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WILLMORE SPACELIKE SUBMANIFOLDS
IN AN INDEFINITE SPACE FORM N;"‘p(c)

Shichang Shu and Junfeng Chen

ABSTRACT. Let Ngﬂ’(c) be an (n+p)-dimensional connected indefinite space
form of index ¢ (1 < ¢ < p) and of constant curvature c¢. Denote by ¢ :
M — Nq"+p(c) the n-dimensional spacelike submanifold in N;J'_p(c), P
M — N,;Ler(c) is called a Willmore spacelike submanifold in N;Hg(c) if
it is a critical submanifold to the Willmore functional W(p) = f o pltdv =
fM(S - nHQ)%dv, where S and H denote the norm square of the second fun-

damental form and the mean curvature of M and p?2 = S —nH?. If g =p, in
[14], we proved some integral inequalities of Simons’ type and rigidity theorems
for n-dimensional Willmore spacelike submanifolds in a Lorentzian space form
N;H_p(c). In this paper, we continue to study this topic and prove some inte-
gral inequalities of Simons’ type and rigidity theorems for n-dimensional Will-
more spacelike submanifolds in an indefinite space form N;H’(c) 1<qg<p).

1. Introduction

Let N;"*?(c) be an (n+ p)-dimensional connected indefinite space form of index
q (1 < g < p) and of constant curvature ¢. If ¢ > 0, ¢ =0 or ¢ < 0, it is denoted by
SptP(c), RyTP or HJP(c). A submanifold M in N]'P(c) is said to be spacelike if
the induced metric on M from that of the ambient space is positive definite. Let
@: M — N;*P(c) be an n-dimensional spacelike submanifold in N7 (c). If ¢ = p
and M is a complete maximal spacelike submanifold in N;*?(c), from [6], we know
that M is totally geodesic for ¢ > 0, thus the class of all such submanifolds is very
small. If 0 < ¢ < p, from [1] and [4], we know that if M is a complete minimal
submanifold in sphere S™(c) m > n, which is embeded in SJ**9(c) as a totally
geodesic spacelike submanifold such that m —n + ¢ = p, then M is a complete
maximal spacelike submanifold in SZ]“’(C), thus, we see that the class of complete
maximal spacelike submanifold in SP*?(c) is very large. Therefore, if 0 < ¢ <
p, the topic of studying spacelike submanifold in SZ;“‘P (c) is also interesting and
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important. But as far as we know, the results of this topic are less well established.
In [1], Alias and Romero studied compact maximal spacelike submanifold M in
Sy*P(c) and proved that if the Ricci curvature of M satisfying Ric(M) > (n —1)c,
then M is totally geodesic. Cheng-Ishikawa [4] also studied compact maximal
spacelike submanifold in S}*?(c) and obtained some important results in terms
of the pinching conditions on the scalar curvature, sectional curvature and Ricci
curvature, respectively.

Denote by hfj, S, H and H the second fundamental form, the norm square of
the second fundamental form, the mean curvature vector and the mean curvature
of M and denote by p? the nonnegative function p?> = S — nH?, we define the
Willmore functional (see [2], 8], 11]):

W((p):/ p"dv:/ (S —nH?)%dv,
M M

which vanishes if and only if M is a totally umbilical spacelike submanifold. It was
shown in [9] that this functional is an invariant under the conformal transformations
of a conformal space. The points of M are called the critical points of Willmore
functional W (yp) if W'(¢) = 0. If the critical points of W (y) are submanifolds in
N, ;”rp(c), we call them Willmore spacelike submanifolds. Obviously, we notice that
the totally umbilical spacelike submanifold is a Willmore spacelike submanifold,
but, conversely, it is not true.

Since any minimal submanifold in a unit sphere S™*?(c) is not necessarily
Willmore submanifold, due to their backgrounds in mathematics, we know that
Willmore submanifolds in a unit sphere have been extensively studied in recent
years (see [8, [13]). In indefinite or Lorentzian geometry, we also see that any
maximal spacelike submanifold in iV, ;“Lp(c) (1 < g < p) is not necessarily Willmore
spacelike submanifold, thus the study of Willmore spacelike submanifold in V. ;”‘p (c)
(I € g < p) is also interesting and important. In [14], if ¢ = p, we proved
some integral inequalities of Simons’ type and rigidity theorems for n-dimensional
Willmore spacelike submanifolds in a Lorentzian space form N;]“’ (¢). In this paper,
we shall continue to study this topic and prove some integral inequalities of Simons’
type and rigidity theorems for n-dimensional Willmore spacelike submanifolds in
an indefinite space form N7*?(c) (1 < ¢ < p).

Denote by K and @ the functions which assign to each point of M the infimum
of the sectional curvature and the Ricci curvature at the point, we obtain the
following:

THEOREM 1.1. Let o: M — N}P(c) be an n(n > 2)-dimensional compact
Willmore spacelike submanifold in the indefinite space form N;“‘p(c), c >0 and
1<qg<np.

(1) If p—q =1, then

/Mp”{n(c—HQ) - (2 - %)pz}dv <0.
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In particular, if
n
P2 < ﬁ(c - HQ),
P

then M 1is totally umbilical or M lies in the totally geodesic spacelike submanifold
Smtl(e) of SpHat(c) and is isometric to the Clifford torus Sk(%c) X Sk(%c);
(2) If p—q > 1, then

/ p”{n(c — H?) — gpQ}dv <0.
M

In particular, if

2
p2 < ?n(c_ Hz)v

then M 1is totally umbilical or M lies in the totally geodesic spacelike submanifold
S%(c) of S3T4(c) and is isometric to the Veronese surface.

THEOREM 1.2. Let p: M — NJ*P(c) be an n(n > 2)-dimensional compact
Willmore spacelike submanifold in the indefinite space form Nqn“’(c) (1<qg<p).
Then the following integral inequality holds

-2 1 1
/ p"{K T C gy —(1 - )pQ}dv <0.
M n(n—1) n p—gq
In particular, if

-2 1 1
K> nin—F 7(1 — —)p2,
n(n—1) n P—q
then M is totally umbilical or M is a mazimal spacelike submanifold in NP (c)
with parallel second fundamental form.

THEOREM 1.3. Let o: M — N]}P(c) be an n(n > 2)-dimensional compact
Willmore spacelike submanifold in the indefinite space form N;‘”’(c) (1<qg<p).
Then the following integral inequality holds

/Mp”{Q —(n—2)c—nH? - %(3 - ﬁ)f}dv

In particular, if

VA
o

1

Q> (n—2)c+nH?+ 7<3— M),02,
n (p—a)q

then M is totally umbilical or M is a maximal spacelike submanifold in N;ﬂ’(c)

with parallel second fundamental form.

2. Preliminaries

Let N7*?(c) be an (n + p)-dimensional indefinite space form with index (1 <
g < p). Let M be an n-dimensional connected spacelike submanifold immersed in
N}*P(c). We choose a local field of semi-Riemannian orthonormal frames e, ...,
€ntp I N;H‘p(c) such that at each point of M, eq,...,e, span the tangent space
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of M and form an orthonormal frame there. We use the following convention on
the range of indices:

1<ABC,...<n+p, 1<4,jk...<n, n+1<apB,7...<n+p.
Let wi,...,wpyp be its dual frame field so that the semi-Riemannian metric of
N;“’(c) is given by ds* = > ,caw?, where 64 = 1 for 1 < A< n+p—qand
ea=—1forn+p—q+1<A<n+p. Then the structure equations of NJ'*7(c)
are given by

dwa = — E EBWAB N\ WB, wap +wpa =0,
B
1
dwap = — E eowac NweB — 3 E ecepKapepwe ANwp,
c Cc.D

Kapep = ceaep(8apdpc — 04cdBD).

If we restrict this form to M, then w, =0, n+1 < a < n+pand

_ a, .. a o
Wai = g hijwj, hij = hji.
J

The second fundamental form 77, the mean curvature vector H of M are defined
by

a T a @ 1 a

(2.1) II = Z cahfwiviea, H =Y caH%q, H*= - zk: s,
a,i,] «

The norm square of the second fundamental form and the mean curvature of M

are defined by

S=P =) (eahy)? =Y (h)?, H=|H=—

], 1,J,a

The Gauss equations are

(2.2) Rijii = c(0i0x — dindj1) + Z al(hihfy — hihG)),

(2.3) Rjx = (n—1)cdjn+ »_ea ( > hghS = hg ;z.).

Defining the first and the second covariant derivatives of hf}, say h{;; and h{;,, by

> hSwr = dhgy = hfwr; — Y hSwri — Y eghliwpa,

67 _ @ « L @ .
E hijrwr = dhgy, — E Pk Wmi E Rk wm;
l m

m

= 2 W = 3 b s
m B
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we have the Codazzi equations and the Ricci identities

(2.5) h?jkl — h%lk = — Z h?mijkg — Z h?mRmikl — Z EﬁhijBakl-
m m B

The Ricci equations are

(2.6) Ragis = = D (il = h5hine).

The Laplacian of h; is defined by Ahg; =57 Ay, From (2.5), we obtain for any
a,n+1l1<a<n+p,

ARG = hfgs = > W Rmijk — Y W Renji — Y €ahi) Roaji
k k,m k,m k,B

For the fix index a(n +1 < a < n + p), we introduce an operator (0% due to
Cheng-Yau [3] by

27) 0°f = S (nH" 55 — b)) fise
%,

Since M is compact, the operator ¢ is self-adjoint (see [3]) if and only if

(2.8) /M(D“f)g dv = /M F(0%g) dv,

where f and g are any smooth functions on M. We need the following Lemma
(see [12]):

LEMMA 2.1. Let A, B be symmetric n X n matrices satisfying AB = BA and
trA=trB=0. Then
n—
nin—1)
and the equality holds if and only if (n — 1) of the eigenvalues x; of B and the
corresponding eigenvalues y; of A satisfy |vi| = (tr B2)Y2/\/n(n — 1), z;2; > 0,

yi = (tr A2/ /n(n —1).

By the same method as in the proof of [8] Lemma 4.2], we also have the
following:

|tr A2B| < (tr A%)(tr B)/2,

LEMMA 2.2. Let ¢: M — N}*P(c) be an n-dimensional (n > 2) spacelike
submanifold in N;'*P(c)(1 < ¢ < p). Then we have

2
VP > v,

where VA2 = 3, . o (h8)2, [VEH? = 32, (HS).

N
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3. Euler—Lagrange equation of Willmore spacelike submanifolds

From [9] Theorem 4.1], we know that the Euler-Lagrange equation of Willmore
spacelike submanifolds in terms of invariants of conformal metric g is stated as
following: a spacelike submanifold is a Willmore spacelike submanifold if and only if

(B1) > geng™e” (Biﬁj,kﬁAz‘szfﬁ > gngqBﬁB;jB;gl) =0, Vo,
i,5,k,08 4,7,V

where 1 g ia.jakalaraq g n, n+1 g aaﬁa%V < n+pa (glj) = (In)a (gaﬂ) =
(Ip—q) ® (—14), (955) = (¢7) 7" and (gag) = (¢°°)~" (see [9]). From [9] (3.23)], we
have (1—n)Cf* = >, Bj, ;- Thus, by a simply calculation, we may rewrite (3.1]) as

a a apB npb
(3.2) (1=n)> Co+ Y AiBy+> Y esBiBy,BL =0, Va,
i 2% B 14,k
where eg = gggandeg =1forn+1 < B <n+p—qgandeg=—-1forn+p—qg+1<
B<n+p.

From [9] or [10], we have the following relations of the connections of the
conformal metric e2"du - du and induced metric du - du

(33) w; = GTHZ', wij = 0”- + 71-9]- — Tjai, Wap = Hag,

where €7 = 2= (S —nH?). We know that the relations of the conformal invariants
and the induced invariants are

(3.4) e*"Ci=H,; — HY =Y hy7/,

j
1
(35) GQTAZ‘]‘ =TiTj; — Tij — ZHah% — 2(27-ka - H2 - C>Iij7
@ k
(3.6) ¢"BS = h¢ — HYI,
where 7; ; is the Hessian of 7 with respect to the first fundamental form I, 7% =
S0 177y, (1) = (Iiy) ™", H = e;(H*) and ¢ = 0 for R}*7(c), ¢ > 0 for Sy*P(c)
and ¢ < 0 for H}*P(c) (see [10])
From (3.3) and (3.4), by a similar calculation of Li [8], we have

DO, = Cfw; =dCr + > Cfwyi+ > Clwga
J J J B
=dCP +> 0805+ Y O (0 — i) + Y CL0pa,
J J B
therefore, we have

(37) eTng = 6_27—(— QHQT,‘TJ' + 2Tj Zh;—lk’rk + 2TjH:'; + Hijz + H(XTi’j

k
_ Z hiak,ka — Z h?ka,j — H’O{j) —+ Z Cngéij — Tich.
k k k
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From ({3.7)), we see that
37’ « 2
(3.8) Z = <H V7| Zhl,mm)

i,k
—2(n Z HS7+ HOAr =Y Wi — AT H®.

i,k
From and ( ., we have
€3T<ZAij +ZZE[}B BBBB)
0,J

B ik
:Z [Tm—Ti,j—ZHBh -—(ZT T —H” —C> za](ha HI;;)
+2255 — HLy) (h}; — HIiy) (b — H' L))
B 0.5k

= hg(mmj — i) + H” {AT — VTP +n) 1+ 255)(H5)2}

B
+ 3N eghS bl = > (14 2e)HP RS R — HY S ea ()2,
B ik Byi,j Byi,j
From (3.2)), (3.8]) and (3.9)), we see that
(3.10) (n—2)%bigg( Zh”’rﬂ'j H‘“|V7’|2> +2(n—1)(n—2 ZHOCTI

4,7
+ (TL — 2)(2]1%7’1"]‘ — HO‘AT) + (n — 1)ALHO‘
i,

—H*> ea(hf))? — >+ 2e5) HPhlj b,

B,1,J B,1,3
+nH°‘Z(1+255 JH?+> N " ephfuhi bl =
B 4,5,k
Putting p? = S —nH?, we have e*” = L= (S —nH?) = L5p?. Thus ™ =, /-"5p

and 7 = In(,/-"5p). From (3.10), we see that

(3.11) — 1{ H* " ep(hy)? =Y (1+ 2e5)HP L hg,
B4,3 B,1,3
+y > sghf‘khfjhf] +nH* > (1+ 2eﬁ)(Hﬁ)2}
B i,k B

nQALHa — n QZIHP” Ha5”>
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+2(n—2)p"? Z(ln p)iH

+(n— "QZlnp (In p); H%§;;) = 0.

n—1
It can be easily checked that
(3.12) PP TEALHY 4 —— 2 Z Inp), ; (h$s — HG;)

+2(n—2 p"*2z Inp); HY

—|— (n—2)* T 2Zlnp )i(ln p); —H“éij)

n—1

1
= _n 1 Z(pni%i,j (nHaaij — h%) + pn72AJ-HO‘
1,J

+2) (p")iHG + HYA(p" ).

From (3.11)) and (3.12), we may obtain the Euler-Lagrange equation of Willmore
spacelike submanifolds in Ng’“’ (¢) in terms of the induced invariants:

THEOREM 3.1. Let ¢: M — NP (c) be an n-dimensional spacelike subman-
ifold in N‘?“‘p(c). Then M is an n-dimensional Willmore spacelike submanifold if
and only if formn+1< a,8 <n+p,

(3.13) p"2{ — H*> ep(h)? =Y (14 225)H B RS,
B,1,3 B,1,J
+3 ) ephfhy bl +nHYY (14 265)(H5)2}
B i,k B

+(n—=1)p" PATH  +2(n— 1) (p"*)iHS

+(n =1 H*A(p"™?) = O%(p"*) = 0.

where A(p"2) = 3,(p"2)is, D" %) = X, (0" )i (nH0;; — hy) and
(p"~2);; is the Hessian of p"~2 with respect to the induced metric.

1
%pQ, it follows that p? # 0, that is, holds only for p? # 0. But, if p? = 0,
we should notice that also holds. Thus, in the following discussion, we agree
that the Euler—Lagrange equation of Willmore spacelike submanifolds holds
for all p2. But, if n = 3 and n = 5, we need to assume that M has no umbilical
points to guarantee (p"~2); ; to be continuous on M.

REMARK 3.1. In the proof of (3.13)), since we denote ™ = —2=(S — nH?) =

ProrosITION 3.1. FEvery mazimal spacelike surface ¢: M — Nq2+p(c) in
Nq“p(c) is a Willmore spacelike surface.
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In fact, if n = 2, since H = 0, from ({2.1]), we see that H* = 0 and ), hf} =
0. On the other hand, since R;; = %5”-, from Gauss equation (2.3), we have
S5 ehihly = ik + 35 ephll; by, — Rk, thus

Z Z é‘ﬁh hgj hfj Z hzk <361k =+ Z 5,3th hzk ”“)
B gk
= (C — 5) Zhg + Z Eﬁh?khiﬂk(zhjgj) -
i J

Btk
it follows that (3.13]) holds and Proposition is concluded.
ExampLE 3.1. If 0 < g < p = ¢ + 1, since we know that the Clifford torus

Sk (\/;c) x Gk (\ / "ch) is a complete minimal hypersurface in sphere S"*!(c)

which is embeded in S,’;"’l"'q(c) as a totally geodesic spacelike submanifold such

that 1+ ¢ = p, then S* <\/gc) x Sn—k (, / ”n;kc) is a complete maximal spacelike
submanifold in Sg*qﬂ(c), where 1 < k < n—1. Since S* (\/%c) x Sn—k (1 / ”T_kc>

lies in the totally geodesic spacelike submanifold S™*!(c) of Sy+4+!(c), we know
that b, =0fora =n+2,...,n+ g+ 1. Thus, if and only if n = 2k then

SN ephfhlhl = ST R et = 3T
[

B ik i,5,k

—k\° O\’
:k( nk c) +(n—k)(— n—kc> =0,
where h"Jr1 = Niij, 1/ %c and —,/ ﬁc are the two distinct principal curvatures

of Sk(\/;c) X S”fk(\ / ”T_kc> C S™"1(¢) with multiplicities k& and n — k, respec-
tively. We also see that p? = S—nH? =Y, A\? = nc is constant. Thus, (3.13)) holds
if and only if n = 2k, that is the Clifford torus Sk(%c) X Sk(%c), 1<k<n—1,

is a maximal Willmore spacelike submanifold in S7+7+(c).

ExaAMPLE 3.2. From [5] and [1], we know that the Veronese surface is a min-
imal surface in S*(¢) which is embeded in S;79(c) as a totally geodesic spacelike
submanifold such that 2 + ¢ = p, then the Veronese surface is a maximal spacelike
surface in S2%P(c), where p = 2 4 ¢. From Proposition we know that it is a
Willmore spacelike surface in S;79(c).

4. Basic integral equalities
Define tensors

(4.1) }?ﬂ. = h§s — HYy5,
(4.2) Gop = Zh” D, Oap = Zhﬁ;h@]
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Then the (p X p)-matrix (54p) is symmetric and can be assumed to be diagonized
for a suitable choice of e, 41,...,€n1p. We set

(4.3) Gap = Gadap-
By a direct calculation, we have

(4.4) Zﬁgkzo, 6ag=0a5—nH°‘HB, pQZZ&a:S—nHQ,
k «

(45)  —H*Y ep(h)* = > (1 +2e5)HhhS
B,i,J B,i,4

+3 03 " ephgihy ”+nH“Z<1+2sg><Hﬁ>2

B ik
B
LYY e - S
B i,4,k 4,9,8

From (4.1)), (4.4) and (4.5)), Euler—Lagrange equation (3.13|) can be rewritten as

PROPOSITION 4.1. Let ¢: M — N]""P(c) be an n-dimensional spacelike sub-
manifold in N;”‘p(c). Then M is a Willmore spacelike submanifold if and only if
forn+1<a<s<n+p
(46) D" = (n— e 2ATH® 4 2(n — 1) S (0" 2 HS

i

+(n—DHA(p"?)

A O I Zgﬁhghg)

B i4.k ,5,8
Setting f = nH® in (2.7), we have
(4.7) O (nH®) = 3 (nHO8; — b (nH);

i,
—Z (nH*)(nH®); Zho‘ (nH®);
We also have

(4.8) %A(nH)Q _ %A S (nH®)? = %ZA(nH“)Z
- %Z[(nHa)Q]i = S MnH) P+ S (H ) (nH),

OL'L OL'L

=n’|VEHP + > (nH*)(nH®); ;.

Therefore, from , we get
(4.9) ZD" (nH®) = A(nH) n?|VYH|? - Zh”‘ (nH®);

,J,a
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1 _
= §A[n(n —~1)H? - p* + S] —n?|V H? - Z hes(nH®);
1,7,
_ 1 1 2 1 2 2 € 2 a o
= SAS+on(n—1)AH?— S Ap*—n?|V H| §h (nH®); ;
From and ( ., we have
(4.10) §AS = > (hg)?+ D AR
i,5,k,a i,5,Q
= VAP + > he(nH")i 5 — > > hehiy Rie
i,5,0 a i,5,k,l
- Z Z h?jhﬁlejk - Z Z sﬂh%hfiRBajk-
o i,4k,l a,B 1,5k

Putting (4.10) into (4.9)), we have
= 1 1
(4.11) > O%nH®) = [Vh|* —n?|V-H|* + nn = 1AH? — iA,ﬁ

= > b (R Ruige + b Ruge) =y Y eshhy Roaj.

o i,4.k,l a,B 4,5,k
Multiplying (4.11]) by p"~2 and taking integration, using (2.8)), we have
(4.12) Z/ (nH“)DO‘(p"_Q)dv:/ 2V — 02|V E[?)dv
—Ju M

1 1
+ =n(n — 1)/ PV T2AH? dv — f/ P T2 AP dy
2 M 2 )

— /M pn—2 Z Z hiaj(hglRlijk + hﬁlejk)dU

a 4,7,k

—/ e 2zzeﬁhmhszﬁa1kd”

a,B i,5,k

Substituting Willmore equation (4.6]) into (4.12]) and making use of the following;:

1
n—2 a AL rra n—2 1 )2 n—2 a2
p HAHdv:f/p AHdvf/p HS)dv
o oA o
:1/ p"*2AH2dvf/ P2V H 2dv,
2 Jm M
| A= [ S S e
M M o [
= [ o= = 3 [0 () s
o, M a,t M
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/ Z H* Z )iH%dv,

_7/ - 2Ap2dv——72/

= Z/ )idv = (n — 2)/ " 2|V p|?dv,
M

we have, by a direct calculation, the following:

PROPOSITION 4.2. Let ¢: M — Np*P(c) be an n-dimensional spacelike sub-
manifold in N;*+P(c). Then

(4.13) / p""2(|Vh|)? = n|VEH|?)do + (n—2)/ PV p|2dv
M M

—/ - 227@H“(Z€ghfkhfjhfj H’Béa5>dv

.5,k

— /M p"_2 Z Z h?j(hglRlijk + h%lejk)dU

a .5kl
= [ Y Y eahihl Raagudo = 0.
M o B ik

In general, for a matrix A = (a;;) we denote by N(A) the square of the norm
of A, that is, N(A) = trace(A - A*) = 37, (ai;)*. Clearly, N(A) = N(T"*AT) for
any orthogonal matrix 7. From (2.6)), we have

414) =3 ephfhy Roage = — ) > ephfihi (hhiy — Bhi)
«a,B 1,5,k «a,B i,7,k,l
2
Y Z 55<thlhu Zhgzhfj)
aﬁjk l
o 2
Y Z 55<thlhlg Zh?zhfj)
aﬁjk l
= —5 Z&gN(Aa/IQ — Agﬁa),
a,B

where A4, = ha

H 5”
By use of i, , and -, we conclude that

(4.15) — Z Z h?j(hglRlijk + hloélejk) = ncp — ZEﬁO‘aﬁ
a i,k a,B

+n > Y egHPhLhEhG — > eghhl Raajk

a,B 0,5,k a,f,i,5,k
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= ncp® — ngaaﬂ - 2n2255H0‘Hﬂhf3hg
@B 4]

—n2z (H®) Zgﬁ (H?? +nY Y " eaHPhy heihs,

a,B i,5,k

—i—anZEﬂ Hﬂ +2nZZE,@HQH'Bh%hf]
B B 4,j

+n22H°‘ Ze (H?)? 77255NA Ag — AgA,)
a,B

= ncp —ngﬁaﬁ—knpzng Hﬁ
a,p B

+n > N egH by kG, — ZEBNA Ag — AgA,).
a,fB 1,5,k a,B
Putting (4.14) and (4.15) into (4.13)), we have the following:

PROPOSITION 4.3. Let ¢: M — Np*P(c) be an n-dimensional spacelike sub-
manifold in Ny*P(c). Then

(4.16) / P R(TRP — | V) + (0 - 2) / 2V pl2du
M M

+n/ p"Q(ZH“HB&ag+p2263(Hﬁ)2>dv+nc/ p"dv
M M

a,B B
B / pn_2<zgﬁzv<;1a,45 _Aﬁfianzgﬁagﬁ)dv o,
M
a,f a,B

5. Proofs of Theorems

PrOOF OF THEOREM [Tl (1) If p — ¢ = 1, from Lemma and ([4.16)), we

have

(5.1) 0:/ “2(|Vh|* - \le\ )dv+/ "
M M
+-2) [ p“*2|w|2dv

M

+n/ p"_2{ZHO‘HB&a5+2p2(H"+1)2—H2p2}dv+nc/ pltdv
M M
a,p

n—+p n+p
w2 XS NUads - Ao - 20
M a=n+2 f=n+2 n+p  n+p
£ 3 Y afa

a=n+1pB=n+1

1
> —n/ p”_2H2p2dv—|—nc/ p"dv—Q/ p"_2p4dv+/ P2 = ptdv
M M M M p

3n? 3n?

n+2

—n)|V*H|2dv
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1
_ n _ 2\ _ = 2
_/Mp {n(c H?) (2 p)p }dv,
where the inequality N(AaAﬁ — Aﬁﬁa) 0 for any «, 8, &

Zaﬁ&iﬁ =>,02> (Za &a) = 11) 4 is used.
In particular, if p* < 5% (c — H?), from (5.1)), we see that p?> = 0 and M is
totally umbilical or p? = 2+ (c — H?). In the latter case, we have from (5.1 that

4
n+1n+1 p and

D=

Jar "2 s H*HPGopdv = 0, that is

(5.2) /M P2 (HY)?Gqdv = 0.

If p? = 0, that is M is totally umbilical, otherwise, if p? # 0, it follows from
that Y (H*)*6, = 0, thus (H*)?5, = 0 for all a. Therefore, we see that G, = 0
for all o (contradicts to p? # 0), or H* = 0 for all . Thus, we have H = 0, that is,
M is a compact maximal spacelike submanifold in S’Zf“’(c), by Cheng and Ishikawa
[4, Theorem 1] and Example we know that M lies in the totally geodesic
spacelike submanifold S™*!(c) of SP+4*!(c) and is isometric to the Clifford torus

§*(se) x S*( o).
(2) If p— ¢ > 1, from Lemma [2.2] and (4.16)), we have
(5.3)

o:/M n— 2(|Vh|2 |vLH| )

3n? ~
+/ p"iQ(L—n)\VJ‘H\de—F(n—@/ P3|V p|du
M M

ke~

n -+ 2
n+p—q
+n - Oap + — v+ nc v
/ pn Q{ZHQHB~ 5 2p2 Z (HB)Z H2p2}d / pnd
M op Bent1 M
+/p { > N(AaAp— AgA, Z%ﬂ
M o
n+p o o n+p
OV D (U IRV M REE) DU DA
« p=ntp—q+l o B=ntp—g+1

3
> —n/ p"72H2p2dv+nc/ p"dv—|—/ p"fz(— fp4>dv
M M M 2

where the inequality [7]

is used.
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In particular, if p < 2?”(c — H?), from , we see that p? = 0 and M is
totally umbilical or p = 7"(0 — H?). In the latter case, from , we also see
that ( . ) holds. If p2 = 0, that is M is totally umbilical, otherwise, if p? # 0, it
follows from that Za(Ha)Q&a = 0. By the same argument as above, we see
that H* = 0 and H = 0, that is, M is a compact maximal spacelike submanifold in
Sy*P(c), by Cheng and Ishikawa [4, Theorem 1] and Example we know that M
lies in the totally geodesic spacelike submanifold S*(c) of S774(c) and is isometric

to the Veronese surface. This completes the proof of Theorem O
PROOF OF THEOREM For a fixed a,n +1 < a < n + p, we can take a

local orthonormal frame field {ey,...,e,} such that ho‘ = A{'0;;, then ﬁ% = uoi;
with puf = A¢ — H*, Y. pu& = 0. Thus

« « « 1 « «
(5.4) - Z b (higy R — hii Ruji) = 3 Z(/\i — A%)? Reiik
a,1,7,k,l a,ik
=5 Z — 1) Ryian = nKp?,
a,i,k

where K denotes the infimum of the sectional curvature of M and the equality in
(5.4) holds if and only if Ry, = K for any i # k.

Let Y°,(h)? = 75. Then 75 < 3, ;(h;)? = 65. Since Y, hf; = 0, Y, u¢ =
and Y, (u$)? = 64. We have from Lemma [2.1] that

n+p—q
(5.5) = Y H%ghghp bl =—>" > H*h kb
a,B,i,5,k a,i, g,k B=n+1
n+p
T2 X HURGhGR

a,i,5,k B=n+p—q+1

n+p—q 5 n+p B
== > HURGW)+Y Y. HeURG(W)
a,i B=n+1 a,i f=n+p—q+1

n+p—q

n—2
> — |H65v/Ta
Vn(n—1) ;,6’%1 ’

n-+p

\/ﬁz > |HY65V7a

o B=n+p—q+1

n+p—q n+p
n—2
I S NG SR )
vn(n—1) za: " 5—271+1 B_n§q+1

n—2 o2 )2 s n—2 3
Z - )( ;(H ) Za: a)p 2 ’I’L(’I’L—I)Hp'

nin —1
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From Chen—-Do Carmo—Kobayashi [5, Lemma 1], we see that

(5.6) —5 > esN(Ands — AgA,)
a,B
n+p—q n+p
:_,Z > N(AaAs—AA,) Z > N(AaAs—AzA,)
o B=n+1 a B=n+p—q+l1

n+p g n+p—q
=5 > Y N(Aads - Al
a=n+1 B=n+1
1 n-+p n-+p o o
+3 > > N(AuAs - AzA,)
a=n+p—qg+1 f=n+p—q+1
n+p q n+p—q

- Z > N(AgAp— AgAy) > =) 6a6s

a=n+1 B=n+1 a#fB
n+p—q n+p—q n+p—q 2 1 n+p—q 2
(Ya) s Y (X ) (X )
a=n+1 a=n+1 a=n+1 p q a=n+1

n+p—
1 P—q

g (E e g
p—a/ N T p—q
Thus, from , , @ @ ) and Lemma we have

2
(5.7) 0>/ “2(|Vh|* - |viH\ )dv+/ p"_2(3L—n)|VLH|2dv
M n+2

+(n_2)/ pn_Q‘Vp|2dU— pn 2 ’I’L(’I’L ) Hp?’dv
M M

Vn(n—1)
+/ p"_QZnHaHﬂ&aﬂ—i—/ p"_2nKp2dv
M op M
1 . o
— 52 eeN(Aads — AsA0)
o,

Lo e (e

In particular, if

-2 1 1
K> nin+f(1f—>p2,
n(n —1) n D

from (5.7), we see that p?> = 0 and M is totally umbilical or K = \/%Hp +
l(1 — i)pz. In the latter case, from (5.7)), we know that (5.2) holds. If p? = 0,

n p—q

that is M is totally umbilical, otherwise, if p?> # 0, it follows from (5.2)) that
> (H*)?5, = 0. By the same argument as in the proof of Theorem we see
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that H* = 0 and H = 0. Tt also follows from (5.7) that |[Vh|?> = 32 : =0,
that is, the second fundamental form of M is parallel. This completes the proof of
Theorem O

PrOOF OF THEOREM [[.3l From and (4.1)), we have

n+p—q

Ry, = (n - ].)C + n — ZéﬁaH hkk + (n — ]_) Z (Ha)2
a=n+1
n+p n+p—q R n+p .
—(m-1) > @)= Y ()2 Y (hg)?
a=n+p—q+1 i,a=n+1 i,a=n+p—q+1

<(n—1c+(n- Z)ZsaHaﬁgk + (n —1)H?

n+p—q _ n+p ~
- Z (h§)* + Z (h§)?.
i,a=n+1 i,a=n+p—q+1
Thus
n+p—q ~ n+p _
ZRkk =n(n—1lc+nn—DH>— > (A3 + > (k)%
i,k,a=n+1 i,k,a=n+p—qg+1
From and ., we have
n+p—q n+p
(5.8) - Z Go + Z Go =nQ —n(n—1)c—n(n—1)H>
a=n+1 a=n+p—q+1

From (j5.8)), we see that

(5.9) (nfqaa>2+;( %) &a>2

a=n+1 a=n+p—q+1

(T F )y F )

a=n+1 a=n+p—q+1 a=n+p—q+1
n+p—q n+p n+p—q n+p 1
~ ~ ~ ~ 4
(X wt Y a)(Xar X a)-(1-1)
a=n+1 a=n+p—q+1 a=n+1 a=n+p—q+1 q

> (nQ —n(n — 1)c —n(n — 1)H?*)p* — (1 - é)p‘l.

By Chen—Do Carmo—Kobayashi [5, Lemma 1], we also see that

n+p—q n+p—q

(5.10) =Y Y N(Alds - Ay > (1—L)p4.

a=n+1pB=n+1 p q
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From Lemma , , and , we have

(5.11)
0= [ pr(vhE - R Y
M
+/ p"_2<73n2 —n)|Vlﬁ|2dv+(n—2)/ " 2| Vpl2dv
M n+2 M
n+p—q
+n/ p"_2{ZH“H56a5+2,02 Z (HB)2—H2p2}dU+TLC/ p"dv
M o, B=n+1 M
n+p—qgn+p—q n+p—q n+p
S a2 D SR S (E IV TRV R R SR DR AT
a=n+18=n+1 a=n+1 a=n+p—q+1

2—71/ p"’2H2p2dv+nc/ p”dv+/ p”*2{ —2(1—L>p4}dv
M M M bp—q
n+p—q 2 1 n+p 2
Lt () (X ) e

a=n+1 a=n+p—q+1

1
>—n/ p"_QHQdev—l—nc/ p”dv—i—/ p”_Q{—2(1——>p4}dv
M M M p—q

+ /M p"_2{(nQ —n(n—1)c—n(n—1)H?)p* - (1 - é)p‘l}dv
:/an”{Q—(n—Q)c—nHz—%(3—%)/}2}(){1}.

1
Q> (n—2)c+nH2+7(3— p+a ),0 ,
n (p—a)q
from , we see that p> = 0 and M is totally umbilical or Q = (n — 2)c +

nH? + (3 — (p+q) )p?. In the latter case, from (5.11)), we know that (5.2)) holds. If

p? = 0, that is M is totally umbilical, otherwise, if p? # 0, it follows from (5.2)) that

Y (H%)?G, = 0. By the same argument as in the proof of Theorem 1.1} we see

that H* =0 and H = 0. It also follows from (5.11) that [Vh|? = 32 |VLH|? = 0,
that is, the second fundamental form of M is parallel. This completes the proof of
Theorem [L.3 O
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