𝑎1 = 𝑎2 = 𝑎3 = 0 to which we restrict
below. At 𝑑 = 𝑑3 = 𝑑24 = 1 there are the singular vector (4.4) and the singular vector
of weight 𝛿2 + 𝛿4 = 𝛼2 + 𝛼3 + 2𝛼4:

𝑣1
𝛿2+𝛿4

= ( − (𝑎3 + 2)(𝑌34𝑋+

2 ) + 2(𝑌4𝑌3𝑋+

2 ) + 𝑌 2
4 𝑋+

3 𝑋+

2 )𝑣0

both of which are descendants of compact singular vectors. At 𝑑 = 𝑑3 = 𝑑24 = 1,
there is also a subsingular vector

𝑣𝑠𝑠
𝛿2+𝛿3+𝛿4

= (𝑌2𝑌3𝑌4 − 𝑌4𝑌3𝑌2) = 1
3

4
∑

𝑖,𝑗,𝑘=2
𝜖𝑖𝑗𝑘𝑌𝑖𝑌𝑗𝑌𝑘 𝑣0

of the norm 144𝑑(𝑑 − 1)(2𝑑 − 1). It is not an obstacle for unitarity for 𝑑 = 1, but
for 𝑑 < 1. Thus, there is no unitarity for 𝑑 < 1 except at the isolated unitary
point 𝑑 = 1

2 = 𝑑34. At that point all (sub)singular vectors above are descendants of
compact singular vectors. Yet there is the singular vector

𝑣1
𝛿3+𝛿4

= ( 1
2 𝑌 2

4 𝑋+

3 − 2𝑌3𝑌4 + 𝑌34) 𝑣0

with the norm 8𝑑(2𝑑−1). It is not an obstacle for unitarity for 𝑑 = 1
2 , but for 𝑑 < 1

2 .
Thus, there is no unitarity for 𝑑 < 1

2 except at the isolated point 𝑑 = 𝑑4 = 0 = 𝑎1 =
𝑎2 = 𝑎3 where we have the trivial one-dimensional UIR since all possible states are
descendants of factored out singular vectors. �
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