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KENMOTSU MANIFOLDS WITH GENERALIZED
TANAKA–WEBSTER CONNECTION

Gopal Ghosh and Uday Chand De

Abstract. We study the g-Tanaka–Webster connection associated to a Ken-
motsu structure. With the help of g-Tanaka–Webster connection we charac-
terize Kenmotsu manifolds and find certain curvature properties of this con-
nection on Kenmotsu manifolds. Finally an illustrative example is given to
verify some results.

1. Introduction

The Tanaka–Webster connection has been introduced by Tanno [20] as a gener-
alization of the well-known connection defined at the end of the 1970’s by Tanaka
in [21] and independently by Webster in [26]. This connection coincides with
the Tanaka–Webster connection if the associated CR-structure is integrable. The
Tanaka–Webster connection is defined as the canonical affine connection on a non-
degenarate, pseudo-Harmitian CR-manifold. For a real hypersurface in a Kähler
manifold with almost contact structure (𝜑, 𝜉, 𝜂, 𝑔), Cho [6, 7] adapted Tanno’s g-
Tanaka–Webster connection for a non-zero real number 𝑘. Using the g-Tanaka–
Webster connection, some geometers have studied some characterizations of real
hypersurfaces in complex space forms [22]. Recently in [1] Bilal et al. study g-
Tanaka–Webster connection in Kenmotsu manifolds.

A Riemannian manifold is called semisymmetric if the curvature tensor satisfies

(1.1) 𝑅(𝑋, 𝑌 ) · 𝑅 = 0,

where 𝑅(𝑋, 𝑌 ) is considered as a field of linear operators, acting on 𝑅. It is
well known that the class of semisymmetric manifolds includes the set of locally
symmetric manifolds (∇𝑅 = 0) as a proper subset. Semisymmetric Riemannian
manifolds were first studied by E. Cartan, A. Lichnerowicz, R. S. Couty and N. S.
Sinjukov. A Riemannian manifold is said to be Ricci semisymmetric if the curvature
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tensor satisfies
(1.2) 𝑅(𝑋, 𝑌 ) · 𝑆 = 0,

where 𝑅(𝑋, 𝑌 ) is considered as a field of linear operators, acting on 𝑅 and 𝑆 is the
Ricci tensor of type (0, 2). The class of Ricci semisymmetric manifolds includes the
set of Ricci symmetric manifolds (∇𝑆 = 0) as a proper subset. Ricci semisymmetric
manifolds were investigated by several authors. Every semisymmetric manifold is
Ricci semisymmetric. The converse statement is not true. However, under some
additional assumptions (1.1) and (1.2) are equivalent. Semisymmetric manifolds
were classified by Szabó, locally in [19]. A fundamental study on Riemannian
semisymmetric manifolds was made by Szabó [19], Boeckx et al. [5] and Kowalski
[15].

An example of a curvature condition of semisymmetry type is 𝑄 · 𝑅 = 0, where
𝑄 is the Ricci operator defined by 𝑆(𝑋, 𝑌 ) = 𝑔(𝑄𝑋, 𝑌 ). A natural extension
of such curvature conditions form curvature conditions of pseudosymmetry type.
The curvature condition 𝑄 · 𝑅 = 0 has been studied by Verstraelen et al. in [25].
Motivated by the above studies in the present paper we characterize Kenmotsu
manifolds admitting the g-Tanaka–Webster connection.

This paper is organized in the following way: In Section 2, we recall some basic
formulas and results. In Section 3, we mention the expressions of the curvature
tensor and Ricci tensor 𝑅̄ and 𝑆 with respect to the generalized Tanaka–Webster
connection and then prove some interesting results. Section 4, deals with the study
of Ricci semisymmetric Kenmotsu manifolds and prove that Ricci semisymmetry
with respect to ∇̄ and ∇ are equivalent if and only if the manifold is an Einstein
manifold. Next it is shown that the curvature conditions 𝑄̄ · 𝑅̄ = 0 and 𝑄 · 𝑅 = 0
are equivalent if and only if the manifold is an Einstein manifold, where 𝑄 and
𝑄̄ are respectively Ricci operator defined by 𝑆(𝑋, 𝑌 ) = 𝑔(𝑄𝑋, 𝑌 ) and 𝑆(𝑋, 𝑌 ) =
𝑔(𝑄̄𝑋, 𝑌 ). Next in Section 6, we prove that the concirular curvature tensor with
respect to the g-Tanaka–Webster connection and Levi-Civita connection are equal.
In this section we also prove that 𝒵 ·𝑆 = 0 if and only if the manifold is an Einstein
manifold. Finally, we construct an example of a 5-dimensional Kenmotsu manifold
admitting the g-Tanaka–Webster connection in order to verify some results.

2. Kenmotsu manifolds

Let 𝑀 be a (2𝑛+1)-dimensional almost contact metric manifold equipped with
an almost contact metric structure (𝜑, 𝜉, 𝜂, 𝑔) consisting of a (1, 1) tensor field 𝜑, a
vector field 𝜉, a 1-form 𝜂 and a compatible Riemannian metric 𝑔 satisfying [3]

𝜑2 = −𝐼 + 𝜂 ⊗ 𝜉, 𝜂(𝜉) = 1, 𝜑𝜉 = 0,(2.1)
𝜂 ∘ 𝜑 = 0, 𝑔(𝑋, 𝑌 ) = 𝑔(𝜑𝑋, 𝜑𝑌 ) + 𝜂(𝑋)𝜂(𝑌 ),(2.2)

𝑔(𝑋, 𝜑𝑌 ) = −𝑔(𝜑𝑋, 𝑌 ), 𝑔(𝑋, 𝜉) = 𝜂(𝑋),(2.3)
for all vectors field 𝑋, 𝑌 . An almost contact metric manifold 𝑀 is called a Ken-
motsu manifold if it satisfies [12]
(2.4) (∇𝑋𝜑)𝑌 = 𝑔(𝜑𝑋, 𝑌 )𝜉 − 𝜂(𝑌 )𝜑𝑋,
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for all vector fields 𝑋, 𝑌 , where ∇ is the Levi-Civita connection of the Riemannian
metric. From the above equation it follows that

∇𝑋𝜉 = 𝑋 − 𝜂(𝑋)𝜉,(2.5)
(∇𝑋𝜂)𝑌 = 𝑔(𝑋, 𝑌 ) − 𝜂(𝑋)𝜂(𝑌 ).(2.6)

Moreover, the curvature tensor 𝑅, the Ricci tensor 𝑆 and the Ricci operator 𝑄
satisfy [2,12,13]

𝑅(𝑋, 𝑌 )𝜉 = 𝜂(𝑋)𝑌 − 𝜂(𝑌 )𝑋,(2.7)
𝑆(𝑋, 𝜉) = −2𝑛𝜂(𝑋),(2.8)

𝑄𝜉 = −2𝑛𝜉.(2.9)

A Kenmotsu manifold is normal (that is, the Nijienhuis tensor of 𝜑 equals to
−2𝑑𝜂 ⊗ 𝜉, but not Sasakian. Moreover, it is also not compact, since from (2.8) we
get div 𝜉 = 2𝑛. Kenmotsu [12] showed:

(a) that locally a Kenmotsu manifold is a Warped product 𝐼 ×𝑓 𝑁 of an
interval 𝐼 and a Kaehler manifold 𝑁 with wrapping function 𝑓(𝑡) = 𝑠𝑒𝑡,
where s is a non-zero constant;

(b) that a Kenmotsu manifold of constant 𝜑 sectional curvature is a space of
constant curvature −1 and so it is locally hyperbolic space.

Kenmotsu manifolds have been studied by several authors such as Pitis [17],
De [8], Özgür and De [16], De and Majhi [10], De, Yildiz and Yaliniz [9], Hong et
al. [11], Umnova [24] and many others.

3. Curvature tensor and Ricci tensor
with respect to the generalised Tanaka–Webster connection

The 𝑔-Tanaka–Webster connection ∇̄ defined by Tanno for contact metric man-
ifolds is given by [20],

∇̄𝑋𝑌 = ∇𝑋𝑌 + (∇𝑋𝜂)(𝑌 )𝜉 − 𝜂(𝑌 )∇𝑋𝜉 − 𝜂(𝑋)𝜑𝑌,

for any 𝑋, 𝑌 tangent to 𝑀 .
With the help of (2.5) and (2.6) the above equation takes the form,

(3.1) ∇̄𝑋𝑌 = ∇𝑋𝑌 + 𝑔(𝑋, 𝑌 )𝜉 − 𝜂(𝑌 )𝑋 − 𝜂(𝑋)𝜑𝑌.

Putting 𝑌 = 𝜉 in (3.1) and using (2.1) we have

(3.2) ∇̄𝑋𝜉 = ∇𝑋𝜉 + 𝜂(𝑋)𝜉 − 𝑋,

Using (2.5) in (3.2) we get ∇̄𝑋𝜉 = 0. Now

(3.3) (∇̄𝑋𝜂)𝑌 = ∇̄𝑋𝜂(𝑌 ) − 𝜂(∇̄𝑋𝑌 ),
From (3.1) and (3.3) we get

(3.4) (∇̄𝑋𝜂)𝑌 = ∇𝑋𝜂(𝑌 ) − 𝑔(𝑋, 𝑌 ) + 𝜂(𝑌 )𝜂(𝑋).

With the help of (2.6), from the above equation, it follows that (∇̄𝑋𝜂)𝑌 = 0. Again

(3.5) (∇̄𝑋𝑔)(𝑌, 𝑍) = ∇̄𝑋𝑔(𝑌, 𝑍) − 𝑔(∇̄𝑋𝑌, 𝑍) − 𝑔(𝑌, ∇̄𝑋𝑍).
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Finally using (3.1) in (3.5) yields
(3.6) (∇̄𝑋𝑔)(𝑌, 𝑍) = 0.

Now in this position we can state the following:

Proposition 3.1. In a Kenmotsu manifold 𝜉, 𝜂, 𝑔 are parallel with respect to
the 𝑔-Tanaka–Webster connection.

Proposition 3.2. In a Kenmotsu manifold the g-Tanaka–Webster connection
is a metric connection.

Proposition 3.3. In a Kenmotsu manifold the integral curves of the vector
field 𝜉 are geodesic with respect to the generalized Tanaka–Webster connection.

Here we also obtain an interesting result stated below.

Theorem 3.1. The g-Tanaka-webster connection ∇̄ associated to the Levi-
Civita connection is just the only one affine connection, which is metric and its
torsion is of the form

𝑇 (𝑋, 𝑌 ) = 𝜂(𝑋)𝑌 − 𝜂(𝑌 )𝑋 − 𝜂(𝑋)𝜑𝑌 + 𝜂(𝑌 )𝜑𝑋.

Proof. We see in (3.6) that the Tanaka–Webster coonection is a metric con-
nection. Now the torsion tensor 𝑇 of ∇̄ is given by 𝑇 (𝑋, 𝑌 ) = ∇̄𝑋𝑌 −∇̄𝑌 𝑋. Using
(3.1) in the previous relation we get
(3.7) 𝑇 (𝑋, 𝑌 ) = 𝜂(𝑋)𝑌 − 𝜂(𝑌 )𝑋 − 𝜂(𝑋)𝜑𝑌 + 𝜂(𝑌 )𝜑𝑋.

Now we recall the famous result stating with:
Any metric connection can be expressed with the help of its torsion 𝑇 in the

following way:
𝑔(∇̄𝑋𝑌, 𝑍) = 𝑔(∇𝑋𝑌, 𝑍) + 1

2 [𝑔(𝑇 (𝑋, 𝑌 ), 𝑍) − 𝑔(𝑇 (𝑋, 𝑍), 𝑌 ) − 𝑔(𝑇 (𝑌, 𝑍), 𝑋)].
Applying (3.7) in the above relation yields

𝑔(∇̄𝑋𝑌, 𝑍) = 𝑔(∇𝑋𝑌, 𝑍) + 𝜂(𝑍)𝑔(𝑋, 𝑌 ) − 𝜂(𝑌 )𝑔(𝑋, 𝑍) − 𝜂(𝑋)𝑔(𝜑𝑌, 𝑍).
Contracting 𝑍 in the above equation, we get

∇̄𝑋𝑌 = ∇𝑋𝑌 + 𝑔(𝑋, 𝑌 )𝜉 − 𝜂(𝑌 )𝑋 − 𝜂(𝑋)𝜑𝑌. �

Let 𝑅 and 𝑅̄ denote the curvature tensors ∇ and ∇̄ respectively. Then
(3.8) 𝑅̄(𝑋, 𝑌 )𝑍 = ∇̄𝑋∇̄𝑌 𝑍 − ∇̄𝑌 ∇̄𝑋𝑍 − ∇̄[𝑋,𝑌 ]𝑍

Using (3.1) in (3.8) yields [1]
(3.9) 𝑅̄(𝑋, 𝑌 )𝑍 = 𝑅(𝑋, 𝑌 )𝑍 + 𝑔(𝑌, 𝑍)𝑋 − 𝑔(𝑍, 𝑋)𝑌.

Using (2.7) and putting 𝑍 = 𝜉 in (3.9) we get 𝑅̄(𝑋, 𝑌 )𝜉 = 0. Also by the help of
(2.7) and (3.9) we can easily obtain 𝑅̄(𝜉, 𝑌 )𝑍 = 0 and 𝑅̄(𝑋, 𝜉)𝑌 = 0, for all vector
fields 𝑋, 𝑌, 𝑍.

Taking the inner product with 𝑊 in (3.9),
(3.10) 𝑔(𝑅̄(𝑋, 𝑌 )𝑍, 𝑊 ) = 𝑔(𝑅(𝑋, 𝑌 )𝑍, 𝑊 ) + 𝑔(𝑌, 𝑍)𝑔(𝑋, 𝑊 ) − 𝑔(𝑍, 𝑋)𝑔(𝑌, 𝑊 ).
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Let {𝑒1, 𝑒2, 𝑒3, . . . , 𝑒2𝑛+1} be a local orthonormal basis of the tangent space at
a point of the manifold 𝑀 . Then by putting 𝑋 = 𝑊 = 𝑒𝑖 in (3.10) and taking
summation over 𝑖, 1 6 𝑖 6 (2𝑛 + 1), we obtain
(3.11) 𝑆(𝑌, 𝑍) = 𝑆(𝑌, 𝑍) + 2𝑛𝑔(𝑌, 𝑍),
where 𝑆 and 𝑆 are the Ricci tensor of 𝑀 with respect to ∇̄ and ∇ respectively.

Let 𝑟 and 𝑟 denote the scalar curvature of 𝑀 with respect to ∇̄ and ∇ respec-
tively. Let {𝑒1, 𝑒2, 𝑒3, . . . , 𝑒2𝑛+1} be a local orthonormal basis of the tangent space
at a point of the manifold 𝑀 . Then by putting 𝑌 = 𝑍 = 𝑒𝑖 and taking summation
over 𝑖, 1 6 𝑖 6 (2𝑛 + 1) we have
(3.12) 𝑟 = 𝑟 + 2𝑛(2𝑛 + 1).

Therefore we can state the following:

Proposition 3.4. For a Kenmotsu manifold 𝑀 admitting generalised Tanaka–
Webster connection ∇̄

(i) The curvature tensor 𝑅̄ of ∇̄ is given by (3.9),
(ii) The Ricci tensor 𝑆 of ∇̄ is given by (3.11),
(iii) The scalar curvature 𝑟 of ∇̄ is given by (3.12),
(iv) 𝑅̄(𝑋, 𝑌 )𝑍 = −𝑅̄(𝑌, 𝑋)𝑍,
(v) 𝑅̄(𝑋, 𝑌 )𝑍 + 𝑅̄(𝑌, 𝑍)𝑋 + 𝑅̄(𝑍, 𝑋)𝑌 = 0,
(vi) The Ricci tensor 𝑆 is symmetric,

Suppose ∇̄ is flat. Then from (3.9), we get
𝑅(𝑋, 𝑌 )𝑍 = −[𝑔(𝑌, 𝑍)𝑋 − 𝑔(𝑋, 𝑍)𝑌 ],

which implies that the manifold is of constant sectional curvature −1.
This leads to the following:

Proposition 3.5. The manifold 𝑀2𝑛+1 is flat with respect to the generalized
Tanaka–Webster connection if and only if 𝑀2𝑛+1 is locally isometric to the hyper-
bolic space 𝐻2𝑛+1(−1).

It is known [12] that if 𝑀 be a conformally flat Kenmotsu manifold of dimension
> 5, then 𝑀 has constant sectional curvature equal to −1. The converse is also
true. Hence from the above proposition we have the following theorem:

Theorem 3.2. Let 𝑀 be a Kenmotsu manifold admitting the 𝑔-Tanaka–Webster
connection. Then the following assertions are equivalent:

(i) ∇̄ is flat.
(ii) 𝑀 is of constant sectional curvature −1.
(iii) 𝑀 is conformally flat of dimension > 5.

4. Ricci semisymmetry with respect to ∇̄ and ∇

In this section we characterize the Ricci semisymmetry in Kenmotsu manifolds
with respect to the generalized Tanaka–Webster connection. Now
(4.1) (𝑅̄(𝑋, 𝑌 ) · 𝑆)(𝑈, 𝑉 ) = −𝑆(𝑅̄(𝑋, 𝑌 )𝑈, 𝑉 ) − 𝑆(𝑈, 𝑅̄(𝑋, 𝑌 )𝑉 ).
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Therefore using (3.9) in the above equation, we have
(𝑅̄(𝑋, 𝑌 ) · 𝑆)(𝑈, 𝑉 ) = (𝑅(𝑋, 𝑌 ) · 𝑆)(𝑈, 𝑉 ) + 𝑔(𝑋, 𝑈)𝑆(𝑌, 𝑉 )(4.2)

+𝑔(𝑋, 𝑉 )𝑆(𝑈, 𝑌 )−𝑔(𝑌, 𝑈)𝑆(𝑋, 𝑉 )−𝑔(𝑌, 𝑉 )𝑆(𝑈, 𝑋).

Suppose (𝑅̄(𝑋, 𝑌 ) · 𝑆)(𝑈, 𝑉 ) = (𝑅(𝑋, 𝑌 ) · 𝑆)(𝑈, 𝑉 ), then from the above equation,
it follows that

𝑔(𝑋, 𝑈)𝑆(𝑌, 𝑉 ) + 𝑔(𝑋, 𝑉 )𝑆(𝑈, 𝑌 ) − 𝑔(𝑌, 𝑈)𝑆(𝑋, 𝑉 ) − 𝑔(𝑌, 𝑉 )𝑆(𝑈, 𝑋) = 0.

Putting 𝑋 = 𝑈 = 𝑒𝑖, 1 6 𝑖 6 (2𝑛 + 1) in the above equation, we have

𝑆(𝑌, 𝑉 ) = 𝑟

(2𝑛 + 1)𝑔(𝑌, 𝑉 ).

Again if 𝑆(𝑌, 𝑉 ) = 𝑟
(2𝑛+1) 𝑔(𝑌, 𝑉 ), then from (4.2), it follows that

(𝑅̄(𝑋, 𝑌 ) · 𝑆)(𝑈, 𝑉 ) = (𝑅(𝑋, 𝑌 ) · 𝑆)(𝑈, 𝑉 ).
This leads to the following:

Theorem 4.1. Ricci semisymmetries with respect to ∇̄ and ∇ are equivalent if
and only if the manifold 𝑀 is an Einstein manifold with respect to the Levi-Civita
connection.

5. Kenmotsu manifolds satisfying 𝑄̄ · 𝑅̄ = 0
with respect to the g-Tanaka–Webster connection

In this section we characterize 𝑄̄ · 𝑅̄ = 0 and 𝑄 ·𝑅 = 0 in a Kenmotsu manifold
with respect to the g-Tanaka–Webster connection and Levi-Civita connection. Now
(5.1) (𝑄̄ · 𝑅̄)(𝑋, 𝑌 )𝑍 = 𝑄̄(𝑅̄(𝑋, 𝑌 )𝑍) − 𝑅̄(𝑄̄𝑋, 𝑌 )𝑍 − 𝑅̄(𝑋, 𝑄̄𝑌 )𝑍 − 𝑅̄(𝑋, 𝑌 )𝑄̄𝑍.

From (3.11), it follows that
(5.2) 𝑄̄𝑋 = 𝑄𝑋 + 2𝑛𝑋.

Using (3.9) and (5.2) in (5.1) yields
(𝑄̄ · 𝑅̄)(𝑋, 𝑌 )𝑍 = (𝑄 · 𝑅)(𝑋, 𝑌 )𝑍 + 2𝑆(𝑋, 𝑍)𝑌(5.3)

−2𝑆(𝑌, 𝑍)𝑋−2𝑛[𝑔(𝑌, 𝑍)𝑋−𝑔(𝑋, 𝑍)𝑌 ].

Suppose 𝑄̄ · 𝑅̄ = 0 and 𝑄 · 𝑅 = 0 are equivalent in a Kenmotsu manifold 𝑀 . Then
from (5.3) it follows that

𝑆(𝑋, 𝑍)𝑌 − 𝑆(𝑌, 𝑍)𝑋 − 𝑛[𝑔(𝑌, 𝑍)𝑋 − 𝑔(𝑋, 𝑍)𝑌 ] = 0.

Contracting 𝑌 from the above equation, we get 𝑆(𝑋, 𝑍) = 𝑛𝑔(𝑋, 𝑍), which implies
that the manifold 𝑀2𝑛+1 is an Einstein manifold.

Conversely, let the manifold 𝑀2𝑛+1 be an Einstein manifold. Then from (5.3),
it follows that 𝑄̄ · 𝑅̄ = 𝑄 · 𝑅.

This leads to the following:

Theorem 5.1. The curvature properties 𝑄̄ · 𝑅̄ = 0 and 𝑄 ·𝑅 = 0 are equivalent
in a Kenmotsu manifold 𝑀 if and only if 𝑀 is an Einstein manifold with respect
to the Levi-Civita connection.
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6. Concircular Curvature tensor with respect to ∇ and ∇̄

A transformation in an (2𝑛 + 1) dimensional Riemannian manifold 𝑀 , which
transforms every geodesic circle of 𝑀 into a geodesic circle of 𝑀 , is said to be a
concircular transformation [14, 23, 27]. A concircular transformation is always a
conformal transformation [14]. Here, we mean a geodesic circle by a curve in 𝑀
whose first curvature is constant and second curvature is identically zero. Thus the
geometry of concircular transformation is a generalization of inversive geometry in
the sense that the change of metric is more general than induced by a circle pre-
serving diffeomorphism [4]. An important invariant of concircular transformation
is the concircular curvature tensor 𝒵, defined by [27]

𝒵(𝑋, 𝑌 )𝑊 = 𝑅(𝑋, 𝑌 )𝑊 − 𝑟

2𝑛(2𝑛 + 1) [𝑔(𝑌, 𝑊 )𝑋 − 𝑔(𝑋, 𝑊 )𝑌 ],

for all 𝑋, 𝑌, 𝑊 ∈ 𝜒(𝑀), where 𝑅 is the Riemannian curvature tensor and 𝑟 is the
scalar curvature with respect to the Levi-Civita connection.

Now the concircular curvature tensor with respect to the g-Tanaka–Webster
connection is given by

(6.1) 𝒵(𝑋, 𝑌 )𝑊 = 𝑅̄(𝑋, 𝑌 )𝑊 − 𝑟

2𝑛(2𝑛 + 1) [𝑔(𝑌, 𝑊 )𝑋 − 𝑔(𝑋, 𝑊 )𝑌 ],

for all 𝑋, 𝑌, 𝑊 ∈ 𝜒(𝑀), where 𝑅̄ is the Riemannian curvature tensor and 𝑟 is the
scalar curvature with respect to the g-Tanaka-webster connection.

Using (3.9) and (3.12) in the above equation, we get 𝒵(𝑋, 𝑌 )𝑊 = 𝒵(𝑋, 𝑌 )𝑊.
Therefore we can state the following:

Theorem 6.1. The concirular curvature tensors with respect to the g-Tanaka–
Webster connection and Levi-Civita connection are equal.

Now suppose 𝒵(𝑋, 𝑌 ) · 𝑆 = 0. Then we have

𝑆(𝒵(𝑋, 𝑌 )𝑈, 𝑉 ) + 𝑆(𝑈, 𝒵(𝑋, 𝑌 )𝑉 ) = 0,

for all 𝑋, 𝑌, 𝑈, 𝑉 ∈ 𝜒(𝑀). Substituting 𝑋 by 𝜉 in the above equation yields

(6.2) 𝑆(𝒵(𝜉, 𝑌 )𝑈, 𝑉 ) + 𝑆(𝑈, 𝒵(𝜉, 𝑌 )𝑉 ) = 0,

for all 𝑋, 𝑌, 𝑈, 𝑉 ∈ 𝜒(𝑀). Using (3.9), (3.12) and (6.1) in (6.2) yields

(6.3) 𝜂(𝑈)𝑆(𝑌, 𝑉 ) − 𝜂(𝑉 )𝑆(𝑈, 𝑌 ) = 0.

Putting 𝑈 = 𝜉 in (6.3) implies 𝑆(𝑌, 𝑉 ) = 0. Hence from (3.11) it follows that

𝑆(𝑌, 𝑉 ) = −2𝑛𝑔(𝑌, 𝑉 ).

This leads to the following:

Theorem 6.2. A Kenmotsu manifold satisfies the condition 𝒵(𝑋, 𝑌 ) · 𝑆 = 0
with respect to the g-Tanaka–Webster connection if and only if the manifold is an
Einstein manifold with respect to the Levi-Civita connection.
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7. Example of a 5-dimensional Kenmotsu manifold
admitting g-Tanaka–Webster connection

Consider the 5-dimensional manifold 𝑀 = {(𝑥, 𝑦, 𝑧, 𝑢, 𝑣) ∈ R5}, where (𝑥, 𝑦, 𝑧,
𝑢, 𝑣) are the standard coordinates in R5. We choose the vector fields 𝑒1 = 𝑒−𝑣 𝜕

𝜕𝑥 ,
𝑒2 = 𝑒−𝑣 𝜕

𝜕𝑦 , 𝑒3 = 𝑒−𝑣 𝜕
𝜕𝑧 , 𝑒4 = 𝑒−𝑣 𝜕

𝜕𝑢 , 𝑒5 = 𝑒−𝑣 𝜕
𝜕𝑣 , which are linearly independent

at each point of 𝑀 . Let 𝑔 be the Riemannian metric defined by 𝑔(𝑒𝑖, 𝑒𝑗) = 0, 𝑖 ̸= 𝑗,
𝑖, 𝑗 = 1, 2, 3, 4, 5 and

𝑔(𝑒1, 𝑒1) = 𝑔(𝑒2, 𝑒2) = 𝑔(𝑒3, 𝑒3) = 𝑔(𝑒4, 𝑒4) = 𝑔(𝑒5, 𝑒5) = 1.

Let 𝜂 be the 1-form defined by 𝜂(𝑍) = 𝑔(𝑍, 𝑒5), for any 𝑍 ∈ 𝜒(𝑀), where 𝜒(𝑀) is
the set of all differentiable vector fields on 𝑀 . Let 𝜑 be the (1, 1)-tensor field defined
by 𝜑𝑒1 = 𝑒3, 𝜑𝑒2 = 𝑒4, 𝜑𝑒3 = −𝑒1, 𝜑𝑒4 = −𝑒2, 𝜑𝑒5 = 0. Using the linearity of 𝜑 and
𝑔, we have 𝜂(𝑒5) = 1, 𝜑2𝑍 = −𝑍 + 𝜂(𝑍)𝑒5 and 𝑔(𝜑𝑍, 𝜑𝑈) = 𝑔(𝑍, 𝑈) − 𝜂(𝑍)𝜂(𝑈),
for any 𝑈, 𝑍 ∈ 𝜒(𝑀). Thus, for 𝑒5 = 𝜉, 𝑀(𝜑, 𝜉, 𝜂, 𝑔) defines an almost contact
metric manifold. The 1-form 𝜂 is closed.

We have Ω( 𝜕
𝜕𝑥 , 𝜕

𝜕𝑧 ) = 𝑔( 𝜕
𝜕𝑥 , 𝜑 𝜕

𝜕𝑧 ) = 𝑔( 𝜕
𝜕𝑥 , − 𝜕

𝜕𝑥 ) = −𝑒2𝑣. Hence we obtain
Ω = −𝑒2𝑣𝑑𝑥 ∧ 𝑑𝑧. Thus, 𝑑Ω = −2𝑒2𝑣𝑑𝑣 ∧ 𝑑𝑥 ∧ 𝑑𝑧 = 2𝜂 ∧ Ω. Therefore, 𝑀(𝜑, 𝜉, 𝜂, 𝑔)
is an almost Kenmotsu manifold. It can be seen that 𝑀(𝜑, 𝜉, 𝜂, 𝑔) is normal. So,
it is a Kenmotsu manifold.

Now we have [𝑒1, 𝑒2] = [𝑒1, 𝑒3] = [𝑒1, 𝑒4] = [𝑒2, 𝑒3] = 0, [𝑒1, 𝑒5] = 𝑒1, [𝑒4, 𝑒5] =
𝑒4, [𝑒2, 𝑒4] = [𝑒3, 𝑒4] = 0, [𝑒2, 𝑒5] = 𝑒2, [𝑒3, 𝑒5] = 𝑒3.

The Levi-Civita connection ∇ of the metric tensor 𝑔 is given by Koszul’s formula
which is given by

2𝑔(∇𝑋𝑌, 𝑍) = 𝑋𝑔(𝑌, 𝑍) + 𝑌 𝑔(𝑋, 𝑍) − 𝑍𝑔(𝑋, 𝑌 )
− 𝑔(𝑋, [𝑌, 𝑍]) − 𝑔(𝑌, [𝑋, 𝑍]) + 𝑔(𝑍, [𝑋, 𝑌 ]).

Taking 𝑒5 = 𝜉 and using Koszul’s formula we get the following

∇𝑒1𝑒1 = −𝑒5, ∇𝑒1𝑒2 = 0, ∇𝑒1𝑒3 = 0, ∇𝑒1𝑒4 = 0, ∇𝑒1𝑒5 = 𝑒1,

∇𝑒2𝑒1 = 0, ∇𝑒2𝑒2 = −𝑒5, ∇𝑒2𝑒3 = 0, ∇𝑒2𝑒4 = 0, ∇𝑒2𝑒5 = 𝑒2,

∇𝑒3𝑒1 = 0, ∇𝑒3𝑒2 = 0, ∇𝑒3𝑒3 = −𝑒5, ∇𝑒3𝑒4 = 0, ∇𝑒3𝑒5 = 𝑒3,

∇𝑒4𝑒1 = 0, ∇𝑒4𝑒2 = 0, ∇𝑒4𝑒3 = 0, ∇𝑒4𝑒4 = −𝑒5, ∇𝑒4𝑒5 = 𝑒4,

∇𝑒5𝑒1 = ∇𝑒5𝑒2 = ∇𝑒5𝑒3 = ∇𝑒5𝑒4 = ∇𝑒5𝑒5 = 0.

Using the above relations in (3.1), we obtain

∇̄𝑒1𝑒1 = ∇̄𝑒1𝑒2 = ∇̄𝑒1𝑒3 = ∇̄𝑒1𝑒4 = ∇̄𝑒1𝑒5 = 0,

∇̄𝑒2𝑒1 = ∇̄𝑒2𝑒2 = ∇̄𝑒2𝑒3 = ∇̄𝑒2𝑒4 = ∇̄𝑒2𝑒5 = 0,

∇̄𝑒3𝑒1 = ∇̄𝑒3𝑒2 = ∇̄𝑒3𝑒3 = ∇̄𝑒3𝑒4 = ∇̄𝑒3𝑒5 = 0,

∇̄𝑒4𝑒1 = ∇̄𝑒4𝑒2 = ∇̄𝑒4𝑒3 = ∇̄𝑒4𝑒4 = ∇̄𝑒4𝑒5 = 0,

∇̄𝑒5𝑒1 = ∇̄𝑒5𝑒2 = ∇̄𝑒5𝑒3 = ∇̄𝑒5𝑒4 = ∇̄𝑒5𝑒5 = 0.
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By the above results, we can easily obtain that the non-vanishing components
of the curvature tensor with respect to the Levi-Civita connection are

𝑅(𝑒1, 𝑒2)𝑒2 = 𝑅(𝑒1, 𝑒3)𝑒3 = 𝑅(𝑒1, 𝑒4)𝑒4 = 𝑅(𝑒1, 𝑒5)𝑒5 = −𝑒1,

𝑅(𝑒1, 𝑒2)𝑒1 = 𝑒2, 𝑅(𝑒1, 𝑒3)𝑒1 = 𝑅(𝑒5, 𝑒3)𝑒5 = 𝑅(𝑒2, 𝑒3)𝑒2 = 𝑒3,

𝑅(𝑒2, 𝑒3)𝑒3 = 𝑅(𝑒2, 𝑒4)𝑒4 = 𝑅(𝑒2, 𝑒5)𝑒5 = −𝑒2, 𝑅(𝑒3, 𝑒4)𝑒4 = −𝑒3,

𝑅(𝑒2, 𝑒5)𝑒2 = 𝑅(𝑒1, 𝑒5)𝑒1 = 𝑅(𝑒4, 𝑒5)𝑒4 = 𝑅(𝑒3, 𝑒5)𝑒3 = 𝑒5,

𝑅(𝑒1, 𝑒4)𝑒1 = 𝑅(𝑒2, 𝑒4)𝑒2 = 𝑅(𝑒3, 𝑒4)𝑒3 = 𝑅(𝑒5, 𝑒4)𝑒5 = 𝑒4.

Therefore the manifold 𝑀 has a constant sectional curvature −1.
Now the components of the curvature tensor with respect to the 𝑔-Tanaka–

Webster connection are
𝑅̄(𝑒1, 𝑒2)𝑒2 = 𝑅̄(𝑒1, 𝑒3)𝑒3 = 𝑅̄(𝑒1, 𝑒4)𝑒4 = 0,

𝑅̄(𝑒1, 𝑒2)𝑒1 = 𝑅̄(𝑒1, 𝑒3)𝑒1 = 𝑅̄(𝑒2, 𝑒3)𝑒2 = 0,

𝑅̄(𝑒2, 𝑒3)𝑒3 = 𝑅̄(𝑒2, 𝑒4)𝑒4 = 𝑅̄(𝑒2, 𝑒5)𝑒5 = 0,

𝑅̄(𝑒3, 𝑒4)𝑒4 = 𝑅̄(𝑒2, 𝑒5)𝑒2 = 𝑅̄(𝑒1, 𝑒5)𝑒1 = 0,

𝑅̄(𝑒3, 𝑒5)𝑒3 = 𝑅̄(𝑒1, 𝑒4)𝑒1 = 𝑅̄(𝑒2, 𝑒4)𝑒2 = 0,

𝑅̄(𝑒1, 𝑒5)𝑒5 = 𝑅̄(𝑒3, 𝑒5)𝑒5 = 𝑅̄(𝑒4, 𝑒5)𝑒5 = 0.

Hence Theorem 3.2 is verified.
With the help of the above results we get the components of the Ricci tensor

as follows:
𝑆(𝑒1, 𝑒1) = 𝑆(𝑒2, 𝑒2) = 𝑆(𝑒3, 𝑒3) = 𝑆(𝑒4, 𝑒4) = 𝑆(𝑒5, 𝑒5) = −4,(7.1)
𝑆(𝑒1, 𝑒1) = 𝑆(𝑒2, 𝑒2) = 𝑆(𝑒3, 𝑒3) = 𝑆(𝑒4, 𝑒4) = 𝑆(𝑒5, 𝑒5) = 0.(7.2)

Therefore 𝑟 =
∑︀5

𝑖=1 𝑆(𝑒𝑖, 𝑒𝑖) = −20 and 𝑟 =
∑︀5

𝑖=1 𝑆(𝑒𝑖, 𝑒𝑖) = 0.
Again from the expressions of the curvature tensor and Ricci tensor we can

easily verify Proposition 3.4.
Also from (7.1) we see that the manifold is an Einstein manifold with respect

to the Levi-Civita connection. Hence Theorem 4.1 is verified.

Acknowledgement. The authors are thankful to the referee for his/her valu-
able suggestions for the improvement of the paper.
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