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PROPER LEFT TYPE-A COVERS

John Fountain and Gracinda M.S. Gomes1

Introduction

Left type-A monoids form a special class of left abundant monoids. Interest in
the latter arose originally from the study of monoids by means of their associated
S-sets. A left abundant monoid is a monoid with the property that all principal
left ideals are projective. All regular monoids are left abundant and so are many
other types of monoid including right cancellative monoids. A left abundant
monoid S is said to be left type-A if the set E(S) of idempotents of S is a
commutative submonoid of S and S also satisfies the condition that for any
elements e in E(S) and a in S we have eS ∩aS = eaS. In fact, [see 2] left type-A
monoids are precisely those monoids which are isomorphic to certain submonoids
of symmetric inverse monoids, namely those submonoids S of I(X) which satisfy
the condition that if α is in S, then αα−1 is in S. Thus all inverse monoids
are left type-A but there are many left type-A monoids which are not inverse,
for example, right cancellative monoids which are not groups. We see from the
characterization just given that for a topological space X, the submonoid of
I(X) consisting of continuous one-one partial maps is left type-A. In general, of
course, this example is not inverse. A significant body of structure theory has
been developed for left type-A monoids, much of it inspired by corresponding
theory for inverse monoids. In particular, it is shown in [2] that for the study of
general left type-A monoids the subclass of proper left type-A monoids plays a
special role.

This paper is the last of a series of three devoted to studying proper left
type-A monoids via categories. The ideas and techniques are inspired by those
which Margolis and Pin introduced [5] in their study of E-dense and inverse
monoids. The first paper [3] of the series showed that the work of Margolis and
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Pin for E-dense monoids could be strengthened in the case of left type-A E-dense
monoids to give generalizations of results on inverse monoids. This paper and the
second [4] of the series are concerned with extending the techniques to apply to
left type-A monoids in general. The concept of a left type-A monoid is essentially
a one-sided notion and this is reflected in the fact that it is possible to generalize
the methods in two ways. In [4] we considered right actions on categories and
were led to new results on left type-A monoids.

In the present paper we study left type-A monoids by means of left actions on
categories. This forces us to change both the nature of the categories considered
and the definition of the action.

In Section 1 we use our new techniques to obtain a new proof of a theorem of
Palmer [6] which characterizes proper left type-A monoids in terms ofM -systems.
Palmer’s result is a variation of a characterization obtained in [2]. The other main
result of [2] is that every left type-A monoid has a proper left type-A cover. In
[1] the categorical methods of Margolis and Pin were used to show that every
E-dense monoid has an E-unitary dense cover. This result was relativized in [3]
to the case of left type-A E-dense monoids showing that the cover constructed is
proper and respects the relation R∗. In Section 2 of the present paper we adapt
the techniques of [1] to obtain a new proof of the covering theorem of [2]. That
is, we prove that every left type-A monoid has a left type-A +-cover. It is not
difficult to see that this is, in fact, the dual of Theorem 3.3 of [2].

1 – Preliminaries

We start by recalling some of the definitions and results, presented in [3], for
both left type-A monoids and categories.

On left type-A monoids

Let S be a monoid, with set of idempotents E(S). On S, we define a binary
relation R∗, which contains the Green’s relation R, as follows: for all a, b ∈ S,

(a, b) ∈ R∗ ⇔ [(∀ s, t ∈ S) sa = ta ⇔ sb = tb] .

The monoid S is said to be left abundant if each R∗-class, R∗
a, contains an

idempotent. When E(S) is a semilattice, such idempotent is unique and it is
denoted by a+. If, in addition, S satisfies the type-A condition: for all a ∈ S and
e ∈ E(S),

a e = (a e)+ a ,
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we say that S is a left type-A monoid. It is shown in [2] that this definition is
equivalent to those given in the Introduction.
We remind the reader of the following basic properties of left type-A monoids

which we use frequently and without further mention:

1) For every a, b, c ∈ S, aR∗ b implies c aR∗ c b;

2) For every a ∈ S, a = a+ a;

3) For every e ∈ E(S) and a ∈ S, (e a)+ = e a+.

On a left type-A monoid S, the least right cancellative monoid congruence,
σ, is defined by: for all a, b ∈ S,

(a, b) ∈ σ ⇔ (∃ e ∈ E(S)) e a = e b ;

and we say that S is proper if

σ ∩R∗ = ι ,

where ι is the identity relation [2].
As usual by an E-unitary semigroup, we mean a semigroup S such that, for

all a ∈ S and e ∈ E(S),

a e ∈ E(S) or e a ∈ E(S) ⇒ a ∈ E(S) .

In [2], it is shown that every proper left type-Amonoid is E- unitary but, however,
the converse is not true.

On left type-A categories

Let C be a (small) category. We denote the set of objects of C by Obj C and
the set of morphisms by Mor C. For any object u of C, Mor(u,−) stands for the
set of morphisms of C with domain u and Mor(−, u) for the set of morphisms of
C with codomain u; we denote the identity morphism at the object u by Ou.
As in [5], we adopt an additive notation for the composition of morphisms. A

morphism p is said to be an idempotent if p = p+p. Clearly, if p is an idempotent
then p ∈ Mor(u, u), for some u ∈ Obj C.
On the partial groupoid Mor C, we define the R∗-relation as for a monoid.
A category C is said to be E-left type-A if, for all u ∈ Obj C, E(Mor(u, u)) is

a semilattice, every R∗-class R∗
p of Mor C contains an idempotent p

+ (necessarily
unique) and C satisfies the type-A condition, i.e. for all u, v ∈ Obj C, p ∈ Mor(u, v)
and f ∈ E(Mor(v, v)),

p+ f = (p+ f)+ + p .

Let C0 be an E-left type-A category with a distinguished object u0 such
that Mor(u0, u0) is a semilattice. We say that C

0 is (left) u0-connected if, for all
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v ∈ Obj C0, Mor(u0, v) 6= ∅. Also, C
0 is called (left) u0-proper if, for all v ∈ Obj C0

and p, q ∈ Mor(u0, v),

p+ = q+ ⇒ p = q ,

i.e. each R∗-class has at most an element of Mor(u0, v).

To simplify the terminology, we say that an E-left type-A, u0-connected and
u0-proper category C

0, with distinguished element u0 is a u0-proper left category .

2 – u0-proper left categories

In this section, we begin by considering left actions of right cancellative
monoids on E-left type-A categories. In particular, we introduce the ideas of
a downwards action and a u0-closed action. We show that given a right cancella-
tive monoid acting in this way on a u0-proper left category we can form a proper
left type-A monoid and that any proper left type-A monoid arises in this way.
We then use this result to recover a theorem of Palmer which states that every
proper left type-A monoid is isomorphic to an M -monoid.

Definition 2.1. Let C be an E-left type-A category and T a right cancellative
monoid. We say that T acts (on the left) on C (by R∗-endomorphisms) if, for all
u ∈ Obj C and t ∈ T , there exists a unique tu ∈ Obj C, and, for all u, v ∈ Obj C,
p ∈ Mor(u, v), there is a unique tp ∈ Mor(tu, tv) such that, for all u, v, w ∈ Obj C,
p ∈ Mor(u, v), q ∈ Mor(v, w) and t, t1, t2 ∈ T ,

• t(p+ q) = tp+ tq,

• (t1 t2) p = t1(t2 p),

• tOv = Otv,

• 1 p = p,

• (t p)+ = t p+.

It is not difficult to check that

Lemma 2.2. Let C0 be a u0-proper left category and T a right cancellative
monoid acting on C0. Then

Cu0 =
{

(p, t) : t ∈ T, p ∈ Mor(u0, tu0)
}

,

with multiplication given by

(p, t) (q, s) = (p+ tq, ts)
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is a proper left type-A monoid such that E(Cu0) ' Mor(u0, u0).

Definition 2.3. Let C0 be an E-left type-A category, with a distinguished
object u0, and T a right cancellative monoid acting on C

0. We say that the action
of T on C0 is downwards if, for all u ∈ Obj C0 and t ∈ T ,

Mor(tv,−) = tMor(v,−) .

On the other side, if the action of T over u0 satisfies the following properties:

• Obj C0 = Tu0,

• for all v ∈ Obj C0, if Mor(v, u0) 6= ∅ then v = gu0, for some unit g ∈ T ,

we say that the action is u0-closed.

Lemma 2.4. Let C0 be a u0-proper left category and T a right cancellative
monoid acting on C0. If, for all v ∈ Obj C0,

Mor(v, u0) 6= ∅ ⇒ v = g u0, for some unit g ∈ T ,

then, for all p, q ∈ Mor(v, u0),

p+ = q+ ⇒ p = q .

Proof: Let p, q ∈ Mor(v, u0) be such that p
+ = q+. As Mor(v, u0) 6= ∅, there

exists a unit g ∈ T such that v = gu0. Now, as the action respects the operation
+, we have

(g−1p)+ = g−1 p+ = g−1 q+ = (g−1q)+ ,

where g−1p, g−1q ∈ Mor(u0, g
−1u0). Whence, C

0 being u0-proper, g
−1p = g−1q

and, so p = q.

Let M be a proper left type-A monoid and T =M/σ. We define the derived
category D0 (of the natural morphism M → M/σ) as in [3]: ObjD0 = T and,
for all t1, t2 ∈ T ,

Mor(t1, t2) =
{

(t1,m, t2) : m ∈M, t1(mσ) = t2
}

,

with composition given by

(t1,m, t2) (t2, n, t3) = (t1,mn, t3) .

The distinguished object of D0 is 1, the identity of T . The action of T over D0

is given by: for all u ∈ ObjD0 and t ∈ T , tu is the result of the multiplication of
t by u in T and for all (u,m, v) ∈ Mor(u, v),

t(u,m, v) = (tu,m, tv) .
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Lemma 2.5. Let M be a proper left type-A monoid. Then the derived
category D0 is a 1-proper left category and the action of T on D0 is downwards
and 1-closed.

Proof: First, notice that if M is a proper left type-A monoid then M is
E-unitary and, so 1 = E(M). Then, following [3, 4], we have that D0 is an E-left
type-A category where, for all (t1,m, t2) ∈ MorD

0,

(t1,m, t2)
+ = (t1,m

+, t1)

and

E(Mor(t, t)) =
{

(t, e, t) : e ∈ E(M)
}

' E(M) .

In particular,

Mor(1, 1) = E(Mor(1, 1)) ' E(M) .

The category D0 is 1-connected since, for all mσ ∈M/σ = T ,

(1,m,mσ) ∈ Mor(1,mσ) .

On the other hand, D0 is 1-proper, since M is proper, i.e. R∗ ∩ σ = ι.

It is a routine matter to verify that T acts on D0 in such a way that ObjD0 =
T1. To prove that T acts downwards, let t ∈ T , u ∈ ObjD0 and p ∈ Mor(tu,−).
Then, there exists m ∈M such that

p = (tu,m, tu.mσ) ,

and, so

p = t(u,m, u.mσ) ∈ tMor(u,−) .

It is obvious that tMor(u,−) ⊆ Mor(tu,−), hence tMor(u,−) = Mor(tu,−).
Finally, let p ∈ Mor(v, 1). Then, p = (v,m, 1) for some m ∈M and v.mσ = 1.

As T is right cancellative, v.mσ = 1 = mσ.v and v = v.1 is a unit of T , as
required.

Theorem 2.6. Let M be a monoid. Then, M is proper and left type-A
if and only if M ' Cu0 , where u0 is the distinguished object of a u0-proper left
category C0 on which a right cancellative monoid T acts via an action which is
downwards and u0-closed.

Proof: In view of Lemma 2.2, under the above conditions, if M ' Cu0 , then
M is a proper left type-A monoid.

Conversely, let M be a proper left type-A monoid. Then, by Lemma 2.5, the
derived category D0 of M is a 1-proper left category and T = M/σ is a right
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cancellative monoid which acts on D0 with an action which is downwards and
1-closed. Now, we consider the map

ψ :M → C1 =
{

(p, t) : t ∈ T, p ∈ Mor(1, t)
}

m 7→ ((1,m,mφ),mφ) ,

which is easily seen to be an isomorphism and the result follows.

Let C be an E-left type-A category. On Mor C, we define a relation ¹ as
follows: for all p, q ∈ Mor C,

p ¹ q ⇔ (∃ a ∈ Mor C) p+ = a+, a+ q+ = a .

In [3], we showed that ¹ is a preorder on Mor C and that the relation defined by

p ∼ q ⇔ p ¹ q and q ¹ p

defines an equivalence relation on Mor C which contains R∗. Also, on the quotient
set X = Mor C/ ∼, we consider the partial order ≤ given by, for all Ap, Aq ∈ X ,

Ap ≤ Aq ⇔ p ¹ q .

If T is a right cancellative monoid acting on C, we define an action (on the
left) of T on the partially ordered set X in the following way: for all Ap ∈ X and
t ∈ T ,

t Ap = Atp .

Lemma 2.7. Let C0 be a u0-proper left category and T a right cancellative
monoid acting on C0. If the action is such that, for all v ∈ Obj C0,

(∗) Mor(v, u0) 6= ∅ ⇒ v = g u0, for some unit g ∈ T ,

then the action of T over X respects the relations ¹, ∼ and ≤.
Moreover, for all t, t′ ∈ T , p ∈ Mor(u0, tu0) and q ∈ Mor(u0, t

′ u0),

Ap ∧Atq = Ap+tq .

Proof: By bearing in mind condition (∗) and Lemma 2.4, the proof is similar
to the proof of Lemma 3.12 of [3]. Notice that here we need C0 to be u0-proper.

Lemma 2.8. Under the conditions of Lemma 2.7, let

Y =
{

A ∈ X : A ∩Mor(u0, u0) 6= ∅
}

.
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Then

a) Y is a semilattice of X with greatest element F = AOu0
;

b) Y =
{

A ∈ X : (∃ v ∈ Obj C0) A ∩Mor(u0, v) 6= ∅
}

;

c) (∀ t ∈ T ) (∀B ∈ Y) B ≤ tF ⇔ B ∩Mor(u0, tu0) 6= ∅;

d) (∀ t ∈ T ) (∃B ∈ Y) B ≤ tF .

Proof: Since C0 is a u0-proper left category, Mor(u0, u0) is a semilattice and
condition a) follows from the previous lemma.
On any E-left type-A category C, for all u, v ∈ Obj C and p ∈ Mor(u0, v), we

must have p+ ∈ Mor(u0, u0). Since the equivalence ∼ contains R
∗, condition b)

must hold.

c) Let t ∈ T then tF = AOtu0
. Let B = Aq ∈ Y, with q ∈ Mor(u0, u0).

Suppose that B ≤ tF . Then, q ¹ Otu0 . Thus, there exists r ∈ Mor(u0, tu0) such
that q+ = r+ and, so

r ∈ Aq ∩Mor(u0, tu0) .

Conversely, suppose that there exists r ∈ Aq ∩Mor(u0, tu0). Then, r+Otu0 = r.
Hence, r ¹ Otu0 and Ar = B ≤ tF .

d) Let t ∈ T . Since C0 is u0-connected, there exists a ∈ Mor(u0, tu0). Thus,
Aa ∈ Y, by condition b), and a ¹ Otu0 .

Next, we make the connection between the characterization of a proper left
type-A monoid M as an M -monoid [6] and the characterization of M , via cate-
gories, as a Cu0 monoid. We start by describing an M -monoid.

Definition 2.9 [6]. Let X be a partially ordered set and Y a subsemilattice
of X with greatest element f . Let T be a right cancellative monoid acting (on
the left) on X, in such a way that

• (∀ a ∈ X) 1 a = a;

• (∀ a, b ∈ X) (∀ t ∈ T ), a ≤ b ⇒ ta ≤ tb;

• X = TY ;

• (∀ t ∈ T ) (∃ b ∈ Y ) b ≤ tf ;

• (∀ a, b ∈ Y ) (∀ t ∈ T ) a ≤ tf ⇒ a ∧ tb ∈ Y ;

• (∀ a, b, c ∈ Y ) (∀ t, t′ ∈ T ), a ≤ tf , b ≤ t′f ⇒ (a ∧ tb) ∧ tt′c = a ∧ t(b ∧ t′c).

Then, we define

M(T,X, Y ) =
{

(a, t) ∈ Y × T : a ≤ tf
}

,
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with multiplication given by

(a, t) (b, t′) = (a ∧ tb, tt′) ,

and obtain a monoid which we call an M -monoid.

Theorem 2.10 [6]. Every proper left type-A monoid M is isomorphic to an
M -monoid M(T,X, Y ). Also, in M(T,X, Y ), for all (a, t), (b, t′):

• (a, t)R∗ (b, t′) ⇔ a = b;

• (a, t)σ (b, t′) ⇔ t = t′;

and so T 'M(T,X, Y )/σ.

Lemma 2.11. Let C0 be a u0-proper left category and T be a right cancella-
tive monoid acting downwards on C0. If this action is u0-closed, then M(T,X ,Y)
is an M -monoid.

Proof: By Lemma 2.8, Y is a subsemilattice, with greatest element F =
AOu0

, of the partially ordered set X . Now, we verify that (T,X ,Y) satisfies the
properties of Definition 2.9. Let Ap, Aq ∈ X and t ∈ T . Clearly, 1Ap = A1p = Ap

and, by Lemma 2.7,

Ap ≤ Aq ⇒ p ¹ q ⇒ tp ¹ tq ⇒ tAp ≤ tAq .

Now, let Ap ∈ X with p ∈ Mor(v, v). As the action of T on C0 is u0-closed,
v = tu0, for some t ∈ T . Thus, p

+ ∈ Mor(tu0, tu0) and, as T acts downwards on
C0, there exists r ∈ Mor(u0, u0) such that p

+ = t r. Whence, Ar ∈ Y and

Ap = Ap+ = Atr = t Ar ∈ Y .

Next, let t ∈ T . By Lemma 2.8 d), there exists Aa ∈ Y such that

Aa ¹ t F .

To prove the fifth condition suppose that Aa, Ab ∈ Y, with a, b ∈ Mor(u0, u0),
and let t ∈ T be such that Aa ≤ tAOu0

. By Lemma 2.8 c), Aa = Ar, for some
r ∈ Mor(u0, tu0). Hence, by Lemma 2.7, there exists

Aa ∧ tAb = Ar ∧Atb = Ar+tb = A(r+tb)+ ∈ Y .

Finally, let Aa, Ab, Ac ∈ Y with a, b, c ∈ Mor(u0, u0) and t, t
′ ∈ T . Suppose

that Aa ≤ tF and Ab ≤ t′ F . Then, as before, there exist r ∈ Mor(u0, tu0) ∩ Aa

and r′ ∈ Mor(u0, t
′ u0) ∩Ab. Now, by Lemma 2.7,

Aa ∧ tAb = Ar ∧ tAr′ = Ar+tr′

and
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Ab ∧ t
′Ac = Ar′+t′c .

Again, by Lemma 2.7,

(Aa ∧ tAb) ∧ t t
′Ac = Ar+tr′ ∧ t t

′Ac

= Ar+tr′+tt′c

and
Aa ∧ t(Ab ∧ t

′Ac) = Ar ∧ tAr′+t′c = Ar+t(r′+t′c)

= Ar+tr′+t′c .

Therefore M(T,X ,Y) is an M -monoid, as required.

By Theorem 2.10, we know that every proper left type-A monoid M is iso-
morphic to an M -monoid M. The above results allow us to obtain a clearer
construction of such anM and a new proof of the theorem.

Theorem 2.12. Let M be a proper left type-A monoid, T = M/σ and
D0 its derived category. Then, M ' M(T,X ,Y), where X = MorD0/ ∼ and
Y = {A ∈ X : A ∩Mor(1, 1) 6= ∅}.

Proof: In view of Theorem 2.6 and Lemma 2.11, it only remains to prove
that C1 'M(T,X ,Y). Consider the map

θ :C1 →M(T,X ,Y)

(p, t) 7→ (Ap, t) .

It follows from Lemma 2.8 c) that θ is well defined. By Lemma 2.7, θ is a
morphism. Again, by Lemma 2.8 c), θ is onto. To see that θ is injective, let
q, p ∈ Mor(1, t), for some t ∈ T , be such that Ap = Aq, i.e. p ∼ q. Thus, there
exists a ∈ MorD0 such that p+ = a+, a + q+ = a. Hence a ∈ Mor(1, 1) and
a = a+. Thus p+ = a+ = a+ + q+ = p+ + q+. Similarly, q+ = q+ + p+. As
Mor(1, 1) is a semilattice, p+ = q+. Finally, D0 being 1-proper, it follows that
p = q, as required.

3 – Proper left type-A covers of left type-A monoids

In this section we are concerned to show that for each left type-A monoid M
there is a proper left type-A monoid P and an idempotent separating homomor-
phism θ : P →M from P ontoM such that a+ θ = (a θ)+. We express this result
by saying that M has a proper left type-A +-cover. It (or rather its dual) was
originally proved in [2] although it is stated somewhat differently there. For the
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alternative proof which we present here we use the theory developed in Section 2
and a modification of the method of [1].
Before embarking on the proof we illustrate the notion of proper left type-A

+-cover by the following example. Let X be a topological space. We denote by
G(X) the monoid of all continuous bijections from X to itself under composition.
Certainly G(X) is cancellative but it is not a group in general. We let Ic(X)
denote the monoid of all continuous one-one partial maps from X to itself under
composition of partial functions. Finally, P(X) denotes the power set of X
regarded as a semilattice under the operation of intersection. We define a left
action of G(X) on P(X) by the rule that σ Y = Y σ−1 for all σ in G(X) and all
subsets Y of X. It is then easy to verify that the multiplication

(Y, σ)(Z, τ) = (Y ∩ σZ, στ)

makes the set P(X) ×G(X) into a monoid P(X) ∗G(X) (a semidirect product
of P(X) and G(X)). It is also readily checked that this monoid is proper left
type-A with semilattice of idempotents {(Y, 1) : Y ∈ P(X)} and (Y, σ)+ = (Y, 1).
Indeed, P(X) ∗ G(X) is nothing other than M(G(X),P(X),P(X)). We claim
that it is a left type-A +-cover of Ic(X). To see this consider the surjective
function θ : P(X) ∗G(X)→ Ic(X) defined by

(Y, σ) θ = σY ,

where σY denotes the partial map with domain Y obtained by restricting σ. It
is routine to show that θ is an idempotent separating homomorphism and that
((Y, σ)+) θ = ((Y, σ) θ)+. Of course, this example is very familiar when X has
the discrete topology and we have an E-unitary cover of the symmetric inverse
monoid on X.
We now start our proof with a technical lemma on left type-A monoids.

Lemma 3.1. Let M be a left type-A monoid and let s ∈ S. If s =
e0x1e1 · · · en−1xnen, for some n ∈ IN, xi ∈ M (i = 1, ..., n) and ej ∈ E(M)
(j = 0, ..., n), then

s = s+(x1 · · ·xn) .

Proof: Suppose that n = 0, then s = e0 and s = s+. Now, let us assume
that the result is true for n. Suppose that

s = e0x1 · · ·xn enxn+1en+1 .

Then,

s = r xn+1en+1 ,
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where r = e0 x1e1 · · ·xnen. Hence, by the induction hypothesis, r = r+(x1 · · ·xn)
and so

s = r+(x1 · · ·xn) · xn+1en+1 .

Thus
s = r+(x1 · · ·xn+1en+1)

+ x1 · · ·xn+1

= (r+ x1 · · ·xn+1en+1)
+ x1 · · ·xn+1

= s+ x1 · · ·xn+1 ,

as required.

Let M be a left type-A monoid with set of idempotents E. Put X =M\{1}.
We start by considering X∗, the free monoid on X with identity 1. We write
the non-identity elements as sequences (x1, ..., xn), where n ≥ 1 and xi ∈ X
(i = 1, ..., n). To each word w ∈ X∗ we associate a subset Mw of M , in the
following way:

Mw =

{

E if w = 1,

Ex1Ex2E · · ·xn−1ExnE if w = (x1, ..., xn) .

It is clear that, for all v, w ∈ X∗, we have

Mvw =Mv Mw .

Now, define a category C0 as follows:

Obj C0 = X∗

and, for all v, w ∈ X∗,

Mor(v, w) =

{

{(v, s, w) : s ∈Mw1} if w = vw1, for some w1 ∈ X
∗,

∅, otherwise .

The composition law is given by

(v, s, w) + (w, t, u) = (v, st, u) .

Clearly, the composition is well defined and associative. Also, for any object v,

Mor(v, v) =
{

(v, e, v) : e ∈ E
}

and (v, 1M , v) is the identity on Mor(v, v), where 1M denotes the identity of M .
Thus, C0 is indeed a category.
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Next, we consider a (left) action of the (right) cancellative monoid X∗ on the
category C0: the action of X∗ on Obj C0 is given by the multiplication on X∗

and, for all u ∈ X∗ and (v, s, w) ∈ Mor C0,

u(v, s, w) = (uv, s, uw) .

It is easy to verify that this action is well defined.

We choose 1 to be the distinguished object of C0.

Lemma 3.2. Let M be a left type-A monoid. Then C0 is a left proper
category with distinguished object 1. Also, the right cancellative monoid X∗

acts (on the left) downwards on C0. The action is 1-closed.

Proof: Most of the required properties of C0 and of the action of X∗ over C0

are easy to prove, once we notice that:

– For all u ∈ Obj C0, Mor(u, u) = {(u, e, u) : e ∈ E} ' E;

– For all (u, s, v) ∈ Mor(u, v), (u, s, v)+ = (u, s+, u);

– The unique unit of X∗ is the empty word 1.

Here, we only prove that C0 is 1-proper. Let v ∈ X∗ and (1, s, v), (1, t, v) ∈
Mor(1, v) be such that (1, s, v)+ = (1, t, v)+. Then, s+ = t+ and s, t ∈ Mv. If
v = 1, then Mv = E and we have s = s+ = t+ = t. Whence (1, s, v) = (1, t, v).
If v 6= 1, let v = (x1, ..., xn), where n > 0 and xi ∈ X (i = 1, ..., n). Thus, there
exist e1, ..., en, f1, ..., fn ∈ E such that

s = e1x1e2 · · · enxnen+1

and

t = f1x1f2 · · · fnxnfn+1 .

By Lemma 3.1,

s = s+(x1 · · ·xn) and t = t+(x1 · · ·xn) .

Hence, as s+ = t+, we have s = t. Therefore

(1, s, v) = (1, t, v)

and C0 is 1-proper, as required.

Definition 3.3. Let M and N be left type-A monoids we say that N is a
+-cover of M if there exists an idempotent separating monoid morphism θ from
N onto M that respects the operation +, that is, for all a ∈ N , a+ θ = (a θ)+.
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Theorem 3.4. Every left type-A monoid has a proper left type-A +-cover.

Proof: Suppose that M is a left type-A monoid. Let C0 be the category
defined before. We have

C1 =
{

((1, s, u), u) : u ∈ X∗, s ∈Mu

}

and the multiplication on C1 is given by

((1, s, u), u) ((1, t, v), v) = ((1, st, uv), uv) .

The identity of C1 is ((1, 1M , 1), 1). By Lemmas 3.2 and 2.2, C1 is a proper left
type-A monoid. Now, let us consider the map

θ :C1 −→M

((1, s, u), u) 7→ s .

Clearly, θ is monoid morphism and is, in fact, a +-morphism. Because

((1, s, u), u)+ θ = ((1, s+, 1), 1) θ = s+ = (((1, s, u), u) θ)+ .

That θ is onto follows from the fact that, for all a ∈M\{1} = X,

a = ((1, a, (a)), (a)) θ .

Finally, as

E(C1) =
{

((1, e, 1), 1) : e ∈ E
}

,

we have that θ|E(C1) is an isomorphism from E(C1) into E. Therefore, C1 is a
proper left type-A +-cover of M , as required.
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Dep. Matemática, Universidade de Lisboa,

Rua Ernesto de Vasconcelos, C1, 1700 Lisboa – PORTUGAL


