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ISOTHERMIC SURFACES OBTAINED

FROM HARMONIC MAPS IN S6

Rui Pacheco

Abstract. The harmonicity of a smooth map from a Riemann surface into
the 6-dimensional sphere S6 amounts to the closeness of a certain 1-form that
can be written in terms of the nearly Kähler structure of S6. We will prove
that the immersions F in R7 obtained from superconformal harmonic maps
in S3

⊂ S6 by integration of the corresponding closed 1-forms are isothermic.
The isothermic surfaces so obtained include a certain class of constant mean
curvature surfaces in R3 that can be deformed isometrically through isothermic
surfaces into non-spherical pseudo-umbilical surfaces in R7.

1. Introduction

It is a well-known fact that any non-conformal harmonic map ϕ from a simply-
connected Riemann surface Σ into the round 2-sphere S2 is the Gauss map of a
constant Gauss curvature surface, F : Σ → R

3, and of two parallel constant mean
curvature surfaces, F ± = F ± ϕ : Σ → R3; the surface F integrates the closed
1-form ω = ϕ × ∗dϕ, where × denotes the standard cross product of R3.

Again, the harmonicity of a smooth map ϕ : Σ → S6 amounts to the closeness
of the differential 1-form ω = ϕ × ∗dϕ, where × stands now for the 7-dimensional
cross product. This means that we can integrate on simply-connected domains in
order to obtain a map F : Σ → R7. If ϕ is a conformal harmonic immersion, then F

is a conformal immersion; and, in contrast with the 3-dimensional case, where F is
necessarily a totally umbilical surface, F can exhibit a wide variety of geometrical
behaviors in the 7-dimensional case [3].

Recall [4] that a surface in Rn is isothermic if, away from umbilic points, it
admits conformal curvature line (CCL) coordinates, that is, conformal coordinates
with respect to which each second fundamental form is diagonal. In this short
note, we prove that the immersions F in R7 obtained from superconformal [1, 3]
harmonic maps in S3 = S6 ∩ W by integration of the corresponding 1-forms ω,
with W a 4-dimensional subspace of R7, are isothermic. We will also see that the
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isothermic surfaces so obtained include a certain class of constant mean curvature
surfaces in R3 that can be deformed isometrically through isothermic surfaces into
non-spherical pseudo-umbilical surfaces in R7.

2. Harmonic maps from Riemann surfaces into S6

Let · be the standard inner product on R7 and e1, . . . , e7 be the canonical basis
of R7. Fix the 7-dimensional cross product × defined by the multiplication table

(2.1)

× e1 e2 e3 e4 e5 e6 e7

e1 0 e3 −e2 e5 −e4 −e7 e6

e2 −e3 0 e1 e6 e7 −e4 −e5

e3 e2 −e1 0 e7 −e6 e5 −e4

e4 −e5 −e6 −e7 0 e1 e2 e3

e5 e4 −e7 e6 −e1 0 −e3 e2

e6 e7 e4 −e5 −e2 e3 0 −e1

e7 −e6 e5 e4 −e3 −e2 e1 0

The cross product × satisfies the following identities, for all x, y ∈ R7:

(P1) x · (x × y) = (x × y) · y = 0;

(P2) (x × y) · (x × y) = (x · x)(y · y) − (x · y)
2
;

(P3) x × y = −y × x;
(P4) x · (y × z) = y · (z × x) = z · (x × y);
(P5) (x×y)× (x×z) = ((x×y)×z)×x+((y×z)×x)×x+((z×x)×x)×y;
(P6) x × (x × y) = −(x · x)y + (x · y)x;
(P7) x × (y × z) + (x × y) × z = 2(x · z)y − (x · y)z − (y · z)x.

Extend the inner product · and the cross product × by complex bilinearity to
C7 = R7 ⊗ C. We also denote these complex bilinear extensions by · and ×,
respectively.

The standard nearly Kähler structure J on the 6-dimensional unit sphere S6 can
be written in terms of the cross product × as follows: for each x ∈ S6, Ju = x× u,
for all u ∈ TxS6. Let Σ be a Riemann surface with local conformal coordinate
z = x + iy, and let ϕ : Σ → Sn−1 be a harmonic map, that is, △ϕ ⊥ TϕSn−1 =
{u ∈ Rn| ϕ · u = 0}. For n = 7, this means that ϕ × △ϕ = 0, which is equivalent
to the closeness of the one form ω = ϕ × ∗dϕ = J ∗ dϕ.

3. Isothermic surfaces from harmonic maps into S6

If ϕ : Σ → S6 is a harmonic immersion and Σ is simply-connected, we can
integrate to obtain an immersion F : Σ → R7 such that dF = ϕ × ∗dϕ. In local
conformal coordinates z = x + iy of Σ, this can be written in the form

Fz = iϕ × ϕz , Fz̄ = −iϕ × ϕz̄.

Making use of the properties for the cross product, we obtain the following formulae
for the first and second fundamental forms of the immersion F in terms of ϕ and
its derivatives.
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Proposition 3.1. [3] Let IF and IIF be the first and the second fundamental

forms of F : Σ → R7, respectively. Let N be a vector field of the normal bundle

T F ⊥. Then, with respect to the local conformal coordinates z = x + iy of Σ, we

have

(3.1) IF =

(

|ϕy|2 −ϕx · ϕy

−ϕx · ϕy |ϕx|2
)

(3.2)

IIN
F := IIF · N =

(

(ϕx × ϕy) · N + (ϕ × ϕxy) · N (ϕ × ϕyy) · N

(ϕ × ϕyy) · N (ϕx × ϕy) · N − (ϕ × ϕxy) · N

)

.

If ϕ is conformal, F is also conformal. Let e2α be the common conformal factor
of ϕ and F . One can check [3] that the mean curvature vector of F is given by

(3.3) hF =
1

2
tr I−1

F IIF =
e−2α

2

{

IIF (Fx, Fx) + IIF (Fy, Fy)
}

= e−2αϕx × ϕy .

Next we establish our main result. Recall that a harmonic map in S3 is super-

conformal if it has finite isotropy r = 3 [1, 2, 3].

Theorem 3.1. If ϕ : Σ → S6 ∩ W is a superconformal harmonic immersion,

where W is a 4-dimensional subspace of R7, then F is isothermic.

Proof. Let z = x + iy be local conformal coordinates on Σ and consider the
harmonic sequence {ϕj}j∈Z associated to ϕ (see [1, 2, 3]). For each j, ϕ−j = ϕj

and there exists a local meromorphic section fj of ϕj (with respect to the Koszul-
Malgrange holomorphic structure) such that [2]:

∂fj

∂z
= fj+1 +

∂

∂z
log |fj |2fj ;

∂fj+1

∂z̄
= −|fj+1|2

|fj|2 fj ; |fj||f−j | = 1 (if fj 6= 0).

Since ϕ is superconformal in S3 = S6 ∩W , we have: the harmonic line bundles
ϕ−1, ϕ, ϕ1, ϕ2 are mutually orthogonal; ϕ2 is real, that is, ϕ−2 = ϕ2; and

f−2 =
Pϕ2

(ϕz̄z̄)

|Pϕ2
(ϕzz)|2 , f2 = Pϕ2

(ϕzz),

where Pϕ2
denotes the orthogonal projection onto ϕ2. Both f−2 and f2 are local

meromorphic sections of ϕ2. Hence there exists a meromorphic function g on Σ
such that f−2 = gf2. Equivalently,

(3.4)
Pϕ2

(ϕz̄z̄)

|Pϕ2
(ϕzz)|2 = gPϕ2

(ϕzz),
Pϕ2

(ϕzz)

|Pϕ2
(ϕzz)|2 = ḡPϕ2

(ϕz̄z̄).

Locally, away from the isolated zeros of Pϕ2
(ϕzz), we can consider the holomorphic

non-vanishing function q =
√

g and rewrite (3.4) as

qPϕ2
(ϕz̄z̄) = qPϕ2

(ϕzz).

Define new local conformal coordinates w = u + iv by dw
dz

= eπi/4

√
q

. With respect to

these coordinates, we have Pϕ2
(ϕw̄w̄) = −Pϕ2

(ϕww). Then,

F ⊥
w̄w̄ = −iϕ × Pϕ2

(ϕw̄w̄) = iϕ × Pϕ2
(ϕww) = F ⊥

ww,
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which implies F ⊥
uv = 0, where ⊥ denotes the component in the normal bundle.

Then ∂
∂u

and ∂
∂v

diagonalize IIN
F for any normal vector field N to F .

In view of (3.2), the umbilic points of IIN
F , for each normal section N , are

precisely the points where Pϕ2
(ϕzz) = 0. �

4. Isometric deformations of CMC into pseudo-umbilical surfaces

A 4-dimensional subspace W of R7 is coassociative if V = W ⊥ is closed with
respect to ×. It can be shown [3] that, if W is a coassociative 4-space, then
V × W = W and W × W = V .

If ϕ is superconformal in some 3-dimensional sphere S3 = S6 ∩ W , where W

is a coassociative 4-space, then, up to translation, F is a constant mean curvature
surface in the 3-space V = W ⊥. This is a consequence of the following result.

Theorem 4.1. [3] Let ϕ : Σ → S6 be a conformal harmonic immersion. Then

F : Σ → R7 has a parallel mean curvature vector field and it is not pseudo-umbilical

if, and only if, ϕ is superconformal in some 3-dimensional sphere S3 = S6 ∩ W ,

where W is a coassociative 4-space.

Example 4.1. Let W = span{e4, e5, e6, e7} and ϕ : C → S3 = S6 ∩ W

be defined by ϕ(x, y) = 1√
2

(

cos x e4 + sin x e5 + cos y e6 + sin y e7
)

, which is a

superconformal harmonic map and parameterizes a Clifford torus. Taking into
account multiplication table (2.1), one can check that the associated surface F :
C → V ⊂ R7 is the cylinder given by

(4.1) F (x, y) =
1

2

(

− (x + y) e1 − cos(x − y) e2 + sin(x − y) e3
)

.

Remark 4.1. Since the Gauss map of a CMC surface without umbilical points
is a non-conformal harmonic map, we see that theorem 4.1 also gives a procedure to
obtain non-conformal harmonic maps into S2 from superconformal harmonic maps
into S3: starting with a superconformal harmonic map ϕ : Σ → S3 = S6∩W , where
W is a coassociative 4-space, the Gauss map of F is precisely the mean curvature
vector field hF : Σ → S2 given by (3.3); this is a non-conformal harmonic map.

Given a 4-dimensional subspace W of R7, an orthogonal direct sum decompo-
sition W = W1 ⊕ W2, with dim W1 = dim W2 = 2, is said to be ×-compatible if
W1 × W1 ⊥ W2 × W2. For example, W = span{e1, e2, e3, e4} admits ×-compatible
decompositions.

Recall that an immersion F is said to be pseudo-umbilical if IIF · hF = λIF for
some smooth function λ on Σ.

Theorem 4.2. [3] If ϕ is a superconformal harmonic map in S3 = S6 ∩ W ,

for some 4-space W admitting a ×-compatible decomposition, then F is pseudo-

umbilical with non-parallel mean curvature vector field.

For a general dimension, a pseudo-umbilical submanifold Mn of Rm has mean
curvature vector field parallel in the normal bundle if, and only if, Mn is either a
minimal submanifold of Rm or a minimal submanifold of a hypersphere of Rm [6].
Hence, the pseudo-umbilical surfaces of theorem 4.2 are neither minimal in R7 nor
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minimal in hyperspheres of R7. By exploiting the notion of III-deformation, Vlachos
[5] established a method that gives examples of full pseudo-umbilical surfaces in R4

in the same conditions. Next we apply theorem 4.2 in order to obtain an example
of a full pseudo-umbilical surface in R

5.

Example 4.2. Let W = span{e1, e2, e3, e4} and ϕ : C → S3 = S6 ∩ W

be the Clifford torus ϕ(x, y) = 1√
2

(

cos x e1 + sin x e2 + cos y e3 + sin y e4
)

. The

corresponding immersion F : C → R7 is given by

F (x, y) =
1

2
(cos x sin y e1 + sin x sin y e2 − y e3(4.2)

+ sin x cos y e5 − cos x cos y e6 + x e7).

By theorem 4.2, since W admits ×-compatible decompositions and ϕ is supercon-
formal in S3 = S6 ∩ W , the immersion F is pseudo-umbilical with a non-parallel
mean curvature vector field. It can be shown (by straightforward computation of
the derivatives) that F is full in some 5-dimensional subspace of R7.

Taking theorem 4.1 and theorem 4.2 into account, we also can obtain examples
of isometric deformations of CMC surfaces into pseudo-umbilical surfaces as follows.
Let ϕ be a superconformal harmonic map from Σ into S3 = S6 ∩ W , where W is
a coassociative 4-space. Let g : [0, a] → SO(7) be a smooth map with g(0) the
identity of SO(7) and g(a)W = W̃ , where W is a coassociative 4-space and W̃ is
a 4-space admitting ×-compatible decompositions. Then we have a one-parameter
family of congruent superconformal harmonic maps: for each λ ∈ [0, a], ϕλ =
g(λ)ϕ : Σ → g(λ)W . We can integrate in order to obtain a smooth one-parameter
family of conformal immersions Fλ (with IF0

= IFλ
for all λ, because {ϕλ} is a

one-parameter family of congruent harmonic maps), where F0 is a CMC surface
and Fa is a pseudo-umbilical surface with non-parallel mean curvature vector field.

Example 4.3. Let g : [0, π
2 ] → SO(7) be the smooth map defined as follows:

for each λ ∈ [0, π
2 ], g(λ) = [v1(λ), . . . , v7(λ)] is the matrix (written with respect to

the canonical basis of R7) whose columns are the vectors

v1(λ) = cos λ e1 + sin λ e7, v2(λ) = cos λ e2 − sin λ e5,

v3(λ) = cos λ e3 − sin λ e6, v4(λ) = sin2 λ e1 + cos λ e4 − sin λ cos λ e7,

v5(λ) = cos λ e5 + sin λ e2, v6(λ) = cos λ e6 + sin λ e3,

v7(λ) = − sin λ cos λ e1 + sin λ e4 + cos2 λ e7.

It is clear that g(0) is the identity of SO(7) and g(π
2 )W = W̃ , with

W = span{e4, e5, e6, e7}, W̃ = span{e1, e2, e3, e4}.

Hence, after integration, we obtain the following isometric deformation of the cylin-
der (4.1) into the pseudo-umbilical surface (4.2):
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Fλ(x, y) =
1

2

(

− cos x sin yv4(λ) × v6(λ) + cos x cos yv4(λ) × v7(λ)

− sin x sin yv5(λ) × v6(λ) + sin x cos yv5(λ) × v7(λ)

+ xv6(λ) × v7(λ) − yv4(λ) × v5(λ)
)

.
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