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PROPER LEFT TYPE-A COVERS

JoHN FOUNTAIN and GRACINDA M.S. GoMEs!

Introduction

Left type-A monoids form a special class of left abundant monoids. Interest in
the latter arose originally from the study of monoids by means of their associated
S-sets. A left abundant monoid is a monoid with the property that all principal
left ideals are projective. All regular monoids are left abundant and so are many
other types of monoid including right cancellative monoids. A left abundant
monoid S is said to be left type-A if the set E(S) of idempotents of S is a
commutative submonoid of S and S also satisfies the condition that for any
elements e in F(S) and a in S we have eSNaS = eaS. In fact, [see 2] left type-A
monoids are precisely those monoids which are isomorphic to certain submonoids
of symmetric inverse monoids, namely those submonoids S of Z(X') which satisfy
the condition that if  is in S, then aa™! is in S. Thus all inverse monoids
are left type-A but there are many left type-A monoids which are not inverse,
for example, right cancellative monoids which are not groups. We see from the
characterization just given that for a topological space X, the submonoid of
Z(X) consisting of continuous one-one partial maps is left type-A. In general, of
course, this example is not inverse. A significant body of structure theory has
been developed for left type-A monoids, much of it inspired by corresponding
theory for inverse monoids. In particular, it is shown in [2] that for the study of
general left type-A monoids the subclass of proper left type-A monoids plays a
special role.

This paper is the last of a series of three devoted to studying proper left
type-A monoids via categories. The ideas and techniques are inspired by those
which Margolis and Pin introduced [5] in their study of E-dense and inverse
monoids. The first paper [3] of the series showed that the work of Margolis and
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Pin for E-dense monoids could be strengthened in the case of left type-A E-dense
monoids to give generalizations of results on inverse monoids. This paper and the
second [4] of the series are concerned with extending the techniques to apply to
left type-A monoids in general. The concept of a left type-A monoid is essentially
a one-sided notion and this is reflected in the fact that it is possible to generalize
the methods in two ways. In [4] we considered right actions on categories and
were led to new results on left type-A monoids.

In the present paper we study left type-A monoids by means of left actions on
categories. This forces us to change both the nature of the categories considered
and the definition of the action.

In Section 1 we use our new techniques to obtain a new proof of a theorem of
Palmer [6] which characterizes proper left type-A monoids in terms of M-systems.
Palmer’s result is a variation of a characterization obtained in [2]. The other main
result of [2] is that every left type-A monoid has a proper left type-A cover. In
[1] the categorical methods of Margolis and Pin were used to show that every
E-dense monoid has an F-unitary dense cover. This result was relativized in [3]
to the case of left type-A E-dense monoids showing that the cover constructed is
proper and respects the relation R*. In Section 2 of the present paper we adapt
the techniques of [1] to obtain a new proof of the covering theorem of [2]. That
is, we prove that every left type-A monoid has a left type-A T-cover. It is not
difficult to see that this is, in fact, the dual of Theorem 3.3 of [2].

1 — Preliminaries

We start by recalling some of the definitions and results, presented in [3], for
both left type-A monoids and categories.

On left type-A monoids

Let S be a monoid, with set of idempotents E(S). On S, we define a binary
relation R*, which contains the Green’s relation R, as follows: for all a,b € S,

(a,b) e R* < [(Vs,t€S)sa=ta < sb=1tb].

The monoid S is said to be left abundant if each R*-class, R}, contains an
idempotent. When FE(S) is a semilattice, such idempotent is unique and it is
denoted by a™. If, in addition, S satisfies the type-A condition: for all a € S and
e € E(S),

ae=(ae)ta,
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we say that S is a left type-A monoid. It is shown in [2] that this definition is
equivalent to those given in the Introduction.

We remind the reader of the following basic properties of left type-A monoids
which we use frequently and without further mention:

1) For every a,b,c € S, a R* b implies ca R* ¢ b;
2) For every a € S, a = a™ a;
3) For every e € E(S) and a € S, (ea)t =ea™.

On a left type-A monoid S, the least right cancellative monoid congruence,
o, is defined by: for all a,b € S,

(a,b) eoc < (Je€ E(S)) ea=eb;
and we say that S is proper if
cNR* =1,

where ¢ is the identity relation [2].

As usual by an E-unitary semigroup, we mean a semigroup .S such that, for
all a € S and e € E(95),

ae€ E(S) or eac E(S) = ac€E().

In [2], it is shown that every proper left type-A monoid is E- unitary but, however,
the converse is not true.

On left type-A categories

Let C be a (small) category. We denote the set of objects of C by ObjC and
the set of morphisms by MorC. For any object u of C, Mor(u, —) stands for the
set of morphisms of C with domain u and Mor(—, u) for the set of morphisms of
C with codomain u; we denote the identity morphism at the object u by O,,.

As in [5], we adopt an additive notation for the composition of morphisms. A
morphism p is said to be an idempotent if p = p+p. Clearly, if p is an idempotent
then p € Mor(u, u), for some u € ObjC.

On the partial groupoid MorC, we define the R*-relation as for a monoid.

A category C is said to be E-left type-A if, for all u € ObjC, E(Mor(u,u)) is
a semilattice, every R*-class R,, of Mor C contains an idempotent pt (necessarily
unique) and C satisfies the type-A condition, i.e. for all u,v € ObjC, p € Mor(u, v)
and f € E(Mor(v,v)),

p+f=@+NH +p.

Let C° be an E-left type-A category with a distinguished object ug such
that Mor(ug,ug) is a semilattice. We say that C° is (left) ug-connected if, for all
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v € ObjC° Mor(ug,v) # ). Also, C? is called (left) ug-proper if, for all v € ObjC°
and p, ¢ € Mor(ug, v),

pt=q" = p=gq,
i.e. each R*-class has at most an element of Mor(ug, v).

To simplify the terminology, we say that an E-left type-A, ug-connected and
ug-proper category CY, with distinguished element v is a ug-proper left category.

2 — ug-proper left categories

In this section, we begin by considering left actions of right cancellative
monoids on E-left type-A categories. In particular, we introduce the ideas of
a downwards action and a ug-closed action. We show that given a right cancella-
tive monoid acting in this way on a ug-proper left category we can form a proper
left type-A monoid and that any proper left type-A monoid arises in this way.
We then use this result to recover a theorem of Palmer which states that every
proper left type-A monoid is isomorphic to an M-monoid.

Definition 2.1. Let C be an E-left type-A category and T a right cancellative
monoid. We say that T" acts (on the left) on C (by R*-endomorphisms) if, for all
u € ObjC and t € T, there exists a unique tu € ObjC, and, for all u,v € ObjC,
p € Mor(u,v), there is a unique tp € Mor(tu, tv) such that, for all u,v,w € ObjC,
p € Mor(u,v), ¢ € Mor(v,w) and t,t1,t3 € T,

e t(p+q) =tp+tq,
o (tita)p=ti(tap),

L tO’U = Otm
elp=p,
° (tp)+ =tpT.

It is not difficult to check that

Lemma 2.2. Let C° be a ug-proper left category and T a right cancellative
monoid acting on C°. Then

Cup = {(p, t)y:teT, pe Mor(uo,tuo)} ,
with multiplication given by

(p,1) (q,5) = (p + tq,ts)
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is a proper left type-A monoid such that E(C,,) ~ Mor(ug, up). n

Definition 2.3. Let C° be an E-left type-A category, with a distinguished
object ug, and T a right cancellative monoid acting on C°. We say that the action
of T on C° is downwards if, for all u € ObjC? and t € T,

Mor(tv, —) = t Mor(v, —) .
On the other side, if the action of T" over ug satisfies the following properties:
e ObjCY = Ty,
e for all v € ObjCY, if Mor(v,ug) # () then v = gug, for some unit g € T,

we say that the action is ug-closed.

Lemma 2.4. Let C° be a ug-proper left category and T a right cancellative
monoid acting on C°. If, for all v € ObjC,

Mor(v,ug) #0 = v=gug, for some unit g€ T ,
then, for all p,q € Mor(v, ugp),

p =9 = p=q.

Proof: Let p,q € Mor(v, ug) be such that p™ = ¢g*. As Mor(v,ug) # 0, there
exists a unit g € T such that v = gug. Now, as the action respects the operation
T, we have

(')t =gtpT=9q" =(g7"9)",
where ¢~ 1p,¢71q € Mor(uo,g_luo). Whence, C° being ug-proper, ¢ 'p = ¢ ¢
and, sop=gq.m

Let M be a proper left type-A monoid and T'= M/o. We define the derived
category D° (of the natural morphism M — M/c) as in [3]: ObjD? = T and,
for all t1,to € T,

MOI‘(tl,t2> = {(tl,m,tg): m e M, tl(ma) = tQ} R
with composition given by
(t1,m, t2) (t2,n,t3) = (t1,mn, t3) .

The distinguished object of D is 1, the identity of 7. The action of T over D
is given by: for all w € ObjD° and ¢ € T, tu is the result of the multiplication of
t by w in T and for all (u, m,v) € Mor(u,v),

t(u,m,v) = (tu, m, tv) .
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Lemma 2.5. Let M be a proper left type-A monoid. Then the derived
category DV is a 1-proper left category and the action of T on D° is downwards
and 1-closed.

Proof: First, notice that if M is a proper left type-A monoid then M is
E-unitary and, so 1 = E(M). Then, following [3, 4], we have that D° is an E-left
type-A category where, for all (t1,m,ts) € Mor D?,

(tl,m,t2)+ = (tl,m+,t1)
and
E(Mor(t,1)) = {(t,e,t): e € E(M)} ~ B(M) .

In particular,
Mor(1,1) = E(Mor(1,1)) ~ E(M) .

The category D° is 1-connected since, for all mo € M/o =T,
(1,m,mo) € Mor(1,mo) .

On the other hand, D is 1-proper, since M is proper, i.e. R* No = ¢.

It is a routine matter to verify that T acts on D° in such a way that ObjD° =
T1. To prove that T acts downwards, let ¢t € T', u € ObjD? and p € Mor(tu, —).
Then, there exists m € M such that

p = (tu,m,tu.mo) ,

and, so
p = t(u,m,u.mo) € t Mor(u, —) .

It is obvious that ¢ Mor(u, —) C Mor(tu, —), hence ¢ Mor(u, —) = Mor(tu, —).

Finally, let p € Mor(v,1). Then, p = (v, m, 1) for some m € M and v.mo = 1.
As T is right cancellative, v.mo = 1 = mo.v and v = v.1 is a unit of T, as
required. m

Theorem 2.6. Let M be a monoid. Then, M is proper and left type-A
if and only if M ~ C,,, where ug is the distinguished object of a ug-proper left
category C° on which a right cancellative monoid T acts via an action which is
downwards and ug-closed.

Proof: In view of Lemma 2.2, under the above conditions, if M ~ C,,,, then
M is a proper left type-A monoid.

Conversely, let M be a proper left type-A monoid. Then, by Lemma 2.5, the
derived category D? of M is a 1-proper left category and T' = M /o is a right
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cancellative monoid which acts on D° with an action which is downwards and
1-closed. Now, we consider the map

v M —Cy = {(p,t): teT, pe Mor(l,t)}
m — ((1,m,mg¢), me) ,
which is easily seen to be an isomorphism and the result follows. n

Let C be an E-left type-A category. On MorC, we define a relation < as
follows: for all p,q € MorC,

p=q <& (3a€MorC) pt=a’, a+q"=a.
In [3], we showed that < is a preorder on Mor C and that the relation defined by
p~q < p=qand ¢=p

defines an equivalence relation on Mor C which contains R*. Also, on the quotient
set X = MorC/ ~, we consider the partial order < given by, for all A,, A, € X,

Ay <A, & p=gq.

If T is a right cancellative monoid acting on C, we define an action (on the
left) of T" on the partially ordered set X in the following way: for all A, € X and
teT,

tA, =A4Ay .

Lemma 2.7. Let C° be a ug-proper left category and T a right cancellative
monoid acting on C°. If the action is such that, for all v € ObjC?,

(%) Mor(v,up) #0 = v =gug, for some unitgeT

then the action of T over X respects the relations <, ~ and <.
Moreover, for all t,t' € T, p € Mor(ug, tug) and q € Mor(ug, t' ug),

Ap N Arg = Apiq -
Proof: By bearing in mind condition (*) and Lemma 2.4, the proof is similar
to the proof of Lemma 3.12 of [3]. Notice that here we need C° to be ug-proper. u

Lemma 2.8. Under the conditions of Lemma 2.7, let

y:{AeX: AﬂMor(uo,uo)#@} .
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Then

a) ) is a semilattice of X with greatest element F' = Ao, ;

b)Y = {A € X: (3v € ObjCY%) AN Mor(ug,v) # @};

c) (VteT)(VBe)Y)B<tF < BnNMor(ug,tug) # 0;

d) VteT)(3Be)Y)B<tF.

Proof: Since C° is a ugp-proper left category, Mor(ug, u) is a semilattice and
condition a) follows from the previous lemma.

On any E-left type-A category C, for all u,v € ObjC and p € Mor(ug,v), we

must have p*t € Mor(ug, ug). Since the equivalence ~ contains R*, condition b)
must hold.

c) Let t € T then tF' = Ao,,,. Let B = Ay € Y, with ¢ € Mor(uo, uo).
Suppose that B < tF. Then, g < Oy,,. Thus, there exists r € Mor(ug, tug) such
that ¢© = r* and, so

r € Ay N Mor(ug, tug) .

Conversely, suppose that there exists r € A, N Mor(ug, tug). Then, r+ Oy = 7.
Hence, r = Oy, and A, = B < tF.

d) Let t € T. Since CY is ugp-connected, there exists a € Mor(ug, tug). Thus,
Ay € Y, by condition b), and a < Oy, n

Next, we make the connection between the characterization of a proper left
type-A monoid M as an M-monoid [6] and the characterization of M, via cate-
gories, as a C,, monoid. We start by describing an M-monoid.

Definition 2.9 [6]. Let X be a partially ordered set and Y a subsemilattice
of X with greatest element f. Let T be a right cancellative monoid acting (on
the left) on X, in such a way that

e (VaeX)la=aq

e Va,be X) (VteT),a<b= ta<th

e X =TY;

o (VteT) (IbeY)b<tf;

e Va,beY)(VteT)a<tf=aNtbeY;

e (Va,bceY) (Vt,t' €T),a<tf,b<t'f = (antb) Ntt'c=aNnt(bAtc).
Then, we define

M(T,X,Y) = {(a,t) €Y xT: agtf} ,
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with multiplication given by
(a,t) (b,t') = (a Atb,tt')
and obtain a monoid which we call an M -monoid.

Theorem 2.10 [6]. Every proper left type-A monoid M is isomorphic to an
M-monoid M (T,X,Y). Also, in M(T, X,Y), for all (a,t), (b,t'):

e (a,t) R* (b,t') & a=10;

e (a,t)o(bt') & t=1;
andsoT ~M(T,X,Y)/o.n

Lemma 2.11. Let C° be a ug-proper left category and T be a right cancella-

tive monoid acting downwards on C°. If this action is ug-closed, then M (T, X,)))
is an M-monoid.

Proof: By Lemma 2.8, ) is a subsemilattice, with greatest element F' =
Ao, of the partially ordered set X. Now, we verify that (7, X,)) satisfies the
properties of Definition 2.9. Let A,, A, € X and t € T. Clearly, 14, = A1, = A,
and, by Lemma 2.7,

Ay <Ay, = p=q = tptg = tA,<tA,.

Now, let A, € X with p € Mor(v,v). As the action of 7' on C° is ug-closed,
v = tug, for some t € T. Thus, p™ € Mor(tug, tug) and, as T acts downwards on
CY, there exists r € Mor(ug, ug) such that p* = tr. Whence, A, € ) and

Ap=Ap = Ay =tA, € ).
Next, let ¢t € T. By Lemma 2.8 d), there exists A, € ) such that
A, <tF .

To prove the fifth condition suppose that A,, Ay € Y, with a,b € Mor(ug, ug),
and let t € T be such that 4, < tAOuO‘ By Lemma 2.8 ¢), A, = A,, for some
r € Mor(ug, tug). Hence, by Lemma 2.7, there exists

Aa NtAy = Ar N Ay = Ariy = A+ €

Finally, let A, Ap, Ac € Y with a,b,c € Mor(ug,up) and t,t' € T. Suppose
that A, < tF and A, < t' F. Then, as before, there exist r € Mor(ug, tug) N Ag
and ' € Mor(ug, t' ug) N Ap. Now, by Lemma 2.7,

A NtAy = Ap NtA = Apggp

and
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Ab /\ t/ AC — A’I"-{-t’c .
Again, by Lemma 2.7,

(Ag NtA) ANttt Ap = Apyr NEE A

= Ar+tr’+tt/c

and
Ag A t(Ab A t,Ac) = A, A tAr/—i-t’c = Ar+t(r’+t'c)

= Ar+tr’+t’c .
Therefore M (T, X,)) is an M-monoid, as required. m

By Theorem 2.10, we know that every proper left type-A monoid M is iso-
morphic to an M-monoid M. The above results allow us to obtain a clearer
construction of such an M and a new proof of the theorem.

Theorem 2.12. Let M be a proper left type-A monoid, T = M /o and
DO its derived category. Then, M ~ M(T,X,)), where X = MorD?/ ~ and
Yy={AeX: AnMor(1,1) # 0}.

Proof: In view of Theorem 2.6 and Lemma 2.11, it only remains to prove
that Cy ~ M(T,X,Y). Consider the map

0:C, - M(T,X,Y)
(p,t) = (Ap, 1) -

It follows from Lemma 2.8 c) that 6 is well defined. By Lemma 2.7, 6 is a
morphism. Again, by Lemma 2.8 ¢), 6 is onto. To see that € is injective, let
¢,p € Mor(1,t), for some t € T, be such that A, = A, i.e. p ~ gq. Thus, there
exists a € Mor DY such that pt = a*, a + ¢ = a. Hence a € Mor(1,1) and
a =a’. Thus p© = a™ = a™ +¢q" = p* + ¢*. Similarly, ¢* = ¢" +p". As
Mor(1,1) is a semilattice, p™ = ¢*. Finally, D° being 1-proper, it follows that
p = q, as required. n

3 — Proper left type-A covers of left type-A monoids

In this section we are concerned to show that for each left type-A monoid M
there is a proper left type-A monoid P and an idempotent separating homomor-
phism §: P — M from P onto M such that a™ 6 = (a)™. We express this result
by saying that M has a proper left type-A T-cover. It (or rather its dual) was
originally proved in [2] although it is stated somewhat differently there. For the
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alternative proof which we present here we use the theory developed in Section 2
and a modification of the method of [1].

Before embarking on the proof we illustrate the notion of proper left type-A
T-cover by the following example. Let X be a topological space. We denote by
G(X) the monoid of all continuous bijections from X to itself under composition.
Certainly G(X) is cancellative but it is not a group in general. We let Z.(X)
denote the monoid of all continuous one-one partial maps from X to itself under
composition of partial functions. Finally, P(X) denotes the power set of X
regarded as a semilattice under the operation of intersection. We define a left
action of G(X) on P(X) by the rule that 0 Y =Y ¢! for all ¢ in G(X) and all
subsets Y of X. It is then easy to verify that the multiplication

Y,o)(Z,7)=(Y NoZ,oT)

makes the set P(X) x G(X) into a monoid P(X) * G(X) (a semidirect product
of P(X) and G(X)). It is also readily checked that this monoid is proper left
type-A with semilattice of idempotents {(Y,1): Y € P(X)} and (Y,0)" = (Y, 1).
Indeed, P(X) % G(X) is nothing other than M (G(X),P(X),P(X)). We claim
that it is a left type-A T-cover of Z.(X). To see this consider the surjective
function 6: P(X) x G(X) — Z.(X) defined by

(Y,o0)0 =0y,

where oy denotes the partial map with domain Y obtained by restricting o. It
is routine to show that 6 is an idempotent separating homomorphism and that
(Y,0)t)0 = ((Y,0)0)". Of course, this example is very familiar when X has
the discrete topology and we have an F-unitary cover of the symmetric inverse
monoid on X.

We now start our proof with a technical lemma on left type-A monoids.

Lemma 3.1. Let M be a left type-A monoid and let s € S. If s =
epriel - - - ep—1&ney, for somen € N, z; € M (i = 1,...,n) and e; € E(M)
(7 =0,...,n), then

s=s (1 -xp) .

Proof: Suppose that n = 0, then s = ¢y and s = s*. Now, let us assume

that the result is true for n. Suppose that

S =€0T1 """ Tp€lnTntlntl -

Then,
S =TTp416n+1
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where r = eg x1€1 - - - Tpe,. Hence, by the induction hypothesis, r = r*(xq -+ - z,,)
and so

s=rT(z1 - Tn) - Tpi1lnit -
Thus
_ .t +
sS=T (xl"'xn+1€n+l) L1 Tptl
— (ot +
= (7“ Zy-- '56n+1€n+1) Ty Tnp+l
+

= S xl...xn+17

as required. m

Let M be a left type-A monoid with set of idempotents E. Put X = M\{1}.
We start by considering X*, the free monoid on X with identity 1. We write
the non-identity elements as sequences (x1,...,zy), where n > 1 and z; € X
(i = 1,...,n). To each word w € X* we associate a subset M,, of M, in the
following way:

E if w=1,
M, = )
Ex1ExoF -+ -z 1Exp,F if w= (x1,....,2,) .

It is clear that, for all v,w € X*, we have
My = My My, .
Now, define a category C° as follows:
objc’ = X*
and, for all v,w € X*,

{(v,s,w): s € My, } if w=ovwi, for some w; € X*,

Mor (v, w) = {

0, otherwise .

The composition law is given by
(v,s,w) + (w, t,u) = (v, st,u) .

Clearly, the composition is well defined and associative. Also, for any object v,
Mor(v,v) = {(v,e,v): e € E}

and (v, 17, v) is the identity on Mor(v, v), where 13, denotes the identity of M.
Thus, C° is indeed a category.
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Next, we consider a (left) action of the (right) cancellative monoid X* on the
category C%: the action of X* on ObjC? is given by the multiplication on X*
and, for all u € X* and (v, s,w) € MorC°,

u(v, s,w) = (uv, s, uw) .

It is easy to verify that this action is well defined.
We choose 1 to be the distinguished object of C°.

Lemma 3.2. Let M be a left type-A monoid. Then C° is a left proper
category with distinguished object 1. Also, the right cancellative monoid X*
acts (on the left) downwards on C°. The action is 1-closed.

Proof: Most of the required properties of C° and of the action of X* over C"
are easy to prove, once we notice that:

— For all u € ObjC° Mor(u,u) = {(u,e,u): e € E} ~ E;

— For all (u,s,v) € Mor(u,v), (u,s,v)" = (u,sT,u);

— The unique unit of X* is the empty word 1.

Here, we only prove that CY is 1-proper. Let v € X* and (1,s,v), (1,t,v) €
Mor(1,v) be such that (1,s,v)" = (1,t,v)". Then, s* = t* and s,t € M,. If
v =1, then M, = E and we have s = st = tT =t. Whence (1,s,v) = (1,t,v).
If v # 1, let v = (x1,...,2,), where n > 0 and z; € X (i = 1,...,n). Thus, there
exist ey, ..., en, f1,..., fn € E such that

§ = €1X1€2 " EnTn€nti
and

t= firifo-- fatnfosr -
By Lemma 3.1,
s§s=S

txy---mp) and t=tT(xy---xp) .

Hence, as s™ = t*, we have s = t. Therefore
(1,s,v) = (1,t,v)
and C° is 1-proper, as required. u

Definition 3.3. Let M and N be left type-A monoids we say that N is a
T-cover of M if there exists an idempotent separating monoid morphism 6 from
N onto M that respects the operation *, that is, for alla € N, a™ 0 = (a 0)*.
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Theorem 3.4. Every left type-A monoid has a proper left type-A *-cover.

Proof: Suppose that M is a left type-A monoid. Let C° be the category
defined before. We have

Cy = {((l,s,u),u): ue X", se Mu}
and the multiplication on C] is given by
((1,s,u),u) ((1,t,v),v) = ((1, st,uv), uv) .

The identity of C is ((1,1a7,1),1). By Lemmas 3.2 and 2.2, C} is a proper left
type-A monoid. Now, let us consider the map

0101 — M

(1, s,u),u) —s.
Clearly, 6 is monoid morphism and is, in fact, a T-morphism. Because
(1,s,u),uw)"0=((1,s7,1),1)0 = s = (((1,s,u),u) )" .
That 6 is onto follows from the fact that, for all a € M\{1} = X,

a=((1,a,(a)),(a))b .

Finally, as
B(C1) = {((1,e,1),1): e € B},

we have that 0|g(c,) is an isomorphism from E(C1) into E. Therefore, Cy is a
proper left type-A T-cover of M, as required. m
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