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POINTWISE CONTROLLABILITY AS LIMIT OF
INTERNAL CONTROLLABILITY FOR THE WAVE EQUATION

IN ONE SPACE DIMENSION

Caroline Fabre and Jean-Pierre Puel

1 – Introduction

In this article, we are interested in the passage from an exact controllability
problem for the wave equation in one space dimension when the control acts in an
open subset of amplitude ε to an exact controllability problem when the control
acts on a point.

We study the case of the wave equation in one space dimension and we start
with the solutions of exact controllability problems when the controls have their
supports in an interval of the form ]a, a + ε[ where a is any fixed point of ]0, π[.
The existence of these solutions has been proved by A. Haraux in [3] and we will
briefly recall some of his results.

The aim of this paper is to describe what happens when ε tends to zero. We
can’t hope to get a pointwise control for the limit problem for any point a in
]0, π[ as we know from S. Jaffard (see [5]) and A. Haraux and S. Jaffard (see
[4]) that the pointwise exact controllability of the wave equation is possible (in
some way) if and only if a is what one calls a strategic point. Results concerning
pointwise exact controllability have been obtained by S. Jaffard in [5] proving
embeddings between the space of initials datas which are exactly controllable and
some Sobolev spaces. We then prove that if a is strategic , we obtain for the limit
problem the solution of an exact controllability problem when the control acts
on the point a and that for other points, the solutions of internal controllability
problems blow up.

In order to solve our problem, we use a method which is quite analogous
to the one used in [1] and [2] where we were interested in the limit problem
starting with internal controllability problems with controls concentrated in an
ε-neighbourhood of a part of the boundary satisfying some geometrical condition.
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We will have to prove some results concerning the behavior of weak solutions of
the wave equation in an interval of length ε. As they are independent of the
exact controllability problem, we state them in a first section. After recalling the
results of A. Haraux mentioned above, we will prove an inverse inequality which
will give us the estimates on the internal controls in the case of a strategic point
which are necessary to pass to the limit when the amplitude ε tends to zero. We
then end up with the limit problem.

2 – Behavior near a point

We consider here the weak solutions of the wave equation in Ω×]0, T [ where
Ω =]0, π[. Let h, u0, u1 be elements of L1(0, T ;H−1(Ω)), L2(Ω) and H−1(Ω) and
let u be the solution of

(2.1)















u′′ − ∂2u = h in Ω× [0, T ]
u = 0 in ∂Ω× [0, T ]
u(0) = u0, and u′(0) = u1 .

We recall that u ∈ C(0, T ;L2(Ω))∩C1(0, T ;H−1(Ω)) and that such solutions
of the wave equation can be defined by transposition (we refer to [6] for more
details).

We denote by Ωε the interval ]a, a+ ε[, where a is a point of ]0,π[ and we will
take ε < π − a. For simplicity, we denote by ∂u the derivative with respect to
the space variable x of a function u.

The main results of this section concern the regularity of u(a,t) where u is a
weak solution of (2.1) and a is any point of ]0, π[ and the behavior of the L2-norm
of u in an ε-neighbourhood of a. These results are gathered in the following

Theorem 2.1. There exists a constant c > 0 and a real number ε0 > 0 such
that for every ε ≤ ε0, and for every (h, u0, u1) in L1(0, T ;H−1(Ω)) × L2(Ω) ×
H−1(Ω), the solution u of (2.1) satisfies:

(2.2) u(a, t) ∈ L2(0, T ) ,

and we also have an estimate such as

(2.3)
1

ε

∫ T

0

∫

Ωε
u2(x, t)dxdt ≤ c(||h||2L1(0,T,H−1(Ω)) + ||u0||2L2(Ω) + ||u1||2H−1(Ω)) .

Proof: We introduce v = ∆−1u with Dirichlet conditions on the boundary.
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The function v is a solution of

(2.4)















v′′ − ∂2v = f in Ω× [0, T ]
v = 0 in ∂Ω× [0, T ]
v(0) = v0 and v′(0) = v1 ,

with initial data v(0) = v0, v′(0) = v1 and with a right hand side f satisfying















v0 = ∆−1u0 ∈ H2(Ω) ∩H1
0 (Ω)

v1 = ∆−1u1 ∈ H1
0 (Ω)

f = ∆−1h ∈ L1(0, T ;H1
0 (Ω)) .

and it is sufficient to prove the

Theorem 2.2. There exists a constant c > 0 and a real number ε0 > 0
such that for every ε ≤ ε0, and for every (f, v0, v1) in L1(0, T ;H1

0 (Ω))× (H2(Ω)∩
H1
0 (Ω))×H1

0 (Ω), the solution v of (2.4) verifies:

(2.5) ∂2v(a, .) ∈ L2(0, T ), ∂v′(a, .) ∈ L2(0, T )

and the mapping

(2.6)
L1(0, T ;H1

0 (Ω))× (H2(Ω) ∩H1
0 (Ω))×H1

0 (Ω)→ L2(0, T )× L2(0, T )
(f, v0, v1) 7→ (∂2v(a, .), ∂v′(a, .))

is linear continuous.

Furthermore, we have

(2.7)

1

ε

∫ T

0

∫

Ωε
[(∂2v)2(x, t) + (∂v′)2(x, t))]dxdt ≤

c(||f ||2L1(0,T,H1
0
(Ω)) + ||v

0||2H2(Ω)∩H1
0
(Ω) + ||v

1||2H1
0
(Ω)) .

Proof: Using a density argument, it is sufficient to prove this result for a
right hand side f in D((0, T ) × Ω). The function w = v′ is then a solution with
finite energy of

(2.8)















w′′ − ∂2w = f ′ in Ω× [0, T ]
w = 0 in ∂Ω× [0, T ]
w(0) = v1, and w′(0) = ∂2v0 .
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In order to use the multiplier method, we introduce a function ρ element
of W 1,∞(a, 1) and we denote by Qa =]a, 1[× ]0, T [. Multiplying the equation
satisfied by w by ρ∂w, we get

∫

Qa

(w′′ − ∂2w)∂wρdxdt =
∫

Qa

f ′∂wρdxdt .

But, by integrations by parts, we have

∫

Qa

w′′∂wρdxdt =

∫ 1

a
∂w(x, T )w′(x, T )ρ(x)dx−

∫ 1

a
∂w(x, 0)w′(x, 0)ρ(x)dx

+
1

2

∫

Qa

w′2∂ρdxdt+
1

2

∫ T

0
w′2(a, t)ρ(a)dt

=

∫ 1

a
∂v′(x, T )∂2v(x, T )ρ(x)dx−

∫ 1

a
∂v′(x, 0)∂2v(x, 0)ρ(x)dx

+
1

2

∫

Qa

v′′2∂ρdxdt+
1

2

∫ T

0
v′′2(a, t)ρ(a)dt .

As v′′ = f + ∂2v and f(0) = f(T ) = 0, we finally obtain
(2.9)

∫

Qa

w′′∂wρdxdt =

∫ 1

a
∂v′(x, T )∂2v(x, T )ρ(x)dx−

∫ 1

a
∂v′(x, 0)∂2v(x, 0)ρ(x)dx

+
1

2

∫

Qa

f2(x, t)∂ρ(x)dxdt+
1

2

∫

Qa

(∂2v)2(x, t)∂ρ(x)dxdt

+

∫

Qa
f(x, t)∂2v(x, t)∂ρ(x, t)dxdt+

1

2

∫ T

0
f2(a, t)ρ(a)dt

+
1

2

∫ T

0
(∂2v)2(a, t)ρ(a)dt+

∫ T

0
f(a, t)∂2v(a, t)ρ(a)dt .

On the other hand, we have

(2.10)

−
∫

Qa

∂2w(x, t)∂w(x, t)ρ(x)dxdt =
1

2

∫

Qa

(∂v′)2(x, t)∂ρ(x)dxdt

+
1

2

∫ T

0
(∂v′)2(a, t)ρ(a)dt
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and
(2.11)

∫

Qa

f ′(x, t)∂w(x, t)ρ(x)dxdt = −
∫

Qa

f(x, t)∂w′(x, t)dxdtρ(x)dxdt

= −
∫

Qa

f(x, t)∂(f + ∂2v)(x, t)ρ(x, t)dxdt

=
1

2

∫

Qa

f2(x, t)∂ρ(x)dxdt+
1

2

∫ T

0
f2(a, t)ρ(a)dt

+

∫

Qa

∂2v(x, t)∂f(x, t)ρ(x, t)dxdt

+

∫

Qa

f(x, t)∂2v(x, t)∂ρ(x)dx

+

∫ T

0
f(a, t)∂2v(a, t)ρ(a)dt .

Taking into account (2.9), (2.10) and (2.11), we then obtain
(2.12)
1

2

∫ T

0
(∂v′)2(a, t)ρ(a)dt+

1

2

∫ T

0
(∂2v)2(a, t)ρ(a)dt = −1

2

∫

Qa

(∂2v)2(x, t)∂ρ(x)dxdt

− 1
2

∫

Qa

(∂v′)2(x, t)∂ρ(x)dxdt+

∫

Qa

∂2v(x, t)∂f(x, t)ρ(x, t)dxdt

−
∫ 1

a
∂v′(x, T )∂2v(x, T )ρ(x)dx+

∫ 1

a
∂v′(x, 0)∂2v(x, 0)ρ(x)dx .

Now, choosing ρ(x) = π− x in (2.12), one can easily show (2.5) and (2.6). In
order to get (2.7), we apply (2.12) to the functions

(2.13)







ρε(x) =
a+ ε− x

ε
in [a, a+ ε]

ρε(x) = 0 in [a+ ε, 1] .

and we use (2.5) and (2.6).

3 – Internal exact controllability of the wave equation

We recall here some results of A. Haraux that one can find in [3]. Using the
“Hilbert Uniqueness Method” introduced by J. L. Lions in [6], A. Haraux proved
the exact controllability of the wave equation when the control is distributed
and acts on ]a, a + ε[×]0, T [ for initial data in H1

0 (Ω) × L2(Ω). As usual in
exact controllability problems, this result is a consequence of an inverse inequality
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concerning the solutions of the following homogeneous wave equation:

(3.1)















ϕ′′ − ∂2ϕ = 0
ϕ = 0 in ∂Ω×]0, T [
ϕ(0) = ϕ0, ϕ′(0) = ϕ1 ,

where ϕ0 ∈ L2(Ω) and ϕ1 ∈ H−1(Ω).
We recall this inequality, whose proof can be found in [3]:
For every T ≥ 2π, there exists cε > 0 such that the weak solutions of (3.1)

satisfy

(3.2) ||ϕ0||2L2(Ω) + ||ϕ1||2H−1(Ω) ≤ cε(

∫

Qε

ϕ2(x, t)dxdt) .

Furthermore,

(3.3) cε = O(
1

ε3
) ,

this estimate being optimal.
Having this inequality, A. Haraux proves that for every (y0, y1) ∈ H1

0 (Ω) ×
L2(Ω), the state ψε solution of the exact controllability problem when the control
acts on Ωε×]0, T [ with initial data (y0, y1) is defined by

(3.4)























ψ′′ε − ∂2ψε = ϕ̃εχε

ψε = 0 on ∂Ω×]0, T [
ψε(0) = y0, ψ′ε(0) = y1

ψε(T ) = ψ′ε(T ) = 0 ,

where χε is the characteristic function of ]a, a+ ε[, ϕ̃εχε is the control and ϕ̃ε is
the unique solution of (3.1) whose initial data satisfy

(3.5) −(y1, ϕ̃0ε) + 〈y0, ϕ̃1ε〉 =
∫

Qε

ϕ̃2ε(x, t)dxdt .

As we shall see, (3.3) gives us an estimate on the controls ϕ̃ε. However, it is
not sufficient to obtain the limit problem and in the case of a strategic point, we
will be able to improve it using the next section.
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4 – An inverse inequality

We suppose in this section that the point a is strategic which means that the
quantity

(

∫ T

0
ϕ2(a, t)dt)(1/2)

defines a norm on the space D(Ω) × D(Ω) of the initial data of the solutions of
(3.1):















ϕ′′ − ∂2ϕ = 0
ϕ = 0 in ∂Ω×]0, T [
ϕ(0) = ϕ0, ϕ′(0) = ϕ1 .

J.L. Lions proved in [6] that a point a is strategic if and only if a/π is not an
element of Q.
We denote by F the completion of D(Ω)×D(Ω) for this norm and we denote

by ‖ · ‖F the following quantity:

||ϕ||F = (
∫ T

0
ϕ2(a, t)dt)(1/2) .

A very simple calculation proves that

L2(Ω)×H−1(Ω) ⊂ F .

In fact, S. Jaffard proved (see [5]) that there exists a dense subset of strategic
points for which we have the following result:

If y0(x) =
∑

n≥1 ansin(nx) and y
1(x) =

∑

n≥1 bnsin(nx), then

(y0, y1) ∈ F ′ ⇔
∑

n≥1

n2a2n + b
2
n

sin2(na)
<∞ .

The main result of this section is the following:

Theorem 4.1. For T ≥ 2π, there exists c > 0, such that for every (ϕ0, ϕ1) ∈
F , the solution ϕ of (3.1) satisfies

(4.1) ||(ϕ0, ϕ1)||2F ≤ c(
1

ε

∫

Qε

ϕ2(x, t)dxdt) .

Proof: First, we remark that it is sufficient to prove the result for T = 2π.
Indeed, suppose that the theorem is true for T = 2π and let us consider a time
T > 2π. Let k be the unique integer such that 2kπ ≤ T < 2(k + 1)π, we write

ϕ(x, t) =
∑

n∈N

an cos(nt+ αn) sin(nx) ,
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and we then have
∫ T

0
ϕ2(a, t)dt ≤

∫ 2(k+1)π

0
ϕ2(a, t)dt .

As the family of functions (cos(nt+αn))n∈N is orthogonal in L
2(0, 2(k+1)π),

we obtain
∫ T

0
ϕ2(a, t)dt ≤ (k + 1)π

∑

n∈N

a2n sin
2(na) .

As

(k + 1)π
∑

n∈N

a2n sin
2(na) = (k + 1)

∫ 2π

0
ϕ2(a, t)dt ,

we get
∫ T

0
ϕ2(a, t)dt ≤ (k + 1)

∫ 2π

0
ϕ2(a, t)dt

≤ c(k + 1)
1

ε

∫ 2π

0

∫ a+ε

a
ϕ2(x, t)dxdt

≤ c
k + 1

k

1

ε

∫ 2kπ

0

∫ a+ε

a
ϕ2(x, t)dxdt

≤ c
k + 1

k

1

ε

∫ T

0

∫ a+ε

a
ϕ2(x, t)dxdt

and the theorem will be true for every T ≥ 2π.
Now, suppose T = 2π. We write again

ϕ(x, t) =
∑

n∈N

an cos(nt+ αn) sin(nx) ,

and we have
∫

Qε

ϕ2(x, t)dt = π
∑

n∈N

a2n

∫ a+ε

a
sin2(nx)dx .

Now, we have to prove that there exists c > 0 independent on ε such that for
every integer n ∈ N , we have

(4.2)
1

ε

∫ a+ε

a
sin2(nx)dx ≥ c sin2(na) .

For b ≥ 0, t ≥ 0, we set

I(b, t) =

∫ 1

0
sin2(b+ tz)dz .

As
1

ε

∫ a+ε

a
sin2(nx)dx = I(na, nε) ,
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it is sufficient to prove that there exists c > 0 such that

(4.3) ∀t ≥ 0, I(b, t) ≥ c sin2 b .

We have the formula

∀t ≥ 0, I(b, t) =
1

2
(1− sin t

t
cos(2b+ t)) .

If t ≥ π
2 , then I(b, t) ≥ 1

2(1− 2
π ).

If t < π
2 , we distinguish two cases:

Case 1. ]b, b+ t[⊂]nπ, (n+1)π[. It is then enough to consider the case n = 0
and as sin is concave on [0, π], we obtain

∀z ∈ [0, 1], | sin(b+ tz)| ≥ (1− z)| sin b| .

Hence

I(t, b) ≥ sin2 b
∫ 1

0
(1− z)2dz

≥ 1
3
sin2 b .

Case 2. (n− 1)π ≤ b ≤ nπ ≤ b+ t ≤ (n+ 1)π. It is enough here to consider
the case n = 1 and we write π = b+ z0t with z0 ∈ [0, 1]. We have

| sin(b+ tz0)| ≥ (1− z)| sin b| for z ≤ z0

and
| sin(b+ tz0)| ≥ z| sin(b+ t)| for z > z0 .

Now, if z0 ≥ 1
2 , we find

I(b, t) ≥ sin2 b
∫ z0

0
(1− z)2dz

≥ 7

24
sin2 b .

If z0 <
1
2 , then b+ t− π > π − b and we get the same lower bound.

Combining all the cases, we get assertion (4.3) and the proof of the theorem
is complete.

5 – Estimates on the controls

The results of the above section allow us now to get the estimates that we
need in order to study the passage to the limit when ε tends to zero in (3.4).
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Indeed, using (3.2),(3.3) and (3.5), we obtain the existence of a constant c > 0
such that

||ϕ̃0ε||2L2(Ω) + ||ϕ̃1ε||2H−1 ≤ c(
1

ε3

∫

Qε

ϕ̃2ε(x, t)dxdt)

≤ c

ε3
||(y0, y1||H1

0
(Ω)×L2(Ω)||(ϕ̃0ε, ϕ̃1ε)||L2(Ω)×H−1(Ω) .

We then deduce

Theorem 5.1. For every T ≥ 2π, we have the following estimates:

(5.1) ||(ϕ̃0ε, ϕ̃1ε)||L2(Ω)×H−1(Ω) = O(
1

ε3
)

and

(5.2)

∫

Qε

ϕ̃2ε(x, t)dxdt) = O(
1

ε3
) .

In fact, when the point a is strategic and if the initial data (y0, y1) belong to
F ′, this first estimate can be improved. Indeed, we have from (4.1) and (3.5):

||(ϕ̃0ε, ϕ̃1ε)||2F ≤ c(
1

ε

∫

Qε

ϕ̃2ε(x, t)dxdt)

≤ c

ε
||(y0, y1||F ′ ||(ϕ̃0ε, ϕ̃1ε)||F

from which we deduce

Theorem 5.2. For every T ≥ 2π, if a is strategic and if (y0, y1) ∈ F ′, the
controls ϕ̃ε satisfy the following estimates:

(5.3) ||(ϕ̃0ε, ϕ̃1ε)||F = O(
1

ε
)

and

(5.4)

∫

Qε

ϕ̃2ε(x, t)dxdt = O(
1

ε
) .

The functions ϕε = εϕ̃ε are bounded in L∞(0, T ;F ) thus, after extraction of a
subsequence, they converge for the weak-* topology of this space to an element
ϕ which is also solution of (3.1).

As we shall see, these last estimates are essential to study the limit when ε
tends to zero which is done in the next section.
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6 – Passage to the limit

We study here the possible convergence of the solutions of the exact control-
lability problems defined by (3.4). This convergence depends on the nature of
the point a and on the space of the initial data y0 et y1. When a is strategic
and if the initial data (y0, y1) belong to F ′ (which is exactly the space of initial
data which are exactly pointwise controllable), the estimates obtained in (5.3)
and (5.4) are exactly the one we need to pass to the limit in (3.4). In the others
cases, we only have the estimates given by (5.1) and (5.2) and we will see that
we can’t hope a convergence result concerning the solutions of (3.2) which means
that they probably blow up. If the point a is strategic, we have the following

Theorem 6.1. Suppose that T ≥ 2π. If a is strategic and if the initial data
y0 and y1 belong to F ′, the solutions of (3.4) converge for the weak-* topology of
L∞(0, T ;H1

0 (Ω)) to the solution of the following pointwise exact controllability
problem:

(6.1)























ψ′′ − ∂2ψ = v(a, t)δa

ψ = 0 in ∂Ω×]0, T [
ψ(0) = y0, ψ′(0) = y1 in Ω

ψ(T ) = ψ′(T ) = 0 in Ω ,

where v belongs to L2(0, T ) and is the weak limit in H−1(0, T ) of ϕε(a, .) −
ε
2∂ϕε(a, .).

Proof: The solutions of (3.4) are defined by a duality process from the weak
solution of (2.1) which means that we have:

∀(u0, u1, h) ∈ L2(Ω)×H−1(Ω)× L1(0, T ;H−1(Ω)),

(6.2)

〈〈h, ψε〉〉 =
∫

Qε

ϕ̃ε(x, t)u(x, t)dxdt+ (y
1, u0)− 〈u1, y0〉

=
1

ε

∫

Qε

ϕε(x, t)u(x, t)dxdt+ (y
1, u0)− 〈u1, y0〉

where u is the solution of (2.1) with initial data u0 and u1 and right hand side h.

To prove that (ψε) is bounded in L
∞(0, T ;H−1(Ω)), it is sufficient to prove

that the linear forms

(6.3)

Lε : L
2(Ω)×H−1(Ω)× L1(0, T ;H−1(Ω))→ R

(u0, u1, h) 7→ 1

ε

∫

Qε

ϕε(x, t)u(x, t)dxdt
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are bounded in L2(Ω)×H1
0 (Ω)×L∞(0, T ;H1

0 (Ω)). Using Holder inequality, (2.3)
and (5.4), we have

|Lε(u0, u1, h)|2 ≤ (
1

ε

∫

Qε

ϕ2ε(x, t)dxdt)(
1

ε

∫

Qε

u2(x, t)dxdt)

≤ c(||u0||2L2(Ω) + ||u1||2H−1(Ω) + ||h||2L1(0,T ;H−1(Ω))) ,

which prove that the linear forms Lε are bounded in L2(Ω) × H1
0 (Ω) ×

L∞(0, T ;H1
0 (Ω)).

We then deduce that (ψε)ε is bounded in L
∞(0, T ;H1

0 (Ω)) thus, after extrac-
tion of a subsequence, they converge for the weak-* topology of this space to an
element ψ of L∞(0, T ;H1

0 (Ω)). In order to find which equation is satisfied by ψ,
we have to pass to the limit in (6.2) that is to determine the limit of the linear
forms Lε. This is given by the

Lemma 6.1. The linear forms Lε converge in L
2(Ω)×H1

0 (Ω)×L∞(0, T ;H1
0 (Ω))

weak-* to the linear form L defined by

(6.4) L(u0, u1, h) =

∫ T

0
v(a, t)u(a, t)dt ,

where v belongs to L2(0, T ) and is the weak limit in H−1(0, T ) of ϕε(a, .) −
ε
2∂ϕε(a, .).

Let us admit this lemma for the moment.
Passing to the limit in (6.2), we get

∀(u0, u1, h) ∈ L2(Ω)×H−1(Ω)× L1(0, T ;H−1(Ω)),

(6.5) 〈〈h, ψ〉〉 =
∫ T

0
v(a, t)u(a, t)dxdt+ (y1, u0)− 〈u1, y0〉 ,

where u is the solution of (2.1) with initial data u0 and u1 and right hand side
h. This proves that ψ is the solution of (6.1).
We now prove Lemma 6.1. In order to do this, we begin with the following

result:

Lemma 6.2. Let ϕε be a family of solutions of (3.1) with initial data in
L2(Ω)×H−1(Ω) satisfying the following condition:

(6.6)

∫

Qε

ϕ2ε(x, t)dxdt = O(ε) .

Then, after extraction of a subsequence, ϕε(a, .)− ε
2∂ϕε(a, .) converge for the

weak topology of H−1(0, T ) to an element v of L2(0, T ).
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Proof: From (4.1), hypothesis (6.6) implies that the functions ϕε are bounded
in F thus, after extraction of a subsequence, ϕε(a, .) converge in L

2(0, T ) weak.
On an other hand, (3.2), (5.3) and (5.4) implies

||(ϕ0ε, ϕ1ε)||L2(Ω)×H−1(Ω) = O(
1

ε
) .

Using (2.5), we can easily prove that the mapping

(ϕ0, ϕ1) ∈ L2(Ω)×H−1(Ω)→ ∂ϕ(a, .) ∈ H−1(0, T ) ,

where ϕ is the solution of (3.1), is continuous.
We then have

||∂ϕε(a, .)||H−1(0,T ) = O(
1

ε
) .

In order to finish the proof of Lemma 6.2, we have to prove that v ∈ L2(0, T )
that is

(6.7) ∀u ∈ D(0, T ), |(v, u)D′,D| ≤ c||u||L2(0,T ) .

We introduce the following functions:

Φε(x, t) =

∫ t

0
ϕε(x, τ)dτ −∆−1ϕ1ε ,

and

sε(x, t) =

∫ t

0
Φε(x, τ)dτ −∆−1ϕ0ε .

The functions Φε and sε are solutions of (3.1) with initial data respectively
in H1

0 (Ω) × L2(Ω) and (H2(Ω) ∩ H1
0 (Ω)) × H1

0 (Ω). Furthermore, we have the
following estimates:

||(Φ0ε,Φ1ε)||H1
0
(Ω)×L2(Ω) = O(

1

ε
) ,

and

||(s0ε, s1ε)||(H2(Ω)∩H1
0
(Ω))×H1

0
(Ω) = O(

1

ε
) .

For u ∈ D(0, T ), we then write

1

ε

∫ T

0

∫ a+ε

a
ϕε(x, t)u(t)dxdt =

1

ε

∫ T

0

∫ a+ε

a
sε(x, t)u

′′(t)dxdt

=

∫ T

0
(sε(a, t) +

ε

2
∂sε(a, t))u

′′(t)dt

+
1

ε

∫ T

0

∫ a+ε

a
u′′(t)

∫ x

a

∫ y

a
∂2sε(z, t)dzdydxdt .
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We thus have

(sε(a, .) +
ε

2
∂sε(a, .), u

′′)D′,D =
1

ε

∫ T

0

∫ a+ε

a
ϕε(x, t)u(t)dxdt−Rε ,

where

Rε =
1

ε

∫ T

0

∫ a+ε

a
u′′(t)

∫ x

a

∫ y

a
∂2sε(z, t)dzdydxdt .

Let us prove that
lim
ε→0

Rε = 0.

Using Holder’s inequality, we get,

|Rε| ≤
1

ε
||u′′||L2(0,T )(

∫ T

0
ε

∫ a+ε

a
(x− a)

∫ x

a
(y − a)

∫ y

a
(∂2sε)

2(z, t)dzdydxdt)1/2

≤ ||u′′||L2(0,T )

√
ε√
8
||(s0ε, s1ε)||(H2(Ω)∩H1

0
(Ω))×H1

0
(Ω)

thus
lim
ε→0

Rε = 0 .

Using now (6.6), there exist a constant c > 0 such that

|(sε(a, .) +
ε

2
∂sε(a, .), u

′′)D′,D| ≤ c||u||L2(0,T ) + |Rε| .

Passing to the limit when ε goes to zero, we obtain

|(v, u)D′,D| ≤ c||u||L2(0,T ) ,

which prove that v belongs to L2(0, T ).

Proof of Lemma 6.1: As the linear form L defined in (6.4) has a sense on
L2(Ω)×H−1(Ω)× L1(0, T ;H−1(Ω)), it is sufficient to prove that (Lε)ε converge
to L on a dense subspace of L2(Ω)×H−1(Ω)×L1(0, T ;H−1(Ω)) and, for example,
on (H2(Ω) ∩H1

0 (Ω))×H1
0 (Ω)× L1(0, T ;H1

0 (Ω)). We then consider (u
0, u1, h) ∈

(H2(Ω)∩H1
0 (Ω))×H1

0 (Ω)×L1(0, T ;H1
0 (Ω)). We know that u ∈ C(O, T ;H2(Ω)∩

H1
0 (Ω)) ∩ C1(0, T ;H1

0 (Ω)). Using (5.4), one can easily prove that the following
linear forms

(6.8)

Kε : L
2(O, T ;H2(Ω) ∩H1

0 (Ω))→ R

u 7→ 1

ε

∫

Qε

ϕε(x, t)u(x, t)dxdt

are defined and bounded on L2(0, T ;H2(Ω) ∩H1
0 (Ω)).
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They converge for the weak topology L2(0, T, (H2(Ω)∩H1
0 (Ω)

′) to an element
K of L2(0, T, (H2(Ω) ∩ H1

0 (Ω)
′). In order to determine K, we write for u ∈

D(0, T ;C∞(Ω)):

(6.9)

Kε(u) =
1

ε

∫

Qε

ϕε(x, t)u(a, t)dxdt

+
1

ε

∫

Qε

ϕε(x, t)(

∫ x

a
∂u(y, t)dy)dxdt .

We have already seen that

lim
ε→0

1

ε

∫

Qε

ϕε(x, t)u(a, t)dxdt =

∫ T

0
v(t)u(a, t)dt .

On an other hand, it is easy to prove, using Holder’s inequality, that for every
u ∈ D(0, T ;C∞(Ω)), we have

lim
ε→0

1

ε

∫

Qε

ϕε(x, t)(

∫ x

a
∂u(y, t)dy)dxdt = 0 ,

which finishes the proof of the lemma 6.1.

Remark 6.1. In the case of a non strategic point, we still have

〈〈h, ψε〉〉 =
∫

Qε

ϕ̃ε(x, t)u(x, t)dxdt+ (y
1, u0)− 〈u1, y0〉 .

But, we have here,

(

∫

Qε

ϕ̃ε(x, t)u(x, t)dxdt)
2 ≤

∫

Qε

ϕ̃2ε(x, t)dxdt×
∫

Qε

u2(x, t)dxdt .

Using (5.2), there exist a constant c > 0 such that

(

∫

Qε

ϕ̃ε(x, t)u(x, t)dxdt)
2 ≤ c(

1

ε3

∫

Qε

u2(x, t)dxdt) .

It is clear that we can’t hope a result like

1

ε3

∫

Qε

u2(x, t)dxdt ≤ c(||u0||2L2(Ω) + ||u1||2H−1(Ω) + ||h||2L1(0,T ;H−1(Ω))) ,

with c > 0 and independent on ε because this would imply u(a, .) = 0 for ev-
ery u solution of (2.1) with initial data and right side in L2(Ω) × H−1(Ω) ×
L1(0, T ;H−1(Ω)). This explains that the solutions of (3.4) probably blow up in
the case of a non strategic point.
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