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GEOMETRICAL CODING OF COLOR IMAGES

Gleb V. Nosovskiy

Abstract. Formal analysis and computer recognition of 2D color images is
important branch of modern computer geometry. However, existing algo-
rithms, although they are highly developed, are not quite satisfactory and
seem to be much worse than (unknown) algorithms, which our brain uses to
analyze eye information. Almost all existing algorithms omit colors and deal
with grayscale transformations only. But in many cases color information is
important. In this paper fundamentally new method of coding and analyzing
color digital images is suggested. The main point of this method is that a
full-color digital image is represented, without dropping colors, by special 2D

surface in 3D space, after which it is analyzed by methods of differential ge-
ometry, rather than traditional gradient-based or Hessian-based methods (like
in SIFT, GLOH, SURF, Canny operator, and many other algorithms).

1. Introduction

Nowadays pattern recognition of digital images is mainly based on limited
number of algorithms which were developed during the last 40 years, such as
Canny operator for edge detection, SIFT (Scale-Invariant Feature Transform),
SURF (Speeded Up Robust Features), and various SIFT modifications, see [1–
8]. All these algorithms use the same basic approach: 1) image is converted to
grayscale; 2) grayscale image is smoothed, usually by Gaussian filters, sometimes
smoothing is applied several times with increasing radius, resulting in so-called
Digital Gaussian Scale-Space [8]; 3) using smoothed values, various types of digital
gradient and Hessian characteristics are calculated at each pixel; 4) looking at these
characteristics, and sometimes taking in account the situation in a vicinity of the
pixel, it is decided – if this pixel is a keypoint, important for pattern recognition,
or it is an unimportant point which should be excluded from further considera-
tion; 5) for each keypoint a number of descriptors are calculated, which are used
for final classification or comparison of keypoints. For example, for edge detection
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we need to recognize keypoints which belong to some edge, for image stitching in
multi-vision geometry – detect whether two keypoints on different screens reflect
the same point of the same object [9,10], etc.

Although during recent decades a lot of efforts were spent on development of
these algorithms, they still seem not effective enough, especially if we take into
account that our brain, while processing visual information from the two eyes, does
similar job much faster and better. From other hand, is very unlikely, that clumsy
numerical gradient-based or Hessian-based local analysis can be really performed
in our brain. It looks too artificial. This paper presents an attempt of creating
more geometrical approach to the problem. The main idea is to exploit the fact
that color-intensity value, situated in each pixel of a digital color image, can be
uniquely represented by 3-dimensional vector. Indeed, color space is 2-dimensional
and one more dimension is necessary for intensity, so the total dimension is 3.
Geometrically, it means that color digital image can be represented without loss of
color information by a 2D surface in 3D space. We will call such surface coding
surface of the image. Note that coding surface is not unique. In order to obtain
good results we should build coding surface in a proper way. Then we can use
powerful machinery of modern differential geometry to analyze coding surface and
get patterns from it. (We can imagine that our brain might be able to perform
something like this: being a 3D body, it maybe can somehow build an “elastic" 2D
surface inside and then feel tensions on it. Of course, it is only some theoretical
idea, this paper does not pretend to explain how our brain works in reality, but
this idea appears to be unexpectedly productive for pattern recognition.)

2. Geometrical coding of color images

2.1. Coding surface. Without loss of generality, we will assume that our
digital color image is given in RGB format. RGB color space, combined with
intensity axis, can be considered as the cube {0 6 x 6 1, 0 6 y 6 1, 0 6 z 6 1}
in R3 see Fig. 1. Each vector in this cube represents specific color and intensity
values by vector direction (color) and vector length (intensity). To make the vector
length uniform with respect to colors, we may transform this cube to one eights of
the unit ball in R3: {0 6 x 6 1, 0 6 y 6 1, 0 6 z 6 1; x2 + y2 + z2 6 1}. Then
length of each vector will directly represent intensity according to the scale from 0
to 1.

We will denote such cube (or ball part) as CIS (color-intensity space). Let us
imagine a copy of CIS placed in each pixel of the image in such a way, that its
central axis (Black-White axis) is orthogonal to the image plane, see Fig. 2.

Consider the uniquely defined vector v ∈ CIS, which represents color and
intensity values, situated in the pixel (X, Y ). Then the radius vector of cod-
ing surface point, corresponding to the pixel (X, Y ), is defined by the formula
r(X, Y ) = (X, Y ) + v, see Fig. 3.

If we want blank image to be white, it is necessary to represent white color
by zero vector, see Fig. 2. Otherwise, blank image will be black. In order to avoid
artificial intersections of the coding surface and obtain good results, it is necessary
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Figure 1. Color-intensity space (CIS) for RGB model

Figure 2. CIS cube, placed in the specific pixel of the image with
its WB axis orthogonal to the image plane

to choose appropriate scale factor kCIS, i.e., ratio of CIS cube size to pixel size. In
our calculations we tried different kCIS values from 1 to 50; usually values around
10–20 work fine. In the case of grayscale image the coding surface will coincide
(up to a scale coefficient) with intensity (or inverse intensity) chart. For a plain
monochrome image its coding surface is a plane rectangle, see Fig. 4.

2.2. Image smoothing by Bezier or NURBS approximation. Real color
digital image usually contains considerable amount of noise, so it is necessary to
smooth it before investigation. In our method smoothing is obtained automatically
by replacing a local patch of coding surface by its Bezier or NURBS approximation,
see example on Fig. 5. To perform smoothing, we just consider each point r(X, Y )
on coding surface, corresponding to image pixel (X, Y ), as control point of Bezier
or NURBS surface [11,12].

We used Bezier rather than NURBS approximations. The reason is that Bezier
approximations are simpler, do not require setting of control parameters, such as
knot vector in NURBS case, and are much more viscous than NURBS approxi-
mations, which is good for noise suppression. The rate of smoothing by a Bezier
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Figure 3. Construction of coding surface for a digital color im-
age: r(X, Y ) is radius vector of surface point (marked by star),
corresponding to the image pixel with coordinates (X, Y )

Figure 4. Coding surfaces for plain monochrome images are plane
rectangles, typically located on different levels h (values of h are
shown here in conventional units)

Figure 5. Color image → coding surface → edge detection. We
use here a fragment of image from en.wikipedia.org

approximation is entirely defined by the number of control points, taken into ac-
count, i.e., by the size of Bezier patch (bigger the size – stronger the smoothing).
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Note that for the investigation of certain vicinity of the pixel we should build Bezier
approximation for the corresponding patch of coding surface, rather than consid-
ering a patch of Bezier approximation for the whole coding surface. The latter
could be too over-smoothed. In our calculations we used patch size in the range
5 × 5 − 9 × 9, usually 7 × 7.

3. Edge detection based on geometrical coding

Using coding surface, image pattern recognition could be performed in a differ-
ent way. Here we will discuss one of the most important branches of image pattern
recognition – edge detection.

Generally, edges are lines, which separate image areas with significantly differ-
ent values of color or intensity. On coding surface such lines are reflected by zones
of distinctive metric deformation, and also by creases, along which coding surface
appears to be folded. Therefore, the problem of edge detection on a color image
can be transferred into the problem of tension and crease detection on its coding
surface. In this paper we will mainly discuss crease detection. Only few examples
of tension detection will be presented here. A natural way to detect creases on a
smooth surface is based on observation, that principal curvatures of a 2D surface
in R3 are typically very different in absolute value along creases: curvature in the
direction of crease is usually rather small, and another one, in orthogonal direction,
is big, see Fig. 6.

Figure 6. Crease detection by principle curvatures

Therefore, in order to detect creases on a coding surface, the following steps
could be performed:

1) Let us choose a scalar function f(x) = f(λ1(x), λ2(x)) > 0 on a coding
surface S, depending on the two principal curvatures (λ1(x), λ2(x)) at x ∈ S, in
such a way, that the value of f rises when one curvature is big and another is small.

2) Consider a set of points A ⊂ S on the coding surface S, determined by the
condition: A = {x : f(x) > a} where a is some threshold. Then, for an appropriate
f and proper choice of the threshold a, the set A will form a chart of creases on
the coding surface. The projection of this chart to the image will form an edge
drawing.
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Of course, such edge drawing will depend on the choice of function f and
threshold a. With help of different f and a we can make our edge drawing more or
less detailed.

Here are some examples of functions, which we used:

f0(λ1, λ2) = c
∣

∣|λ1| − |λ2|
∣

∣,

f1(λ1, λ2) = c|λmax|/λ2
min,

f2(λ1, λ2) = c(λ1 − λ2)2 = c(H2 − 4K),

f3(λ1, λ2) = c(λ2
1 − λ2

2)2 = cH2(H2 − 4K),

f4(λ1, λ2) = c(|λ1| − |λ2|)2 =

{

c(H2 − 4K), if K > 0

cH2, if K < 0
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(λ2

1 − λ2
2)2

λ2
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2
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λ2

1

λ2
2

+
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2

λ2
1

− 2,

f6(λ1, λ2) =
(|λ1| − |λ2|)2

H2 =

{

1 − 4K/H2 if K > 0;

1 if K < 0

f7(λ1, λ2) =
(λ1 + λ2)3

λ2
1 × λ2

2
=

H3

K2

h1 = c × det G (serves for tension detection).

Here c is the scaling coefficient, G denotes the first fundamental form (Riemann-
ian metric tensor), H = (λ1 + λ2) – mean curvature, K = (λ1 × λ2) – Gaussian
curvature; λmax, λmin are principal curvatures of maximal and minimal absolute
value.

Note that the functions f2, f3, f4, f5, f6, f7 are rational expressions from H and
K, so they do not require principal curvatures calculation. Let us recall that H
and K are, in their turn, rational expressions from matrix elements of first and
second fundamental forms, while principal curvatures calculation requires square
root extraction.

Note that the function f7 behaves similarly to f1. Indeed, if λmin is much
smaller in absolute value than λmax, then λ1 + λ2 = λmax + λmin ≈ λmax and
therefore f7(λ1, λ2) ≈ f1(λ1, λ2). Calculations for f7 are faster than for f1, so f7

can be used instead of f1.
Note that the functions f5, f6 are homogenous functions from λ1, λ2, so for their

calculation there is no need to normalize the length of normal vector to the surface.
For a Bezier surface it means that f5, f6 could be written as rational expressions
from the initial data (coordinates of control points).

Let us recall that matrix elements of the first and second fundamental forms
for a Bezier surface are simple linear expressions from coordinates of 6 control
points (3 points for the first and 3 more points for the second form) of Bezier
surface patch, obtained by the division of original Bezier surface in the point of
consideration [11,12].
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4. Some examples or edge detection using geometrical coding

Here we present several examples of edge detection with different functions
f(λ1, λ2) and function h1(G). All examples were calculated using computer pro-
gram which was written in C++ and Wolfram Mathematica by my students Alexey
Chekunov and Sergey Podlipaev (Moscow Lomonosov State University, Mech.-
Math. Faculty). The program calculates principal curvatures of Bezier approx-
imation of the d × d patch of coding surface with point of consideration in the
center. Then, using one of the possible functions f(λ1, λ2) or h(G), and a certain
threshold a, picture of edges is obtained as the set of points: {x : f(x) > a} or
{x : h(G(x)) > a}.

Our aim here is to show principal abilities of geometrical coding approach, so
all results are presented in their original form; no postprocessing for improving
edges was applied.

We start with a standard example of edge detection from Wikipedia article
“Canny edge detector". In Fig. 7 images a) and b) were taken from this article;
images c) and d) are results of image processing by our algorithm with functions f1

and f0 correspondingly. Note that Canny edge detection implies post-processing
for eliminating double contours and making them thinner, while our edge detection
is presented here “as it is".

From Fig. 7 it is clear that creases structure on coding surface contains detailed
information about edges on original image. Therefore geometrical coding approach
can be really used for fast and effective edge detection.

In Fig. 8 we present rather complicated color image with mixture of sharp
and blurred shapes. Here Canny algorithm works well on sharp edges, but poorly
detects blurred reflections on dark pavement. At the same time, GC detection
works well everywhere.

In Fig. 9 we present a general example of daylight photo. Canny edge detector
works well here, but GC detection is more flexible in showing details.

In Fig. 10 another example of color photo is presented together with the results
of edge detections. Here GC edge detector looks noticeably better than Canny
operator.

In Fig. 11 edge detection is illustrated on a really complicated color photo
with a lot of tiny details in light and shadow areas. Again GC algorithm visibly
over-performs Canny operator. Note that light areas can look darker on edge chart
because in light areas it is easier to detect edges, so more black lines are present
there.

Geometrical coding approach works not only for color, but for grayscale images
also. In Fig. 12 we show a comparison between GC edge detection, Canny operator,
Sobel-Feldman operator, and several other gradient methods for grayscale image.
Note that GC detection gives one of the best results here.

Our last example will be a digital color photo of a human face—challenging
task for any edge recognition algorithm. Alexey Chekunov, MSU postgraduate
student, who participated in creating computer program for geometrical coding,
used his own photo as example. It was shot by a 12M camera mounted in a cell
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Figure 7. a) Original image; b) Canny edge detection; c) Geo-
metrical coding edge detection with function f1; d) Geometrical
coding edge detection with function f0

Figure 8. a) Original image; b) Geometrical coding edge detec-
tion with function f0; c) Canny edge detection

phone. The results are presented in Fig. 13. Note that Canny operator practically
failed here, while GC edge detection works fine.
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Figure 9. a) Original image; b) Canny edge detection; c) GC edge
detection with function f1 ; d) GC edge detection with function f0

Figure 10. a) Original image; b) Canny edge detection; c) GC
edge detection with function f4
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Figure 11. a) Original image; b) Canny edge detection; c) GC
edge detection with function h1
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Figure 12. a) Original image; b) Sobel–Feldman; c) Roberts
Cross; d) Scharr; e) Prewitt; f) Canny; g) GC with function f7;
h) GC with function h1. Images a)-f) were taken in August 2016
from Wikipedia article about Sobel operator
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Figure 13. Edge detection on a color photo of human face: a)
Original image; b) Canny edge detection; c) GC edge detection
with function f1 (inversed picture); d) GC edge detection with
function f4
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5. Application to multiple-view geometry

GC edge detection can be implemented in multiple-view geometry algorithms
for creating a stereoscopic picture from two images, obtained from two, sometimes
close to each other, points of view (like human eyes). One of the main tasks
here is a fast recognition of conjugate points on both images (conjugate points
are such points which reflect the same point on some object in view). It could
be done using preliminary determination of approximate shift between two given
images [9,10,12,13]. Such determination can be performed using edge detection:
at first edge contours are detected on both images, and then approximate shift
between them is calculated. This procedure is illustrated in Fig. 14.

Figure 14. Shift calculation by means of GC edge detection.
Function f0 was used here

6. Computational complexity

Control points for the local Bezier approximation of coding surface, which are
used in the further computations, are directly determined by the initial data with
help of only few additions and multiplications per pixel.

Next, in the case of homogenous function f(λ1, λ2) we need to calculate 6
matrix elements of first and second fundamental form up to an arbitrary coefficient.
Both forms are given by a 2 × 2 symmetric matrix, so we need to calculate 3 scalar
elements in each of them, totally 6 scalars. From differential geometry we know
that all of them could be expressed through scalar and vector products of 5 first
and second order derivatives ru, rv, ruu, ruv, rvv of the 3-dimensional radius vector
r of the surface. Totally, we need about 40 additions and multiplications per pixel
in order to calculate both fundamental forms from derivatives ru, rv, ruu, ruv, rvv

and about 15 additions and multiplications per pixel in order to calculate only first
fundamental form from derivatives ru, rv.

Vectors ru, rv, ruu, ruv, rvv are expressed through 6 corner control points

p00, p01, p02, p10, p11, p20
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of right-upper part of local d×d Bezier surface, divided in the regarded point (which
is the lower-left corner p00 of this part), by the formulas (see, for example, [11,12],
p. 210):

ru = (d − 1)(p10 − p00); rv = (d − 1)(p01 − p00);

ruu = (d − 1)(d − 2)(p20 − 2p10 + p00);

rvv = (d − 1)(d − 2)(p02 − 2p01 + p00);

ruv = (d − 1)2(p11 − p10 − p01 + p00).

Let us recall that each control point pij , 0 6 i, j 6 (d − 1) of the upper-right
part of the divided Bezier surface of d × d size can be expressed by certain linear
function from (d − i) × (d − j) control points of the original local Bezier surface the
coordinates of which are directly obtained from the initial data [11,12]. It is easy
to count up, that calculation of 6 required control points p00, p01, p02, p10, p11, p20

will take d×d+2(d−1)d+2(d−2)d+(d−1)(d−1) = (6d2 −4d−3) additions and
multiplications per coordinate, which gives the total amount of (18d2 − 12d − 9)
additions and multiplications per pixel for all the three coordinates of all 6 required
vectors pij .

The total complexity will be 18d2 − 12d − 9 + N additions and multiplications
per pixel. Here N is about 40, and d × d is the size of a region, used for the local
Bezier approximation.

For d = 7, which usually is quite enough, the total amount of calculations is
about 830 additions and multiplications per pixel for computation of a homogeneous
f(λ1, λ2). Similar calculations show that the function h1(G), which is based on the
first fundamental form only, requires 3(d × d + 2(d − 1)d) + 15 = 9d2 − 6d + 15
additions and multiplications per pixel which is about 420 for d = 7.

If we consider the local Bezier surface with lower-left corner in the regarded
point, we do not need to divide it. In this case, if we take d = 3, the total amount of
additions and multiplications per pixel will be about 40 for homogeneous f(λ1, λ2),
and about 20 for functions, based on the first fundamental form only, such as h1(G).

In the case of nonhomogenous function f(λ1, λ2), which can be expressed
through mean and Gaussian curvatures H and K, we need additional calculation
of one inverse square root per image pixel in order to normalize normal vector to
the surface in regarded point.

For nonhomogenous function f(λ1, λ2), which cannot be expressed through H
and K, it is necessary to perform one more square root extraction per pixel for
λ1, λ2 calculation.

Therefore total calculation complexity of GC edge detection is linear with re-
spect to number of pixels, involved in calculation (sometimes it is enough to calcu-
late not in all pixels, but in some disperse set only). Per pixel complexity is from
about 40 additions and multiplications for the simplest approach with d = 3 to
about 830 additions and multiplications for more complicated approach with d = 7
for functions f(λ1, λ2). For function h(G) the corresponding amounts are about 20
and 420 additions and multiplications per pixel. Some functions f(λ1, λ2) require
also l or 2 root extractions (one of which is inverse) per pixel.
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7. Conclusions

Geometrical coding is new promising approach to pattern recognition on color
digital images. It opens a way to analyze full-color images without converting
them to grayscale. GC method has linear computational complexity with respect
to image volume. Resolution of GC-based edge detection from the very beginning
appears to be comparable or even better than resolution of all algorithms known
today. This paper presents the basic conception of GC approach and a number of
initial examples.
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