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SECTIONAL CURVATURE IN 4-DIMENSIONAL
MANIFOLDS OF NEUTRAL SIGNATURE

Graham Hall

Abstract. We consider the sectional curvature function on a 4-dimensional
manifold admitting a metric g of neutral signature, (+, +, −, −) together with
a review of the situation for the other two signatures. The main results of
the paper are: first, that if the sectional curvature function is not a constant
function at any m ∈ M (actually a slightly weaker assumption is made), the
conformal class of g is always uniquely determined and in almost all cases g

is uniquely determined on M , second, a study of the special cases when this
latter uniqueness does not hold, third, the construction of the possible metrics
in this latter case, fourth, some remarks on sectional curvature preserving
vector fields and finally the complete solution when (M, g) is Ricci flat.

1. Introduction

The sectional curvature function has been studied for metrics of positive definite
and Lorentz signature and a brief summary of this work which is relevant to the
present article will be given at the beginning of Section 2. The purpose of this
paper is to consider the case when g has neutral signature.

To settle notation, g, unless otherwise stated, is a smooth metric of neutral
signature (+,+,−,−) on a 4-dimensional, smooth, connected manifold M with
Levi-Civita connection ∇, sometimes written, collectively, as (M, g). For m ∈ M ,
TmM denotes the tangent space to M at m, Bm denotes the 6-dimensional vector
space of 2-forms (here referred to as bivectors) at m and ∗ denotes the Hodge
duality (linear) operator on Bm. Let ∼ denote the equivalence relation on nonzero
bivectors at m given by B1 ∼ B2 ⇔ B1 = kB2 for k ∈ R and let the resulting
equivalence classes of projective bivectors be denoted by PBm. Topologically, Bm

and PBm are R
6 and PR5. The matrix rank of any nonzero member F ∈ Bm is an

even number and if it is 2, F is called simple and may be written in components
as F ab = paqb − qapb for p, q ∈ TmM (sometimes abbreviated to p ∧ q). The 2-
dimensional subspace (2-space) of TmM spanned by p and q is uniquely determined
by F and called the blade of F . The set of all simple members of Bm is denoted
by SBm and one easily passes to the subset (projective simple bivectors) of PBm
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denoted by PSBm which is in bijective correspondence with the collection of blades
of members of SBm. If u, v ∈ TmM the inner product g(m)(u, v) is denoted by
u · v and 0 6= u ∈ Tm is called spacelike, respectively timelike or null, if u · u > 0,
(respectively < 0 or = 0). A 2-space W of TmM is called spacelike if each nonzero
member of W is spacelike, or each nonzero member of W is timelike, timelike if
W contains exactly two, null 1-dimensional subspaces (null directions), null if V
contains exactly one null direction and totally null if each nonzero member of V
is null. Thus a totally null 2-space consists, apart from the zero vector, of null
vectors any two of which are orthogonal. This classification of 2-spaces is mutually
exclusive and exhaustive.

The set of all spacelike (respectively, timelike) 2-spaces at m is denoted by Sm

(respectively, Tm) and the combined set of all null and totally null 2-spaces at m is
denoted by Nm. A member F ∈ SBm is called spacelike, (respectively timelike, null
or totally null) if its blade is of that type and F is then spacelike if F abFab > 0,
timelike if F abFab < 0 and null or totally null if F abFab = 0. If one defines an
orthonormal basis x, y, s, t of TmM by x · x = y · y = −s · s = −t · t = 1 and its
associated null basis (of null vectors) l, n, L,N where

√
2l = x + t,

√
2n = x − t,√

2L = y + s and
√

2N = y − s so that l.n = L.N = 1 (and all other such inner
products are zero) then, for example, x∧ y and s∧ t are spacelike, x∧ t (= −l∧ n)
is a timelike, l∧ y and l∧ s are null and l∧N and n∧L are totally null 2-spaces at
m. One may always extend an orthonormal basis at m to a smooth orthonormal
basis on some open neighbourhood of m and hence, as above, extend a null basis
at m to a smooth null basis in this neighbourhood. The manifold theory associated
with the above bivector (and related) sets is discussed in [12] and one may identify
PSBm with the 4-dimensional, compact, connected Grassmann manifold Gm of all
(real) 2-spaces at m and define its open submanifold Gm ≡ Gm rNm which is the
disjoint union of the two open submanifolds Sm and Tm. In the usual manifold
topology on Gm each member of Nm is a limit point of Sm and of Tm.

Now define the Lie algebras (under matrix commutation)
+
Sm ≡ {A ∈ Bm :

∗

A = A} and
−

Sm ≡ {A ∈ Bm :
∗

A = −A} which are Lie-isomorphic to each other
and to o(1, 2). It is known that the Lie algebra Bm is the Lie algebra product

Bm ≡
+
Sm ⊕

−

Sm and that the only simple members of
+
Sm and

−

Sm are totally null

[22] and conversely any totally null bivector lies in
+
Sm or

−

Sm. Further, the blades

of two totally null bivectors, one of which is in
+
Sm and the other in

−

Sm, intersect

in a unique null direction whereas if they are both in
+
Sm or both in

−

Sm their
intersection is trivial. It is also useful to note that if F ∈ Bm is null its unique null
direction is orthogonal to all other members of its blade and that it may be written

as F =
+
F +

−

F for unique, nonzero, totally null members
+
F ∈

+
Sm and

−

F ∈
−

Sm and

where the blades of
+
F and

−

F intersect in the unique null direction in the blade of

F . If P ∈
+
Sm and Q ∈

−

Sm, P abQab = 0.
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The Riemann tensor Riem with components Ra
bcd, its associated Ricci tensor

Ricc with components Rab ≡ Rc
acb, the Ricci scalar R ≡ Rabg

ab and the cor-
responding Weyl conformal tensor C with components Ca

bcd are related at each
m ∈ M by

(1.1) Rabcd = Cabcd + Eabcd +
R

6
Gabcd

where G is the tensor with components Gabcd = 1
2 [gacgbd − gadgbc],

(1.2) Eabcd =
1

2
[R̃acgbd − R̃adgbc + R̃bdgac − R̃bcgad]

and where the tracefree Ricci tensor R̃icc has been introduced with components

R̃ab = Rab − R
4 gab. Then E(m) = 0 if and only if R̃icc(m) = 0, that is, Ricc = R

4 g
at m, which is equivalent to the Einstein space condition at m.

The Weyl conformal tensor at m may be classified algebraically [8] in a manner
similar to that given by Petrov in the Lorentz case [16] (the Petrov classification).
The details of this are not needed except for the concept of a principal null direction
of C at m. A null direction spanned by a null l ∈ TmM is called a principal null
direction for C(m) 6= 0 if Cabcdl

alc = lbpd + pbld for some 1-form p at m. Such
null directions are important in this classification and have the property (which is
useful later) that if k0 ∈ TmM spans a principal null direction of C(m) then the null
directions spanned by those null vectors in some open neighbourhood of k0 in the
topology of TmM cannot all be principal null directions of C(m) since they force
the contradiction C(m) = 0. This result is trivially true in the Lorentz case since,
for C(m) 6= 0, only finitely many such directions may exist, but less obviously true
in the present case since it is possible for infinitely many such directions to exist in
neutral signature even if C(m) 6= 0 [8].

2. The Sectional Curvature Function on (M,g)

The sectional curvature function at m is a real-valued function defined on the
open submanifold Gm of Gm, σm : Gm → R and given, for a representative member
F of SBm, by

(2.1) σm(F ) ≡ RabcdF
abF cd

2GabcdF abF cd
=
RabcdF

abF cd

2F abFab

It is clear that this definition is independent of the representative member F used
to fix the member of Gm. (For the function σm the identification of PSBm with
Gm, through a representative member of SBm, will always be made.) Now a simple
bivector F is null or totally null if and only if GabcdF

abF cd(= F abFab) = 0 and so
such members of Gm must be excluded from the domain of σm. The interpretation
of σm(F ) for F ∈ Gm is as follows; there exists a neighbourhood U of m such
that the geodesics of ∇ starting from m with initial directions in the blade of F
generate a 2-dimensional submanifold M ′ of U (and hence of M) such that M ′ has
an induced metric h from g and σm(F ) is then the Gauss curvature of M ′ with
respect to h at m. It seems that sectional curvature is essentially what Riemann
had in mind in his famous address on curvature [18]. If σm is a constant function on
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Gm, (1.1) holds at m with C = E = 0 and σm is, in this case, trivially continuously
extendible to a (constant) function on Gm.

If g is positive definite σm is defined on the whole of Gm for eachm and provided
it is not a constant function on Gm for any m in some open dense subset of M ,
the collection of functions σm at each m ∈ M uniquely determines the metric on
M from which it came (and this applies for all dimensions > 4) [15]. For Lorentz
signature, all 2-spaces are either spacelike, timelike or null, as defined above, (with
totally null ones impossible) and thus σm is only immediately defined on the set of
non-null 2-spaces Gm. If, however, σm is continuously extendible to a single null
2-space (in the usual manifold topology on Gm), it is a constant function on Gm

and hence (trivially) continuously extendible to a constant function on the whole
of Gm [6, 7, 13] and the components Rabcd are proportional to Gabcd at m. [In
fact, to achieve the constancy of σm on Gm it is sufficient to achieve it on Sm or
on Tm, as is easily checked (cf [5]).] Again in this case if σm is not a constant
function on Gm for any m ∈ M the collection of functions σm at each m ∈ M
uniquely determines each set Nm = Gm r Gm and hence, as is easily shown, the
null cone at each m. In fact it uniquely determines the metric on M from which
it came except in certain very special circumstances [6, 19, 7]. Further, if g is
Ricci-flat and nonflat (in the sense that Riem does not vanish over any nonempty
open subset of M) the functions σm for each m ∈ M uniquely determine the metric
on M which gave rise to them in all cases [6, 7].

From now on, unless specified to the contrary, g has neutral signature.

Lemma 1. (i) If σm is a constant function on Sm or on Tm it is a constant
function on Gm and hence continuously extendible to a constant function on Gm.

(ii) If k0 ∈ TmM is null and Rabk
akb = 0 for each null k in some neighbourhood

of k0 ∈ TmM , (M, g) satisfies the Einstein space condition Rab = R
4 gab at m.

(iii) Let F0 ∈ Nm and suppose RabcdF
abF cd = 0 for each F ∈ U ∩ Nm for

some open neighbourhood U of F0 in Gm. Then the constant curvature condition
Rabcd = R

6 Gabcd holds at m.

Proof. (i) The proof is straightforward. Suppose σm is a constant function
on Sm with value d. In the usual basis let Q = x ∧ t be timelike and construct the

spacelike members
α

P ≡ x ∧ (t + αy) for α > 1. Then define the tensor Habcd =

Rabcd −2dGabcd so that Habcd

α

P ab
α

P cd = 0 for each α. This is a polynomial in α and
vanishes for all α > 1. It follows that HabcdQ

abQcd = 0 and hence that σm(Q) = d.
The proof when σm is a constant function on Tm is similar.

(ii) The set of null directions at m is a 2-dimensional, smooth submanifold
of PR3. Using the null basis l, n, L,N for TmM given in Section 1 and choosing
projective coordinates y, z in this submanifold about the null direction spanned by
k0(= l) = (1, 0, 0, 0), so that k = (1,−yz, y, z) for suitable y, z ∈ R, the condition
Rabk

akb = 0 becomes a polynomial relation P (y, z) = 0 on an open subset of
R2 and hence all polynomial coefficients are zero. So R01 = R23 with all other
components of Ricc vanishing at m and the result follows from the completeness
relation gab = lanb + nalb + LaNb +NaLb.
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(iii) Suppose F0 is null in the given condition for (iii). So in a null basis at m
chosen so that, say, F0 = l ∧ y, one has Rabcdl

ayblcyd = 0. Defining a symmetric
tensor T at m by Tab = Rcadbl

cld and considering the members l ∧ (y + µL) and
l∧ (y+νN) with µ, ν ∈ R sufficiently small that these members are in U ∩Nm, one
gets T (y, y)(≡ Taby

ayb) = T (y, L) = T (L,L) = T (y,N) = T (N,N) = 0 and, since
Tabl

b = 0, also T (l, l) = T (l, n) = T (l, L) = T (l, N) = 0, which imply T (L,N) = 0.
It follows that Tab = alalb + b(laLb + Lalb) + c(laNb + Nalb) and so gabTab = 0,
that is, Rabl

alb = 0 at m from the definition of T . Since this last equation then
holds for each null vector in some neighbourhood of l in TmM it follows from part
(ii) that the Einstein space condition holds at m. Then the remarks following (1.2)
show that E(m) = 0 and so from (1.1) and the above form for T each null direction
in some open neighbourhood of that spanned by l is a principal null direction for
C(m) as given at the end of Section 1 [8] with, allowing for an abuse of notation,
the 1-form p a linear combination of l, L and N . It follows that C(m) = 0. If F0 is
totally null, say F0 = l ∧N in the null basis, a similarly argument and result arise
by considering the bivectors l ∧ (N + λL) for λ ∈ R sufficiently small. The result
now follows and, for dimension 4, strengthens a result in [2]. �

Lemma 2. For (M, g), if F and F ′ are bivector representatives of two distinct
members of Nm, the bivector F + λF ′, for some 0 6= λ ∈ R, (is simple and) also
represents a member of Nm if and only if the 2-spaces represented by F and F ′

intersect in a null direction (and then the bivector F +λF ′ represents a member of
Nm for all λ ∈ R). Thus the subset Nm ⊂ Gm may be used to fix the collection of
null vectors of g at m.

Proof. Let F, F ′ represent distinct members of Nm. Then F and F ′ are
independent and simple and if their blades intersect in a null direction, say k,
F = k ∧ u and G = k ∧ v for u, v ∈ TmM . Then whether F and F ′ are null
or totally null, k.u = k.v = 0 and it easily follows that F + λF ′ represents a
member of Nm for all λ ∈ R. Conversely, write F = p ∧ q, F ′ = r ∧ s and
F + λF ′ = e ∧ f for p, q, r, s, e, f ∈ TmM , for some 0 6= λ ∈ R and with F , F ′

and F + λF ′ representing members of Nm. One may always choose p.p = p.q =
r.r = r.s = e.e = e.f = 0 and then a contraction of F + λF ′ = e ∧ f with e gives
(e.q)p− (e.p)q+λ(s.e)r−λ(e.r)s = 0. If p, q, r and s are independent in TmM one
achieves the contradiction that e is orthogonal to each member of the basis p, q, r, s
for TmM and so it follows that p, q, r and s are not independent and hence that the
blades of F and F ′ intersect in a direction spanned, say, by k ∈ TmM . Now write
F = k∧r′ and F ′ = k∧s′ and suppose that k is not null. Then one may choose r′ and
s′ null with each orthogonal to k. Then since F , F ′ and H ≡ F + λF ′ represent
members of Nm, FabF

ab = F ′
abF

′ab = HabH
ab = 0 from which it follows that

FabF
′ab = 0 and so (k.k)(r′.s′) = 0. Since k.k 6= 0 one finds r′.s′ = 0 and so r′ ∧ s′

is totally null. But k.r′ = k.s′ = 0 and so k ∈ r′ ∧s′ which contradicts the fact that
k.k 6= 0 (or, alternatively, that F and F ′ are independent). So k is null (and hence
F +λF ′ is null or totally null for all λ ∈ R). [It is remarked that a consideration of
the null 2-spaces l∧y and n∧y in a null basis shows that it is insufficient for simple
bivectors F, F ′ representing 2-spaces in Nm to have intersecting blades in order
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that F + λF ′ represent a 2-space in Nm for any 0 6= λ ∈ R.] It is then clear that
Nm, in particular those “pencils” of the form F + λF ′ which lie in Nm, reproduce
the set of null vectors of g at m. �

It is remarked first that the 2-dimensional manifold of null directions which
emerges in this lemma serves to distinguish the signature of g, being topologically
S1 ×S1 for neutral signature and topologically S2 for Lorentz signature. Second, it
is pointed out that in the Lorentz case the set Z of all members of all 2-spaces in
Nm consists, apart from the zero vector, of all spacelike and all null vectors at m
and, as an alternative to lemma 2, the null cone is then the boundary of this set
(in the natural topology on TmM) and is hence determined by it (cf [17]). This
fails for neutral signature since Z is then equal to TmM .

The next lemma considers the continuous extendibility of the sectional curva-
ture function to Nm

Lemma 3. (i) Consider (M, g) with m ∈ M , let A ≡ Sm ∪ Tm = Gm and let
F be a representative bivector in Nm. Suppose that RabcdF

abF cd 6= 0. If U is any
open neighbourhood of F in Gm, σm is unbounded on A ∩ U .

(ii) If σm is continuously extendible to a single member of Nm it is a constant
function on Gm and hence may be extended continuously to Gm. Thus the constant
curvature condition holds at m.

Proof. Since F is necessarily a limit point of A, the proof of part (i) is essen-
tially the same as that given in [13] (see [17] and cf [1]). The idea is to consider the
restriction f to S5 of the natural projection R6 → PR5 (that is, Bm → PBm) and
to show that the map h : S5 → R given (using an identification mentioned earlier)
by h(Q) = RabcdQ

abQcd is bounded away from zero on some compact neighbour-
hood of Q0 ∈ f−1(F ) whilst noting that GabcdF

abF cd = 0.
For part (ii), if σm is continuously extendible to F0 ∈ Nm then σm is continuous

as a map {F0}∪A → R. Suppose σm(F0) = a and let V = (a−ǫ, a+ǫ) for 0 < ǫ ∈ R.
Then if U = σ−1

m V , F0 ∈ U , U is open in {F0} ∪A with U = ({F0} ∪A) ∩W for W
open in Gm and U ∩A 6= ∅ since F0 is a limit point of A. Then σm is bounded on U
and since A∩W ⊂ U , σm is bounded on A∩W . Also W is an open neighbourhood
of F0 in Gm and then it follows from part (i) that RabcdF

ab
0 F cd

0 = 0 and, in fact,
this latter result is true for each member of W ∩ Nm. Then Lemma 1(iii) shows
that the constant curvature condition holds at m. Thus σm is a constant function
on Gm and trivially continuously extendible to Gm. �

Theorem 1. Suppose that g and g′ are smooth metrics on a 4-dimensional,
smooth, connected manifold M with g of neutral signature and that the (closed)
subset B ⊂ M of precisely those points where Riem (for g) vanishes has empty
interior in the topology of M (so that (M, g) is nonflat.) Suppose also that g and
g′ determine the same sectional curvature function at each m ∈ M and that for no
m ∈ M rB is it a constant function. Then, using a prime to denote corresponding
quantities with respect to g′ one has, on M , for some real-valued, nowhere-zero
function φ : M → R
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(i) g′ = φg,
(ii) R′

abcd = φ2Rabcd,
(iii) R′a

bcd = φRa
bcd,

(iv) R′
ab = φRab,

(v) R′ = R,
(vi) C′ = φC.

Proof. It is perhaps unrealistic to demand that Riem is nowhere zero on
M and this is why the subset B is introduced (but with the reasonable nonflat
assumption, intB = ∅, where int denotes the interior operator in the manifold
topology of M). The condition that the sectional curvature function σm for g is
not constant at any m ∈ M r B and equals the sectional curvature function σ′

m

for g′ on this subset means (Lemma 3(ii)) that the subset of Gm on which σm and
σ′

m are not defined is the same subset for both g and g′ and, in fact, equals the set
Nm as defined for g and for g′. Thus from lemma 2 the set of null vectors for these
metrics agree everywhere on M r B and hence g′ is conformally related to g on
this subset. It follows that g′ and g are conformally related on M (and that g′ has
neutral signature) and so part (i) of the theorem holds and for φ : M → R smooth
since g and g′ are. It is remarked that since Riem vanishes on B the sectional
curvature functions σ′

m and σm are zero maps for each m ∈ B. It then follows that
Riem′ vanishes on precisely the subset B. To see this note that (2.1) and part (i)
of the theorem show that R′

abcdF
abF cd = 0 at each m ∈ B and for each (simple) F

representing a spacelike or timelike 2-space at m and hence, by continuity, for each
simple F at each such m. Applying this for the simple bivectors x∧ y, x∧ s,...,s∧ t
in Gm formed from the orthonormal basis x, y, s, t for Tm, together with some other
judiciously chosen simple bivectors and the symmetries of R′

abcd one sees that Riem′

vanishes on B and, by reversing the argument, nowhere else. Now the equality of
the sectional curvatures together with part (i) gives (R′

abcd − φ2Rabcd)F abF cd = 0
for each simple F and then, by a similar argument to that given in the last sentence,
one sees that (ii) holds on M . Then (iii), (iv) and (v) immediately follow. For (vi)
use (1.1) and (1.2) to compute the Weyl conformal tensor directly using the results

previously found (including R̃′
ab = φR̃ab and recalling that C has components

Ca
bcd). [It is remarked that, although (i) above implies the equality of the Weyl

tensors, they may each be zero. In fact, if one assumes that the Weyl tensor of g
(and hence of g′) is nowhere zero on M one immediately has φ = 1 on M (from
(vi)) and so g′ = g on M but this will not be assumed here. The result (vi) applies
in all cases. �

Continuing with the assumptions of theorem 1 the argument now follows that
given in [6, 7]. Let U ⊂ M be the open subset of M on which the Weyl tensor
of g (and hence of g′) is not zero (and so U ⊂ M r B) and let V ⊂ M be the
open set on which dφ does not vanish. Then φ = 1 on U , U ∩ V = ∅ and φ is a
(nonzero) constant on each component of int(MrV ). It follows that Riem′ = Riem
on int(M r V ) since their metrics differ only by a constant conformal factor. Now
Riem′ and Riem cannot vanish over any nonempty open subset of int(M r V )
(by the definition of B) and so part (iii) above shows that φ = 1 on int(M r V ).
Define the closed subset W ⊂ M comprising precisely those points of M at which
φ = 1. Then U ⊂ W and int(M r V ) ⊂ W . Then disjointly decompose M as
M = V ∪ intW ∪ K where the closed set K is defined by the disjointness of the
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decomposition and has empty interior in M since any nonempty open subset U ′

contained in K would necessarily satisfy U ′ ∩ V = ∅ and so φ would be constant
on each of its components. Thus, since intB = ∅, U ′ is not contained in B (and so
Riem is nonzero and φ = 1 over the nonempty, open subset U ′ ∩ (M rB) of U ′). It
follows that U ′ ∩ (intW ) 6= ∅ contradicting the disjointness of the decomposition.
Thus M has been disjointly decomposed into the open subset intW where φ = 1
(and hence g′ = g) together with the open subset V where dφ does not vanish and
which is conformally flat for g and g′ (since U ∩V = ∅) and a closed subset K with
empty interior. So leaving aside the subset K one is left with the open set intW ,
where g′ = g, together with (perhaps more interestingly) the conformally flat open
subset V upon which dφ is nowhere zero.

3. Analysis of the Subset V

On V one has a nowhere-zero closed 1-form dφ with components φa and V is
conformally flat for g and g′, C′ = C = 0. One could now argue as in [7] but the
following is a little easier and gives the same results. From C = 0 and (1.1) and
(1.2) one has at each m ∈ M and for the metric g

(3.1) Rabcd(≡ gaeR
e

bcd) =
1

2
[R̃acgbd − R̃adgbc + R̃bdgac − R̃bcgad] +

R

6
Gabcd

and also the conformally flat Bianchi identities, one for each of the connections ∇
of g and ∇′ of g′,

(3.2) Rca;b −Rcb;a =
1

6
[gacR,b − gcbR,a] R′

ca|b −R′
cb|a =

1

6
[g′

acR
′
,b − g′

cbR
′
,a]

where a comma denotes a partial derivative and a semi-colon and the symbol |
denote covariant derivatives with respect to ∇ and ∇′, respectively. Now evaluate
the second in (3.2), using Theorem 1 parts (iv) and (v), and subtract from it φ times
the first in (3.2). The partial derivatives disappear and terms in P a

bc ≡ Γ′a
bc − Γa

bc

arise where Γ and Γ′ are the Christoffel symbols from ∇ and ∇′, respectively, and
where, since g′ = φg (and φa ≡ gabφb)

(3.3) P a
bc =

1

2
φ−1[φcδ

a
b + φbδ

a
c − φagbc]

One finds after a short calculation

(3.4) φbRac − φaRbc = φRaeP
e
bc − φRbeP

e
ac = Rbeφ

egac −Raeφ
egbc

A contraction with gac then shows that R̃abφ
b = 0 and a back substitution into

(3.4) reveals that R̃acφb −R̃bcφa = 0 and hence that R̃ab = ψφaφb for some function

ψ : V → R. Thus ψ(φaφa) = 0 on V . If, at any m ∈ V , ψ(m) = 0 then R̃icc(m) = 0
and so E(m) = 0 from (1.2). Then (1.1) shows that Rabcd = R

6 Gabcd at m. Now if
R(m) 6= 0, σm is a constant function at m ∈ M rB and a contradiction is obtained
and if R(m) = 0, Riem(m) = 0. It follows, since intB = ∅, that ψ cannot vanish
over any nonempty open subset of V . So φaφa = 0 on V and hence φa is null on
V (and, from Theorem 1(i), with respect to both metrics g and g′). [Thus in the
positive definite case and from the definition of V , V = ∅ and the result in [15] is
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recovered.] A use of (3.3) now gives φa;b = φa|b +φ−1φaφb and this enables further
∇ and ∇′ covariant derivatives to be taken as follows.

(3.5) φa;bc = (φa|b);c − φ−2φaφbφc + φ−1φaφb;c + φ−1φa;cφb

and so

(3.6) (φa|b);c = φa|bc = φa|eP
e
bc + φe|bP

e
ac = (2φ)−1[φa|cφb + φc|bφa + 2φa;bφc]

Putting (3.5) and (3.6) together gives

(3.7) φa;bc − φa;cb = φa|bc − φa|cb + (2φ)−1[φa;cφb − φa;bφc]

(which corrects a minus sign error in equation (9.48) in [7] but which ultimately
cancels out without problem in that reference). Using the Ricci identities for ∇ and
∇′ in (3.7) followed by a contraction with φb (and noting that since φa;b = φb;a,
φa;bφ

b = 0) one gets

(3.8) φb[φdR
d

abc] = φb[φdR
′d

abc] = φ[φbφdR
d

abc]

Then (3.1), the condition φaφa = 0 on V and the above expression for R̃icc give
Rabcdφ

bφd = − R
12φaφc. Thus if R(m) 6= 0 for some m ∈ V , R does not vanish in

some open neighbourhood of m and hence φ = 1 and dφ vanishes on this neighbour-

hood, contradicting the definition of V . It follows that R = 0 (that is, R̃icc = Ricc)
and Rab = ψφaφb on V . Thus

(3.9) Rabcdφ
d = 0

holds on V whilst (3.7) and the Ricci identities give φa;cφb = φa;bφc on V . So
φa;b = αφaφb for some function α on V and another application of the Ricci identity
together with (3.9) shows that αφa is locally a gradient, αφa = ρ,a on some suitable
open neighbourhood U ′′ of any m ∈ V and for some function ρ on U ′′. Thus
χ ≡ e−ρdφ is a parallel 1-form satisfying χ =du on U ′′ for u : U ′′ → R and
so φ = φ(u) and ρ = ρ(u). Finally it follows from (3.2) that Rab = γχaχb for
γ : U ′′ → R with γ = γ(u).

Since Riem cannot vanish over any nonempty open subset of M there exists
m ∈ V and a neighbourhood of m such that Riem does not vanish at any point of
this neighbourhood. Construct a null basis l, n, L,N at m with la chosen equal to
gabχb(m) ≡ χa(m) and then a basis l∧N , l∧n, n∧L, l∧L, L∧N and n∧N for Bm

in terms of symmetrized products of which Riem(m) may be written. Now since
the Weyl tensor C and R vanish on V , (1.1) gives Riem = E and so (see, e.g.[4])
∗ Riem = − Riem∗ on V . Also, from (3.9) Riem(m) may be reduced to a sum of
symmetrized products of A ≡ l∧N , B ≡ l∧L and C ≡ L∧N and the expression for
Ricc shows that the terms in C vanish. Then the relation ∗ Riem = − Riem∗, noting

that A ∈
+
Sm and B ∈

−

Sm (see Section 1) shows that in some open neighbourhood
V ′ of m (assumed to satisfy all the conditions placed on the above set U ′′) where
Riem does not vanish and chosen to allow a smooth extension of the null basis to
V ′ consistent with la = χa one has

(3.10) Rabcd = β(AabBcd +BabAcd)
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for a smooth nowhere-zero function β : V ′ → R (and from which one now has
Rab = 2βlalb). A consequence of this is that for any totally null 2-space represented

by a totally null bivector F at m ∈ V ′ (and which is necessarily in
+
Sm or

−

Sm),

RabcdF
abF cd = 0, whereas if F is null, one may write F =

+
F +

−

F with
+
F ∈

+
Sm,

−

F ∈
−

Sm and with each totally null (see Section 1) and so RabcdF
abF cd =

2β(
+

F abAab)(
−

F abBab) which is not zero unless
+
F is a multiple of A or

−

F is a multiple
of B (cf Lemma 3(i)). Also if X is a spacelike (respectively timelike) 2-space at
m and Y its spacelike (respectively timelike) orthogonal complement and which

are represented, respectively, by the (simple) bivectors F and
∗

F whose blades are

X and Y (and noting that F +
∗

F ∈
+
Sm), the conditions ∗ Riem = − Riem∗ and

F abFab =
∗

F ab
∗

Fab show that the sectional curvatures of X and Y differ only in sign.
Returning to (3.10) one has Aabl

b = 0 and hence (Aabl
b);c = 0 on V ′. Thus,

since l is parallel on V ′, (Aab;ck
c)lb = 0 for any k ∈ TmM (m ∈ V ′) and so, since

Aab;ck
c is in

+
Sm for each k, A is a recurrent 2-form on V ′, Aab;c = Aabpc and

similarly for B, Bab;c = Babqc for 1-forms p and q on V ′. One can then compute
from the Ricci identity and (3.10)

(3.11) Aab;cd −Aab;dc[= Aab(pc;d − pd;c)] = AebR
e

acd +AaeR
e

bcd = 0

to see that p, (and similarly q) are locally gradients of, say, the functions a and
b, respectively and which are defined on the, possibly reduced, subset V ′. Thus
A and B may be locally scaled to parallel bivectors A′ ≡ e−aA and B′ = e−bB,
respectively. Thus Riem is recurrent on V ′, Rabcd;e = Rabcdre, on V ′ where r ≡ p+q
is a gradient (as it must be by Walker’s theorem [21]). Clearly Ricc (Rab = 2βlalb)
is also recurrent on V ′, Rab;c = Rabrc with ra = β−1βa and (3.2) with R = 0 reveals
that β,a is proportional to la and is hence null. Thus the infinitesimal holonomy
group of (M, g) has constant dimension (= 2) on the open subset V ′ of V and
so equals the holonomy group on any component of V ′. This holonomy group
is represented by the (2-dimensional) holonomy algebra labelled 2g in [22]. [It is
remarked that the above calculation shows that, on V ′, Ricc is of Segre type {(211)}
and recurrent on V ′ (but not properly recurrent since it is (locally) proportional
to a parallel, symmetric second order tensor on V ′) and again this holonomy result
follows from [10].] One thus has

Theorem 2. Let M be a 4-dimensional manifold with nonflat metric g of
neutral signature. Let g′ be any other metric on M whose sectional curvature
function σ′

m at m ∈ M equals that of g at each m ∈ M . Suppose that for no
m ∈ M r B is σm a constant function. Then g and g′ are conformally related
on M (and hence g′ has neutral signature). Also one may disjointly decompose
M = V ∪ intW ∪ K such that g′ = g on intW , K is a closed subset of M with
intK = ∅ and V is an open subset of M on which g and g′ are conformally flat
and the above general analysis of this section holds.
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One can add more here. From [21] one sees that on the open dense subset
of V where Riem does not vanish the conditions of Walker’s nonsimple K∗

n spaces
are satisfied and so in some connected, open neighbourhood of any point of this
neighbourhood one may choose coordinates u, v, x, y with u as above such that the
metric takes the form

(3.12) ds2 = H(u, x, y)du2 + 2du dv + dx2 − dy2

where la = u,a and, from the conformally flat condition, H(u, x, y) = δ(u)(x2 − y2)
for some smooth function δ. This is the analogue, for this signature, of the confor-
mally flat plane waves of general relativity [20], the latter appearing in a similar way
in the study of sectional curvature in Lorentz signature [6, 19]. To see that non-
trivially related pairs g and g′ of solutions exist with identical sectional curvature
functions suppose that M = R4 with metric g as in (3.12). Then since the function
φ above is a function only of u and may be chosen positive, let g′ = e2ρ(u)g for
some smooth function ρ on M . A computation of Riem′ and use of Theorem 1(ii)
shows that the sectional curvatures of g and g′ are equal if and only if

ρ̈− ρ̇2 = δ(u)(e2ρ − 1)

(where a dot denotes d/du) solutions of which are known (see [19]).

4. Sectional Curvature Preserving Vector Fields

Let f be a smooth map on some open neighbourhood W of M into M , let u, v
be independent members of TmM for m ∈ W and let m′ ∈ M with f(m) = m′.
With f∗ the usual differential of f and assumed to be an isomorphism at each
m ∈ W , suppose the sectional curvatures of u ∧ v at m and f∗u ∧ f∗v at m′ are
equal for each such choice of m, u and v (in the sense that neither is defined or each
is defined and equality holds). Then f is called sectional curvature preserving on
W . Similarly a smooth vector field X on M is called sectional curvature preserving
on M if each of its local flows is sectional curvature preserving in the above sense
[6]. It is now easily checked from theorem 1 that the collection of all sectional
preserving vector fields SCP(M) on M is a subalgebra of the (finite-dimensional)
Lie algebra of conformal vector fields on M (each member satisfying, from theorem
1, LXg = wg and LX Ricc = wRicc where L denotes the Lie derivative and w
is some function on M). Clearly SCP(M) contains the Killing algebra of M but
contains no proper homothetic vector fields. Now consider a (connected) coordinate
neighbourhood W ′ in the open subset V (as described in the last section) of the
type in which (3.12) is written. Then Rab = −2δ(u)lalb and X ∈ SCP(W ′) if
and only if either (i) LXg = wg and LX Ricc = wRicc for some function w(u)
(and necessarily ẅ = 2wδ), or (ii) LXg = wg where w(u) satisfies ẅ = 2wδ (and
necessarily LX Ricc = wRicc). The details of the Lie algebra SCP(W ′) may then
be explored in a similar way to that in the Lorentz case [9, 14]. This should be
compared with, for example, a study of such vector fields on any component of
the open subset intW of Section 2 where SCP(intW ) coincides with the Killing
algebra on intW .
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5. Final Remarks Including the Ricci-Flat Case

The restriction regarding the nonconstancy of σm in Theorem 2 can, in a special
case, be removed in the following way. Suppose, with the above notation, that
(M, g) is nonflat and Ricci flat. Then C = Riem on M and so C and Riem are
each nowhere zero on an open dense subset U ⊂ M and each vanish on M r U
where the latter subset, because of the nonflat condition, (is closed and) has empty
interior in M . Then σm is necessarily nowhere a constant function on U (otherwise
the Ricci-flat condition would force the contradiction Riem = 0 at such points).
Also φ = 1 on U and hence on M . Thus one has

Theorem 3. Let M be a 4-dimensional manifold with a nonflat, Ricci flat
metric g of neutral signature. Let g′ be any other metric on M whose sectional
function σm equals that of g′ at each m ∈ M . Then g′ = g on M .

It is noted that, quite generally for this dimension and signature, ∗G∗ = G,
∗C∗ = C and ∗E∗ = −E (see e.g. [4]) and hence, from (1.1), Riem −∗Riem∗ = 2E.
So, for any spacelike or timelike 2-space represented by the simple bivector F and

with orthogonal complement represented by
∗

F , F abFab =
∗

F ab
∗

Fab and the following
holds

σm(F ) − σm(
∗

F ) =
RabcdF

abF cd

2GabcdF abF cd
−

∗R∗
abcdF

abF cd

2GabcdF abF cd
=
EabcdF

abF cd

GabcdF abF cd

It follows that for each such 2-space the difference σm(F ) − σm(
∗

F ) is controlled by

the tensor E (that is, by R̃icc(m)) (see e.g. [11]) and that, just as in the Lorentz

case [3], σm(F ) = σm(
∗

F ) for each such 2-space if and only if E(m) = 0, that is, if
and only if the Einstein space condition holds at m.
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