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FRACTIONAL BLACK–SCHOLES MODEL WITH
REGULARIZED PRABHAKAR DERIVATIVE

Shiva Eshaghi, Alireza Ansari, Reza Khoshsiar
Ghaziani, and Mohammadreza Ahmadi Darani

Abstract. We introduce a fractional type Black–Scholes model in European
options including the regularized Prabhakar derivative. We apply the recon-
struction of variational iteration method to get the approximate analytical
solutions for some models of generalized fractional Black–Scholes equations in
terms of the generalized Mittag-Leffler functions.

1. Introduction

The Black–Scholes model is the most well known mathematical model for pric-
ing financial derivatives. It was introduced by Black and Scholes in the year 1973
as a partial differential equation and became so popular and almost universally
accepted by the option traders for the estimating and valuing European or Ameri-
can options over time. This equation is widely used in global financial markets by
traders and investors and is used to calculate values of both call and put options. It
is also applied to determine a fair price for a call or put option based on factors such
as underlying stock volatility, days to expiration and others. The Black–Scholes
model for the value of an option is described by the following equation

𝜕𝑣

𝜕𝑡
+ 𝜎2𝑥2

2
𝜕2𝑣

𝜕𝑥2 + (𝑟 − 𝜏)𝑥 𝜕𝑣

𝜕𝑥
− 𝑟𝑣 = 0, (𝑥, 𝑡) ∈ R+ × (0, 𝑇 ),

where 𝑣(𝑥, 𝑡) is the put option at asset price 𝑥 and at time 𝑡, 𝑇 is the maturity, 𝑟
is the risk free interest rate, 𝜏 is the dividend yield and 𝜎 represents the volatility
function of underlying asset. Also, we denote 𝑣𝑐(𝑥, 𝑡) and 𝑣𝑝(𝑥, 𝑡) as the value of
European call and put options, respectively. Moreover, the payoff functions are

𝑣𝑐(𝑥, 𝑡) = max{𝑥 − 𝐾, 0}, 𝑣𝑝(𝑥, 𝑡) = max{𝐾 − 𝑥, 0},

where 𝐾 denotes the expiration price for the option.
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From another general point of view, with the developments of theory of frac-
tional calculus (integral and differential operations of non integer order) in var-
ious fields of science and engineering [5–7, 11, 16, 19, 21, 30–32], the problem
of the fractional Black–Scholes equation has been treated by some researchers
[2, 3, 8–10, 17, 22, 28, 29, 37, 39, 42]. In these studies, numerical and analytical
tools were employed to obtain solutions of the corresponding equations stated by
fractional Riemann–Liouville and Caputo derivatives.

In this paper, we intend to study the fractional Black–Scholes equation with a
generalized fractional derivative (regularized Prabhakar derivative) [12,15,18].

For this purpose, we use the reconstruction of variational iteration method [1]
and develop the analytical solution of generalized fractional Black–Scholes equation
for European option pricing problems. This equation is described by the following
equation

𝜕𝛾
𝜌,𝜇,𝜔,0+𝑣

𝜕𝑡𝛾
𝜌,𝜇,𝜔,0+

+ 𝜎2𝑥2

2
𝜕2𝑣

𝜕𝑥2 + (𝑟 − 𝜏)𝑥 𝜕𝑣

𝜕𝑥
− 𝑟𝑣 = 0, (𝑥, 𝑡) ∈ R+ × (0, 𝑇 ),

where the operator 𝜕𝛾
𝜌,𝜇,𝜔,0+

𝜕𝑡𝛾
𝜌,𝜇,𝜔,0+

indicates the regularized Prabhakar fractional deriv-
ative (generalization of the Caputo derivative) and 𝜌, 𝜇, 𝜔, 𝛾 ∈ C, 0 < 𝜇 6 1.

2. Preliminaries

In this section, we introduce some basic definitions and properties of generalized
fractional calculus and generalized Mittag-Leffler function which will be used in this
work.

2.1. The generalized Mittag-Leffler function. In 1971, Prabhakar intro-
duced the generalized Mittag-Leffler function (Mittag-Leffler function with three
parameters) on his study on singular integral equations as follows [36]

(2.1) 𝐸𝛾
𝜌,𝜇(𝑧) =

∞∑︁
𝑘=0

(𝛾)𝑘

Γ(𝜌𝑘 + 𝜇)
𝑧𝑘

𝑘! , 𝛾, 𝜌, 𝜇 ∈ C, Re(𝜌) > 0,

where (𝛾)𝑘 is the Pochhammer symbol [13]
(𝛾)0 = 1, (𝛾)𝑘 = 𝛾(𝛾 + 1) . . . (𝛾 + 𝑘 − 1), 𝑘 = 1, 2, . . . .

For 𝛾 = 1, we get the two-parameter Mittag-Leffler function 𝐸𝜌,𝜇(𝑧) defined by

𝐸𝜌,𝜇(𝑧) := 𝐸1
𝜌,𝜇(𝑧) =

∞∑︁
𝑘=0

𝑧𝑘

Γ(𝜌𝑘 + 𝜇) , 𝜌, 𝜇 ∈ C, Re(𝜌) > 0,

and for 𝛾 = 𝜇 = 1, this function coincides with the classical Mittag-Leffler function
𝐸𝜌(𝑧) [33,34]

𝐸𝜌(𝑧) := 𝐸1
𝜌,1(𝑧) =

∞∑︁
𝑘=0

𝑧𝑘

Γ(𝜌𝑘 + 1) , 𝜌 ∈ C, Re(𝜌) > 0.

Many researchers have studied the generalized Mittag-Leffler function espe-
cially the theory of fractional calculus and detected some applications in physics,
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engineering and applied sciences. For example, new definitions of generalized frac-
tional derivatives for the fractional differential and integral equations were intro-
duced and solutions of the Cauchy-type initial and boundary value problems were
presented in terms of the generalized Mittag-Leffler functions [4, 18–20, 24–27,
38, 40, 41]. Eshaghi and Ansari used this function for presenting the solutions of
autoconvolution equations and established a Lyapunov inequality for fractional dif-
ferential equations [14,15]. D’Ovidio and Polito presented the stochastic solution
to a generalized fractional partial differential equation involving a regularized op-
erator related to the Prabhakar operator [12]. Polito and Tomovski also obtained
some Opial and Hardy-type inequalities for the integrals and derivatives containing
Mittag-Leffler function [35].

Lemma 2.1. The Laplace transforms of generalized Mittag-Leffler function
(2.1) has the following form [36]

(2.2) ℒ
[︀
𝑥𝜇−1𝐸𝛾

𝜌,𝜇(𝜔𝑥𝜌)
]︀
(𝑠) = 𝑠−𝜇(1 − 𝜔𝑠−𝜌)−𝛾 , |𝜔𝑠−𝜌| < 1,

where 𝛾, 𝜌, 𝜇, 𝜔, 𝑠 ∈ C, Re(𝜇) > 0, Re(𝑠) > 0.

Theorem 2.1. Let 𝛾, 𝜌, 𝜇, 𝜈, 𝜎, 𝜔 ∈ C (Re(𝜌), Re(𝜇), Re(𝜈) > 0), then [26]∫︁ 𝑡

0
(𝑡 − 𝜂)𝜇−1𝐸𝛾

𝜌,𝜇(𝜔(𝑡 − 𝜂)𝜌)𝜂𝜈−1𝐸𝜎
𝜌,𝜈(𝜔𝜂𝜌) 𝑑𝜂 = 𝑡𝜇+𝜈−1𝐸𝛾+𝜎

𝜌,𝜇+𝜈(𝜔𝑡𝜌),

and in the special case 𝜎 = 0, we have

(2.3)
∫︁ 𝑡

0
(𝑡 − 𝜂)𝜇−1𝐸𝛾

𝜌,𝜇(𝜔(𝑡 − 𝜂)𝜌)𝜂𝜈−1𝑑𝜂 = Γ(𝜈)𝑡𝜇+𝜈−1𝐸𝛾
𝜌,𝜇+𝜈(𝜔𝑡𝜌).

2.2. Prabhakar integral and derivative. After studying of some proper-
ties of the generalized Mittag-Leffler function, Prabhakar introduced an integral
operator with generalized Mittag-Leffler function in kernel as follows.

Definition 2.1 (Prabhakar integral). Let 𝑓 ∈ 𝐿1[0, 𝑏], 0 < 𝑥 < 𝑏 6 ∞. The
Prabhakar integral operator with generalized Mittag-Leffler function in its kernel
is defined as follows [18]

(2.4) 𝐸𝛾
𝜌,𝜇,𝜔,0+𝑓(𝑥) =

∫︁ 𝑥

0
(𝑥 − 𝑢)𝜇−1𝐸𝛾

𝜌,𝜇

(︀
𝜔(𝑥 − 𝑢)𝜌

)︀
𝑓(𝑢) 𝑑𝑢, 𝑥 > 0,

where 𝜌, 𝜇, 𝜔, 𝛾 ∈ C, Re(𝜌), Re(𝜇) > 0.

Remark 2.1. We note that for 𝛾 = 0, Prabhakar integral operator (2.4) coin-
cides with the Riemann–Liouville fractional integral of order 𝜇

𝐸0
𝜌,𝜇,𝜔,0+𝑓 = 𝐼𝜇

0+𝑓.

Definition 2.2 (Prabhakar derivative). Let 𝑓 ∈ 𝐿1[0, 𝑏], 0 < 𝑥 < 𝑏 6∞. The
Prabhakar derivative is defined by [18]

(2.5) 𝐷𝛾
𝜌,𝜇,𝜔,0+𝑓(𝑥) = 𝑑𝑚

𝑑𝑥𝑚
𝐸−𝛾

𝜌,𝑚−𝜇,𝜔,0+𝑓(𝑥),
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where 𝜌, 𝜇, 𝜔, 𝛾 ∈ C, Re(𝜌), Re(𝜇) > 0. Further, its regularized Caputo counterpart
for function 𝑓 ∈ 𝐴𝐶𝑚[0, 𝑏], 0 < 𝑥 < 𝑏 < ∞, is given by

𝐶𝐷𝛾
𝜌,𝜇,𝜔,0+𝑓(𝑥) = 𝐸−𝛾

𝜌,𝑚−𝜇,𝜔,0+
𝑑𝑚

𝑑𝑥𝑚
𝑓(𝑥)(2.6)

= 𝐷𝛾
𝜌,𝜇,𝜔,0+𝑓(𝑥) −

𝑚−1∑︁
𝑘=0

𝑥𝑘−𝜇𝐸−𝛾
𝜌,𝑘−𝜇+1(𝜔𝑥𝜌)𝑓 (𝑘)(0+).

Remark 2.2. It is evident that the Prabhakar derivative (2.5) and regular-
ized Prabhakar derivative (2.6) generalize the Riemann–Liouville and the Caputo
fractional derivatives of order 𝜇, respectively.

Lemma 2.2. For 𝑚 − 1 < 𝜇 6 𝑚, the Laplace transform of regularized Prab-
hakar derivative (2.6) has the form

(2.7) ℒ{𝐶𝐷𝛾
𝜌,𝜇,𝜔,0+𝑓(𝑥); 𝑠} = 𝑠𝜇(1−𝜔𝑠−𝜌)𝛾𝐹 (𝑠)−

𝑚−1∑︁
𝑘=0

𝑠𝜇−𝑘−1(1−𝜔𝑠−𝜌)𝛾𝑓 (𝑘)(0),

where 𝐹 (𝑠) is the Laplace transform of 𝑓(𝑥).

Proof. By applying the Laplace transform operator on the regularized Prab-
hakar derivative (2.6), we have

ℒ{𝐶𝐷𝛾
𝜌,𝜇,𝜔,0+𝑓(𝑥); 𝑠} = ℒ

{︁
𝐸−𝛾

𝜌,𝑚−𝜇,𝜔,0+
𝑑𝑚

𝑑𝑥𝑚
𝑓(𝑥); 𝑠

}︁
= ℒ

{︀
𝑥𝑚−𝜇−1𝐸−𝛾

𝜌,𝑚−𝜇(𝜔𝑥𝜌)
}︀

ℒ
{︁ 𝑑𝑚

𝑑𝑥𝑚
𝑓(𝑥); 𝑠

}︁
= 𝑠𝜇−𝑚(1 − 𝜔𝑠−𝜌)𝛾

[︂
𝑠𝑚𝐹 (𝑠) −

𝑚−1∑︁
𝑘=0

𝑠𝑚−𝑘−1𝑓 (𝑘)(0)
]︂

= 𝑠𝜇(1 − 𝜔𝑠−𝜌)𝛾𝐹 (𝑠) −
𝑚−1∑︁
𝑘=0

𝑠𝜇−𝑘−1(1 − 𝜔𝑠−𝜌)𝛾𝑓 (𝑘)(0). �

3. Reconstruction of variational iteration method
with Laplace transform

Recently, Hesameddini and Latifizadeh [23] proposed the reconstruction of vari-
ational iteration algorithms by using the Laplace transform for solving the differen-
tial equations of integer order. In this section, we generalize this method for solving
the fractional Black–Scholes equation including the regularized Prabhakar deriva-
tive. This method provides the analytical solution of the fractional Black–Scholes
equation for a European option pricing problem with initial condition. Therefore, in
order to present the procedure of the reconstruction of variational iteration method,
we consider the general form of Black–Scholes equation as follows
(3.1)

𝜕𝛾
𝜌,𝜇,𝜔,0+𝑓(𝑥, 𝑡)

𝜕𝑡𝛾
𝜌,𝜇,𝜔,0+

= 𝑔
(︁

𝑡, 𝑥, 𝑓,
𝜕𝑓

𝜕𝑥

𝜕2𝑓

𝜕𝑥2

)︁
, 𝜌, 𝜇, 𝜔, 𝛾 ∈ C, Re(𝜌) > 0, 0 < 𝜇 < 1,
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with the initial conditions 𝑓(𝑥, 0) = 0, in which the operator 𝜕𝛾
𝜌,𝜇,𝜔,0+

𝜕𝑡𝛾
𝜌,𝜇,𝜔,0+

indicates
the regularized Prabhakar fractional derivative. We apply the Laplace transform
to both sides of the above equation with respect to the independent variable 𝑡 and
then use relation (2.7) to get

𝑠𝜇(1 − 𝜔𝑠−𝜌)𝛾ℒ{𝑓(𝑥, 𝑡)} = ℒ
{︁

𝑔
(︁

𝑡, 𝑥, 𝑓,
𝜕𝑓

𝜕𝑥

𝜕2𝑓

𝜕𝑥2

)︁}︁
.

We then set ℒ
{︀

𝑔
(︀
𝑡, 𝑥, 𝑓, 𝜕𝑓

𝜕𝑥
𝜕2𝑓
𝜕𝑥2

)︀}︀
= 𝐺(𝑠, 𝑥) to obtain

(3.2) ℒ{𝑓(𝑥, 𝑡)} = 𝑠−𝜇(1 − 𝜔𝑠−𝜌)−𝛾𝐺(𝑠, 𝑥).

Now, by applying the inverse Laplace transform on both sides of equation (3.2) and
using relation (2.2) and the convolution theorem, we obtain

𝑓(𝑥, 𝑡) = ℒ{𝑠−𝜇(1 − 𝜔𝑠−𝜌)−𝛾𝐺(𝑠, 𝑥)} = 𝑡𝜇−1𝐸𝛾
𝜌,𝜇(𝜔𝑡𝜌) * 𝑔

(︁
𝑡, 𝑥, 𝑓,

𝜕𝑓

𝜕𝑥

𝜕2𝑓

𝜕𝑥2

)︁
=

∫︁ 𝑡

0
(𝑡 − 𝜂)𝜇−1𝐸𝛾

𝜌,𝜇(𝜔(𝑡 − 𝜂)𝜌)𝑔
(︁

𝜂, 𝑥, 𝑓,
𝜕𝑓

𝜕𝑥

𝜕2𝑓

𝜕𝑥2

)︁
𝑑𝜂.

From the reconstruction of the variational iteration method introduced in [23] and
using the initial conditions, an iteration formula for (3.1) can be constructed as

𝑓𝑛+1(𝑥, 𝑡) = 𝑓0(𝑥, 𝑡) +
∫︁ 𝑡

0
(𝑡 − 𝜂)𝜇−1𝐸𝛾

𝜌,𝜇(𝜔(𝑡 − 𝜂)𝜌)𝑔
(︁

𝜂, 𝑥, 𝑓𝑛,
𝜕𝑓𝑛

𝜕𝑥

𝜕2𝑓𝑛

𝜕𝑥2

)︁
𝑑𝜂,

where 𝑓0(𝑥, 𝑡) is an initial solution. Therefore, by using the above iteration formula,
we can immediately evaluate several approximations exactly. The exact solution
accordingly is given as follows

𝑓(𝑥, 𝑡) = lim
𝑛→∞

𝑓𝑛(𝑥, 𝑡).

4. Numerical Examples

We now discuss the implementation of the proposed method by presenting some
examples. To this end, by applying the reconstruction of the variational iteration
method, we solve some examples of the generalized fractional Black–Scholes dif-
ferential equations including the regularized Prabhakar derivative and show the
solutions of these examples presented as a summation of the generalized Mittag-
Leffler functions. In the particular case, the solution of the generalized fractional
Black–Scholes equation including the regularized Prabhakar derivative gives the
solution of the fractional Black–Scholes differential equation in the sense of the
Caputo derivative. We first present two examples on which for anytime period, the
value of dividend yield 𝜏 is considered to be zero.

Remark 4.1. For a generalization of the fractional Black–Scholes model with
the Caputo derivative to the fractional Black–Scholes model with the regularized
Prabhakar derivative, the initial condition in the following examples is similar to
that of the initial condition given in [1].
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Example 4.1. The solution of the fractional Black–Scholes option pricing equa-
tion [22]

(4.1)
𝜕𝛾

𝜌,𝜇,𝜔,0+𝑣

𝜕𝑡𝛾
𝜌,𝜇,𝜔,0+

= 𝜕2𝑣

𝜕𝑥2 +(𝑘 −1) 𝜕𝑣

𝜕𝑥
−𝑘𝑣, 𝜌, 𝜇, 𝜔, 𝛾 ∈ C, Re(𝜌) > 0, 0 < 𝜇 6 1,

with the initial condition 𝑣(𝑥, 0) = max{𝑒𝑥 − 1, 0}, is given by

𝑣(𝑥, 𝑡) = max{𝑒𝑥 − 1, 0}
∞∑︁

𝑖=0
(−𝑘𝑡𝜇𝐸𝛾

𝜌,𝜇+1(𝜔𝑡𝜌))𝑖

+ max{𝑒𝑥, 0}
∞∑︁

𝑖=1
(−1)𝑖−1(𝑘𝑡𝜇𝐸𝛾

𝜌,𝜇+1(𝜔𝑡𝜌))𝑖.

Proof. By using the presented method, we get the following recursive formula

𝑣𝑛+1(𝑥, 𝑡) = 𝑣0(𝑥, 𝑡) +
∫︁ 𝑡

0
(𝑡 − 𝜂)𝜇−1𝐸𝛾

𝜌,𝜇

(︀
𝜔(𝑡 − 𝜂)𝜌

)︀
𝑔(𝑥, 𝜂, 𝑣𝑛) 𝑑𝜂,

where

𝑣0(𝑥, 𝑡) = max{𝑒𝑥 − 1, 0}, 𝑔(𝑥, 𝜂, 𝑣𝑛) = 𝜕2𝑣𝑛

𝜕𝑥2 + (𝑘 − 1)𝑥𝜕𝑣𝑛

𝜕𝑥
− 𝑘𝑣𝑛.

Now, by using relation (2.3) for 𝜈 = 1, we obtain the following successive approxi-
mations

𝑣0(𝑥, 𝑡) = max{𝑒𝑥 − 1, 0}
𝑣1(𝑥, 𝑡) = max{𝑒𝑥 − 1, 0}

(︀
1 − 𝑘𝑡𝜇𝐸𝛾

𝜌,𝜇+1(𝜔𝑡𝜌)
)︀

+ max{𝑒𝑥, 0}
(︀
𝑘𝑡𝜇𝐸𝛾

𝜌,𝜇+1(𝜔𝑡𝜌)
)︀
,

𝑣2(𝑥, 𝑡) = max{𝑒𝑥 − 1, 0}
(︀
1 − 𝑘𝑡𝜇𝐸𝛾

𝜌,𝜇+1(𝜔𝑡𝜌) + 𝑘2𝑡2𝜇(𝐸𝛾
𝜌,𝜇+1(𝜔𝑡𝜌))2)︀

+ max{𝑒𝑥, 0}
(︀
𝑘𝑡𝜇𝐸𝛾

𝜌,𝜇+1(𝜔𝑡𝜌) − 𝑘2𝑡2𝜇(𝐸𝛾
𝜌,𝜇+1(𝜔𝑡𝜌))2)︀

,

...

𝑣𝑛(𝑥, 𝑡) = max{𝑒𝑥 − 1, 0}
𝑛∑︁

𝑖=0

(︀
− 𝑘𝑡𝜇𝐸𝛾

𝜌,𝜇+1(𝜔𝑡𝜌)
)︀𝑖

+ max{𝑒𝑥, 0}
𝑛∑︁

𝑖=1
(−1)𝑖−1(︀

𝑘𝑡𝜇𝐸𝛾
𝜌,𝜇+1(𝜔𝑡𝜌)

)︀𝑖
.

Therefore, the solution is given by

𝑣(𝑥, 𝑡) = lim
𝑛→∞

𝑣𝑛(𝑥, 𝑡) = max{𝑒𝑥 − 1, 0}
∞∑︁

𝑖=0

(︀
− 𝑘𝑡𝜇𝐸𝛾

𝜌,𝜇+1(𝜔𝑡𝜌)
)︀𝑖

+ max{𝑒𝑥, 0}
∞∑︁

𝑖=1
(−1)𝑖−1(︀

𝑘𝑡𝜇𝐸𝛾
𝜌,𝜇+1(𝜔𝑡𝜌)

)︀𝑖
. �

Equation (4.1) is solved numerically for values 𝛾 = 0.2, 𝜌 = 0.9, 𝜇 = 0.95,
𝜔 = 0.3 and 𝑘 = 1. The results of 𝑣(𝑥, 𝑡) are presented in Figure 1.
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Remark 4.2. In the special case 𝛾 = 0, by using the definition of the Mittag-
Leffler function in one parameter, the above solution becomes

𝑣(𝑥, 𝑡) = lim
𝑛→∞

𝑣𝑛(𝑥, 𝑡) = max{𝑒𝑥 − 1, 0}𝐸𝜇(−𝑘𝑡𝜇) + max{𝑒𝑥, 0}(1 − 𝐸𝜇(𝑘𝑡𝜇)).

which confirms the solution given in [1]. Furthermore, in the subcase 𝜇 = 1, the
exact solution of classical Black–Scholes equation (4.1) gives rise to

𝑣(𝑥, 𝑡) = max{𝑒𝑥 − 1, 0}𝑒−𝑘𝑡 + max{𝑒𝑥, 0}(1 − 𝑒−𝑘𝑡).

Example 4.2. Let 𝜌, 𝜇, 𝜔, 𝛾 ∈ C, Re(𝜌) > 0, 0 < 𝜇 6 1. Then the following
fractional Black–Scholes option pricing equation

(4.2)
𝜕𝛾

𝜌,𝜇,𝜔,0+𝑣

𝜕𝑡𝛾
𝜌,𝜇,𝜔,0+

+ 0.08(2 + sin 𝑥)2𝑥2 𝜕2𝑣

𝜕𝑥2 + 0.06𝑥
𝜕𝑣

𝜕𝑥
− 0.06𝑣 = 0,

with the initial condition 𝑣(𝑥, 0) = max{𝑥 − 25𝑒−0.06, 0}, has the solution

𝑣(𝑥, 𝑡) = max{𝑥 − 25𝑒−0.06, 0}
∞∑︁

𝑖=0

(︀
− 0.06𝑡𝜇𝐸𝛾

𝜌,𝜇+1(𝜔𝑡𝜌)
)︀𝑖

− 𝑥

∞∑︁
𝑖=1

(︀
− 0.06𝑡𝜇𝐸𝛾

𝜌,𝜇+1(𝜔𝑡𝜌)
)︀𝑖

.

Proof. Similar to the previous example, by applying the proposed method,
we get the following recursive formula

𝑣𝑛+1(𝑥, 𝑡) = 𝑣0(𝑥, 𝑡) −
∫︁ 𝑡

0
(𝑡 − 𝜂)𝜇−1𝐸𝛾

𝜌,𝜇

(︀
𝜔(𝑡 − 𝜂)𝜌

)︀
𝑔(𝑥, 𝜂, 𝑣𝑛) 𝑑𝜂,

where

𝑣0(𝑥, 𝑡) = max{𝑥 − 25𝑒−0.06, 0},
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𝑔(𝑥, 𝜂, 𝑣𝑛) = 0.08(2 + sin 𝑥)2𝑥2 𝜕2𝑣

𝜕𝑥2 + 0.06𝑥
𝜕𝑣

𝜕𝑥
− 0.06𝑣.

By straight computations, we obtain the following successive approximations

𝑣0(𝑥, 𝑡) = max{𝑥 − 25𝑒−0.06, 0}
𝑣1(𝑥, 𝑡) = max{𝑥 − 25𝑒−0.06, 0}(1 − 0.06𝑡𝜇𝐸𝛾

𝜌,𝜇+1(𝜔𝑡𝜌)) + 0.06𝑥𝑡𝜇𝐸𝛾
𝜌,𝜇+1(𝜔𝑡𝜌),

𝑣2(𝑥, 𝑡) = max{𝑥 − 25𝑒−0.06, 0}(1 − 0.06𝑡𝜇𝐸𝛾
𝜌,𝜇+1(𝜔𝑡𝜌) + (0.06)2𝑡2𝜇(𝐸𝛾

𝜌,𝜇+1(𝜔𝑡𝜌))2)
+ 𝑥(0.06𝑡𝜇𝐸𝛾

𝜌,𝜇+1(𝜔𝑡𝜌) − (0.06)2𝑡2𝜇(𝐸𝛾
𝜌,𝜇+1(𝜔𝑡𝜌))2),

...

𝑣𝑛(𝑥, 𝑡) = max{𝑥 − 25𝑒−0.06, 0}
𝑛∑︁

𝑖=0
(−0.06𝑡𝜇𝐸𝛾

𝜌,𝜇+1(𝜔𝑡𝜌))𝑖

− 𝑥

𝑛∑︁
𝑖=1

(−0.06𝑡𝜇𝐸𝛾
𝜌,𝜇+1(𝜔𝑡𝜌))𝑖.

Therefore, the solution of (4.2) is given by

𝑣(𝑥, 𝑡) = lim
𝑛→∞

𝑣𝑛(𝑥, 𝑡) = max{𝑥 − 25𝑒−0.06, 0}
∞∑︁

𝑖=0
(−0.06𝑡𝜇𝐸𝛾

𝜌,𝜇+1(𝜔𝑡𝜌))𝑖

− 𝑥

∞∑︁
𝑖=1

(−0.06𝑡𝜇𝐸𝛾
𝜌,𝜇+1(𝜔𝑡𝜌))𝑖. �

Equation (4.2) is solved numerically for values 𝛾 = 0.2, 𝜌 = 0.9, 𝜇 = 0.95 and
𝜔 = 0.3. The result of 𝑣(𝑥, 𝑡) is presented in Figure 2.
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Remark 4.3. When 𝛾 = 0, the solution of (4.2) takes the form

𝑣(𝑥, 𝑡) = lim
𝑛→∞

𝑣𝑛(𝑥, 𝑡) = max{𝑥 − 25𝑒−0.06, 0}𝐸𝜇(−0.06𝑡𝜇)

+ 𝑥(1 − 𝐸𝜇(−0.06𝑡𝜇)).

For the special case 𝜇 = 1, the exact solution of (4.2) becomes

𝑣(𝑥, 𝑡) = max{𝑥 − 25𝑒−0.06, 0}𝑒−0.06𝑡 + 𝑥(1 − 𝑒−0.06𝑡).

Example 4.3. Let 𝜌, 𝜇, 𝜔, 𝛾 ∈ C, Re(𝜌) > 0, 0 < 𝜇 6 1. Then the solution to
the fractional Black–Scholes option pricing equation

(4.3)
𝜕𝛾

𝜌,𝜇,𝜔,0+𝑣

𝜕𝑡𝛾
𝜌,𝜇,𝜔,0+

+ 𝜎2𝑥2

2
𝜕2𝑣

𝜕𝑥2 + (𝑟 − 𝜏)𝑥 𝜕𝑣

𝜕𝑥
− 𝑟𝑣 = 0,

with the initial condition 𝑣(𝑥, 0) = max{𝛼𝑥 − 𝛽, 0}, 𝛼, 𝛽 ∈ R+, is given by

𝑣(𝑥, 𝑡) = max{𝛼𝑥 − 𝛽, 0}
∞∑︁

𝑖=0
(𝑟𝑡𝜇𝐸𝛾

𝜌,𝜇+1(𝜔𝑡𝜌))𝑖 − 𝛼𝑥

∞∑︁
𝑖=1

(𝑟𝑖 − 𝜏 𝑖)(𝑡𝜇𝐸𝛾
𝜌,𝜇+1(𝜔𝑡𝜌))𝑖.

Proof. By applying the proposed method, a recursive formula is obtained as
follows

𝑣𝑛+1(𝑥, 𝑡) = 𝑣0(𝑥, 𝑡) +
∫︁ 𝑡

0
(𝑡 − 𝜂)𝜇−1𝐸𝛾

𝜌,𝜇(𝜔(𝑡 − 𝜂)𝜌)𝑔(𝑥, 𝜂, 𝑣𝑛) 𝑑𝜂,

where

𝑣0(𝑥, 𝑡) = max{𝛼𝑥 − 𝛽, 0},

𝑔(𝑥, 𝜂, 𝑣𝑛) = −𝜎2𝑥2

2
𝜕2𝑣

𝜕𝑥2 − (𝑟 − 𝜏)𝑥 𝜕𝑣

𝜕𝑥
+ 𝑟𝑣.

The approximations are obtained as

𝑣0(𝑥, 𝑡) = max{𝛼𝑥 − 𝛽, 0}
𝑣1(𝑥, 𝑡) = max{𝛼𝑥 − 𝛽, 0}(1 + 𝑟𝑡𝜇𝐸𝛾

𝜌,𝜇+1(𝜔𝑡𝜌)) − 𝛼𝑥(𝑟 − 𝜏)𝑡𝜇𝐸𝛾
𝜌,𝜇+1(𝜔𝑡𝜌),

𝑣2(𝑥, 𝑡) = max{𝛼𝑥 − 𝛽, 0}(1 + 𝑟𝑡𝜇𝐸𝛾
𝜌,𝜇+1(𝜔𝑡𝜌) + 𝑟2𝑡2𝜇(𝐸𝛾

𝜌,𝜇+1(𝜔𝑡𝜌))2)
− 𝛼𝑥((𝑟 − 𝜏)𝑡𝜇𝐸𝛾

𝜌,𝜇+1(𝜔𝑡𝜌) + (𝑟2 − 𝜏2)𝑡2𝜇(𝐸𝛾
𝜌,𝜇+1(𝜔𝑡𝜌))2),

...

𝑣𝑛(𝑥, 𝑡) = max{𝛼𝑥 − 𝛽, 0}
𝑛∑︁

𝑖=0
(𝑟𝑡𝜇𝐸𝛾

𝜌,𝜇+1(𝜔𝑡𝜌))𝑖 − 𝛼𝑥

𝑛∑︁
𝑖=1

(𝑟𝑖 − 𝜏 𝑖)(𝑡𝜇𝐸𝛾
𝜌,𝜇+1(𝜔𝑡𝜌))𝑖.

Therefore, the solution of (4.3) is given by

𝑣(𝑥, 𝑡) = lim
𝑛→∞

𝑣𝑛(𝑥, 𝑡) = max{𝛼𝑥 − 𝛽, 0}
∞∑︁

𝑖=0
(𝑟𝑡𝜇𝐸𝛾

𝜌,𝜇+1(𝜔𝑡𝜌))𝑖

− 𝛼𝑥

∞∑︁
𝑖=1

(𝑟𝑖 − 𝜏 𝑖)(𝑡𝜇𝐸𝛾
𝜌,𝜇+1(𝜔𝑡𝜌))𝑖. �
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Equation (4.1) is solved numerically for values 𝛾 = 0.2, 𝜌 = 0.9, 𝜇 = 0.95,
𝜔 = 0.3, 𝛼 = 1, 𝛽 = 10, 𝜌 = 0.25, 𝜏 = 0.2. The result of 𝑣(𝑥, 𝑡) is presented in
Figure 3.
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Figure 3. The solution of (4.3)

Remark 4.4. When 𝛾 = 0, then the solution of (4.3) takes the form
𝑣(𝑥, 𝑡) = lim

𝑛→∞
𝑣𝑛(𝑥, 𝑡) = max{𝛼𝑥 − 𝛽, 0}𝐸𝜇(𝑟𝑡𝜇) − 𝛼𝑥(𝐸𝜇(𝑟𝑡𝜇) − 𝐸𝜇(𝜏𝑡𝜇)).

For 𝜇 = 1, the exact solution of (4.3) becomes
𝑣(𝑥, 𝑡) = max{𝛼𝑥 − 𝛽, 0}𝑒𝑟𝑡 − 𝛼𝑥(𝑒𝑟𝑡 − 𝑒𝜏𝑡).

Remark 4.5. We observe that the convergence speed of the solution of the frac-
tional Black–Scholes equation equations with the regularized Prabhakar derivative
depends on the three-parameter generalized Mittag-Leffler functions. For example,
for the case −𝛽𝑡𝜇𝐸𝛾

𝜌,𝜇+1(𝜔𝑡𝜌) we see that
𝑑

𝑑𝑡
(𝑒−𝛼𝑡) |𝑡=0 = −𝛼𝑒−𝛼𝑡 |𝑡=0= −𝛼,

𝑑

𝑑𝑡
(−𝛽𝑡𝜇𝐸𝛾

𝜌,𝜇+1(𝜔𝑡𝜌)) |𝑡=0 = −𝛽𝑡𝜇−1𝐸𝛾
𝜌,𝜇(𝜔𝑡𝜌) |𝑡=0= ±∞,

which decreases much faster than 𝑒−𝛼𝑡 near the origin for 𝜌, 𝜇, 𝜔, 𝛾 ∈ R, 0 < 𝜇 6 1
and 𝛼, 𝛽 ∈ R.
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